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Abstract: Tiagabine is an antiepileptic drug used for the treatment of partial seizures in humans.
Recently, this drug has been found useful in several non-epileptic conditions, including anxiety,
chronic pain and sleep disorders. Since tachycardia—an impairment of cardiac rhythm due to cardiac
ion channel dysfunction—is one of the most commonly reported non-neurological adverse effects
of this drug, in the present paper we have undertaken pharmacological and numerical studies to
assess a potential cardiovascular risk associated with the use of tiagabine. A chemical interaction
of tiagabine with a model of human voltage-gated ion channels (VGICs) is described using the
molecular docking method. The obtained in silico results imply that the adverse effects reported
so far in the clinical cardiological of tiagabine could not be directly attributed to its interactions
with VGICs. This is also confirmed by the results from the isolated organ studies (i.e., calcium entry
blocking properties test) and in vivo (electrocardiogram study) assays of the present research. It was
found that tachycardia and other tiagabine-induced cardiac complications are not due to a direct
effect of this drug on ventricular depolarization and repolarization.

Keywords: tiagabine; cardiac voltage-gated ion channels; molecular modeling; ECG study

1. Introduction

Epidemiological studies have consistently shown that people with epilepsy have a
higher prevalence of structural cardiac disease than those without it [1]. The functioning
of neurons, muscles and cardiac myocytes is based on action potentials (APs) generated
by transmutational ion currents mediated mainly by sodium, calcium and potassium [2,3].
According to the guidelines of the Comprehensive in vitro Proarrhythmia Assay (CiPA),
a set of six ion channels has been selected for which currents are important for both the
repolarization and depolarization of the cardiac action potential (AP) [4]. There is some
evidence, based on the effect of clinical drugs on cardiac APs, indicating the classification
of cardiac ion channels into two classes [5–7]. The first class contains the most important
cardiac ion channels, such as KV11.1, NaV1.5 and CaV1.2. The second class comprises
KV4.3, KvLQT1/mink and Kir2.1 and is less critical for the assessment of all drugs under
CiPA [7–9].

A common feature of both neurological disorders (e.g., epilepsy and chronic pain)
and cardiac dysrhythmias is cell (neuronal cell and cardiac myocyte, respectively) hyperex-
citability [2]. Therefore, drugs affecting cell excitability threshold within the nervous tissue
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can also interact with cardiac cell APs and vice versa [10–12]. It has to be emphasized that
this drug-induced effect might sometimes be harmful as it may lead to the occurrence of
additional alterations in neuronal or cardiac cell reactivity, thus being a cause for additional
drug-induced (iatrogenic) complications. From the safety pharmacology point of view,
it is of key importance to recognize these potential risk factors as early as possible. The
cardiac VGICs assay is an indispensable step and a high-quality assay must accompany
any investigational new drug application. The in silico studies of drug binding to KV11.1,
NaV1.5 and CaV1.2 may be valuable assays for drugs and drug candidates at present [13].

Currently, several antiepileptic drugs were reported to have cardiotoxic and metabolic
adverse effects [1,14]. Tiagabine (TGB) is an anticonvulsant drug used to treat partial
seizures in humans. Recent results of clinical trials and animal studies indicate that it
might be also effective in patients suffering from pain, insomnia or mood disorders and
these activities are attributed to its inhibitory effect on GABA uptake [15,16]. TGB is
a 96% protein-bound molecule [17]. The drug is a potent inhibitor of [3H]GABA up-
take into synaptosomal membranes (IC50 = 67 nM) or neurons (IC50 = 446 nM) and glial
cells (IC50 = 182 nM) in primary cell cultures. The in vivo tests have shown that TGB
neuronal inhibiting is 2.5-fold more potent than glial GABA uptake [18–20]. The enhance-
ment of GABA neurotransmission due to GABA transporter subtype 1 (GAT-1) inhibition
might also explain most of adverse effects of TGB, including drowsiness, confusion and
dizziness [18,21]. However, some other TGB-induced complications do not to be directly
related to its influence on GABA concentration in the brain and other tissues.

Several recent reports have demonstrated that tachycardia is observed in about 1.0%
of patients treated with TGB [18,22] but the mechanisms underlying this cardiotoxic effect
are not known. In the literature there is a limited amount of data regarding the influence of
TGB on cardiovascular functions and metabolism [23].

Since tachycardia is most frequently caused by impaired ion channel functions [24–27],
in the in silico part of the present study a detailed analysis of the interactions between
the human KV11.1, NaV1.5, CaV1.2 and TGB was performed. In order to compare the
strength of TGB’s binding to individual ion channels terfenadine (TEF) [28], batrachotoxin
(BTX) [29,30] and nifedipine (NFD) [31] were selected as compounds strongly affecting
these molecular targets.

In the course of present study, in vivo tests in rats were performed. The in vivo
assay comprised the assessment of TGB’s proarrhythmic potential and its effects on ECG
components were studied; i.e., we conducted in vivo evaluation of TGB to assess its
influence on PQ, QRS, QT and QTc intervals. Its effect on heart rate was also investigated.
The relevant changes in PQ, QRS, QT and QTc intervals were interpreted as the effect of
the test drug predominantly on Nav, Kv and Cav channels. In contrast, the changes in
heart rate were treated as a measure of the effect of the test compound, particularly, on the
Nav1.5 channel or autonomic system function. Calcium blocking properties of TGB were
tested in the isolated rat aorta contracted with depolarizing KCl solution.

2. Results
2.1. Pharmacological Part
2.1.1. The Effect on Normal Electrocardiogram

In vivo ECG study showed that TGB marked no significant effect on PQ, QRS, QT and
QTc intervals. TGB also did not influence the heart rate significantly. It decreased the heart
rhythm maximally at 30 min (by 6.9%) but this result did not reach statistical significance
(Table 1). What is most important to note is that TGB at a dose as high as 100 mg/kg i.p
did not prolong QT interval, which suggests that it did not prolong cardiac repolarization
and probably did not block IKR currents. Similar observations have also been made in
the published studies [32,33]. We also did not observe the prolongation of PQ interval
and QRS widening, which reflects the slowed conduction and disturbances in ventricular
depolarization, usually due to the INa block. This is in line with the results obtained and
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presented here from molecular docking studies, where we found that TGB did not bind to
cardiac voltage-gated ion channels Kv11.1 (hERG) and Nav1.5.

Table 1. Effects of TGB (100 mg/kg i.p.) on the heart rate and ECG intervals in anesthetized rat (thiopental 75 mg/kg i.p.).

Parameters
Time of Observation (min)

0 5 10 20 30 40 50 60

Beats/min 288.0 ± 5.4 275.6 ± 7.6 274.2 ± 7.7 269.5 ± 6.6 268.1 ± 3.0 276.7 ± 4.7 283.7 ± 7.0 289.5 ± 11.3
PQ (ms) 52.6 ± 2.0 56.2 ± 2.0 56.8 ± 2.1 56.6 ± 18 57.2 ± 1.3 55.2 ± 2.2 57.2 ± 1.2 56.8 ± 1.3

QRS (ms) 19.2 ± 0.5 18.4 ± 1.1 19.8 ± 0.9 19.4 ± 0.6 19.4 ± 0.9 19.8 ± 0.5 19.6 ± 0.4 19.0 ± 0.9
QT (ms) 61.0 ± 1.0 60.6 ± 0.4 62.6 ± 1.9 62.8 ± 1.8 60.8 ± 0.8 63.6 ± 1.8 61.2 ± 0.8 61.6 ± 0.9
QTc (ms) 113.8 ± 3.0 115.6 ± 1.5 119.9 ±5.6 121.1 ±3.8 117.4 ± 2.0 121.0 ± 3.8 115.0 ± 2.0 114.8± 3.0

The data are the means of five experiments± S.E.M. Statistical analysis: one-way analysis of variance (ANOVA) with repeated measurements
and followed by Dunnett’s post hoc test.

2.1.2. Voltage-Dependent Calcium Channels

During the course of our study, we investigated the calcium entry blocking properties
of TGB in vasculature by employing the isolated rat aorta contracted with depolarizing
KCl solution. In this experiment, the KCl-induced contraction was caused by an increase
in extracellular potassium that leaded to membrane depolarization, which increases cal-
cium influx from extracellular sources involving voltage-dependent calcium channels [34]
(Cav1.2). The reference compounds we used were verapamil [35] and NFD [36]. TGB was
not able to relax KCl-precontracted aortic rings at the range of concentration 1–30 µM
(Figure 1). At a higher concentration, TGB was not tested as it precipitated in Krebs–
Henseleit solution. NFD, verapamil and voltage-dependent calcium channel blockers
relaxed KCl (60 mmol/L)-precontracted aortic rings in a dose-dependent manner (Figure 1)
by 95–97%, with the IC50 values of 4.7 ± 0.2 nM and 32.9 ± 7.4 nM, respectively [35,36].
On the basis of these results, we may state that TGB does not possess voltage-dependent
calcium channel blocking properties at the tested range of concentrations.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 18 
 

 

PQ interval and QRS widening, which reflects the slowed conduction and disturbances in 
ventricular depolarization, usually due to the INa block. This is in line with the results 
obtained and presented here from molecular docking studies, where we found that TGB 
did not bind to cardiac voltage-gated ion channels Kv11.1 (hERG) and Nav1.5. 

Table 1. Effects of TGB (100 mg/kg i.p.) on the heart rate and ECG intervals in anesthetized rat (thiopental 75 mg/kg i.p.). 

Parameters 
Time of Observation (min) 

0 5 10 20 30 40 50 60 
Beats/min 288.0 ± 5.4 275.6 ± 7.6 274.2 ± 7.7 269.5 ± 6.6 268.1 ± 3.0 276.7 ± 4.7 283.7 ± 7.0 289.5 ± 11.3 
PQ (ms) 52.6 ± 2.0 56.2 ± 2.0 56.8 ± 2.1 56.6 ± 18 57.2 ± 1.3 55.2 ± 2.2 57.2 ± 1.2 56.8 ± 1.3 

QRS (ms) 19.2 ± 0.5 18.4 ± 1.1 19.8 ± 0.9 19.4 ± 0.6 19.4 ± 0.9 19.8 ± 0.5 19.6 ± 0.4 19.0 ± 0.9 
QT (ms) 61.0 ± 1.0 60.6 ± 0.4 62.6 ± 1.9 62.8 ± 1.8 60.8 ± 0.8 63.6 ± 1.8 61.2 ± 0.8 61.6 ± 0.9 
QTc (ms) 113.8 ± 3.0 115.6 ± 1.5 119.9 ±5.6 121.1 ±3.8 117.4 ± 2.0 121.0 ± 3.8 115.0 ± 2.0 114.8± 3.0 

The data are the means of five experiments ± S.E.M. Statistical analysis: one-way analysis of variance (ANOVA) with 
repeated measurements and followed by Dunnett’s post hoc test. 

2.1.2. Voltage-Dependent Calcium Channels 
During the course of our study, we investigated the calcium entry blocking 

properties of TGB in vasculature by employing the isolated rat aorta contracted with 
depolarizing KCl solution. In this experiment, the KCl-induced contraction was caused 
by an increase in extracellular potassium that leaded to membrane depolarization, which 
increases calcium influx from extracellular sources involving voltage-dependent calcium 
channels [34] (Cav1.2). The reference compounds we used were verapamil [35] and NFD 
[36]. TGB was not able to relax KCl-precontracted aortic rings at the range of concentration 
1–30 μM (Figure 1). At a higher concentration, TGB was not tested as it precipitated in 
Krebs–Henseleit solution. NFD, verapamil and voltage-dependent calcium channel 
blockers relaxed KCl (60 mmol/L)-precontracted aortic rings in a dose-dependent manner 
(Figure 1) by 95–97%, with the IC50 values of 4.7 ± 0.2 nM and 32.9 ± 7.4 nM, respectively 
[35,36]. On the basis of these results, we may state that TGB does not possess voltage-
dependent calcium channel blocking properties at the tested range of concentrations.  

 
Figure 1. Inhibitory potencies of TGB and reference drugs (NFD and verapamil) on sustained contraction of aortic rings 
induced by KCl (60 mM). 

Figure 1. Inhibitory potencies of TGB and reference drugs (NFD and verapamil) on sustained contraction of aortic rings
induced by KCl (60 mM).

2.2. Molecular Docking Studies
2.2.1. Terfenadine

TEF is (RS)-1-(4-tert-butylphenyl)-4-{4-[hydroxy(diphenyl)methyl]piperidin-1-yl}-butan-
1-ol and, from a chemical point of view, belongs to piperidine derivatives (Figure 2).
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The obtained results from molecular docking confirmed the strongest blocking effects
of TEF on the hKv11.1 channel. R-TEF-hKv11.1 is the most stable complex in the studied
set. Comparison of the data (such as EB and pKi, Table 2) obtained for R-TEF and S-TEF
complexes leads to the conclusion that there are significant stereoselective differences in
the potential interaction for all studied channels. Docking experimentation predicted more
effective potential interactions of all studied channels and S-TEF than its counterpart R-TEF
(Table 2). Nevertheless, all calculated h-bonds formed are weak interactions. Moreover,
obtained data suggests that R/S-TEF displays non inhibitory effects for hCav1.2. According
to data in Table 2, pKi < 3.5, while by convention pKi ≤ 4 indicates the lack of a biological
effect. Based on the CiPA studies, including the examination of the effect of 30 clinical
drugs on the 7-ion channel [7], it can be concluded that the risk level of torsade de pointes
(TdP) is correlated with the blocking effects of hKv11.1, hNav1.5 and hCav1.2. Crumb
et al. [7,37] in their research proposed a classification of drugs into three categories of
TdP entry risk (high, medium and low). According to their studies, drugs belonging
to the high and medium risk stand out with block hERG to a much greater extent than
any other tested currents. The drugs belonging to the low risk category is distinct with
the non-specific blocking of hKv11.1, hNav1.5 and hCav1.2 channels (Figure S1). These
results clearly indicate the need for testing drug candidates on the ion channel panel. In
our study it was found, on the molecular level, that the high risk of TdP is a result of
TEF’s strong blocking effects on hERG. R-TEF-hKv11.1 complex has one normal h-bond in
which the hydroxyl group of the (4-tert-butylphenyl)methanol moieties of R-TEF donates
energetically weak (−3.62 kcal/mol), short (2.12 Å) and almost linear interactions (158◦)
to Tyr652 (Figure S2). Regarding the interaction of R-TEF and S-TEF with the hNav1.5
channel, it should be noted that both enantiomers of TEF practically strongly interact with
this protein (pKi > 5, Table 2), which also indicates their arrhythmogenic effects through
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the hNav1.5. This observation is also confirmed by previously presented pharmacological
studies [38].

Table 2. The summary of hNav1.5, hCav1.2 and hKv11.1 (hERG) channel docking experiment results.

Complex EB
pKi

Amino Acid
Residues

HB Angle LHB EHB

Protein Ligand kcal/mol donor acc θ Å kcal/mol

hNav1.5

R-TGB −5.01 3.74 ASN927 #CONH2 %COO 153.33 2.17 −3.38

S-TGB −5.21 3.82 ASN927 #CONH2 %COO 171.54 2.23 −4.05

NFD −7.00 5.13 LEU409 %NOH #CONH 146.945 1.987 −0.07

R-TEF −6,83 5.01 none

S-TEF −7.45 5.46
LEU409 %OH #CONH 163.079 2.014 −1.00

GLU417 %OH #COO 129.495 2.178 −0.04

BTX −9.01 6.68 SER1458 %NH #CONH 156.904 2.179 −3.43

hCav1.2

R-TGB −5.05 3.70
THR1056 %NH #OH 168.494 1.868 −7.33

SER1132 #OH %COO 176.604 2.116 −5.54

S-TGB −4.77 3.50
THR1056 %NH #OH 150.676 2.155 −4.06

SER1132 #OH %COO 137.882 2.092 −0.01

NFD −10.71 7.85
THR1462 %NOH #CONH 124.62 1.68 −3.13

TYR1508 #PhOH %NOH 141.07 1.92 −3.84

R-TEF −4.16 3.05 THR1133 %OH #CONH 137.428 2.021 −0.35

S-TEF −4.75 3.48 ALA1174 %OH #CONH 128.006 1.901 −0.35

BTX −7.17 5.25

GLN1060 %OH #CONH2 157.582 1.691 −0.37

SER1132 #OH %OH 141.666 2.221 −3.23

MET1178 %NH-pyrrole #CONH 156.864 2.028 −4.51

hKv11.1

R-TGB −5.4 3.32 none

S-TGB −5.2 3.14
TYR652 %NH #CONH 136.087 1.97 −2.86

SER660 #OH %COO 128.896 2.145 −0.04

NFD −4.42 3.24 ASN658 #CONH2 %NO 174.448 1.849 −7.63

R-TEF −8.4 6.27 TYR652 %OH #PhOH 158.395 2.121 −3.63

S-TEF −8.4 6,56 none

BTX −6.75 4.95
PHE551 %OH #CONH 171.728 1.933 −0.28

THR623 140.298 1.933 −2.24

Abbreviations in Table. Components of the investigated complexes: protein-hNav1.5, hCav1.2 and hKv11.1 (hERG); and ligands, R/S-
TGB (R/S-tiagabine), NFD (nifedipine), R/S-TEF (R/S-terfenadine), BTX (batrachotoxin). Other abbreviations: HB—hydrogen bond.
acc—hydrogen bond acceptor. Hydrogen bond components: from the ligand % and from the protein #. EB—complex energy binding.
θ—hydrogen bond angle. LHB—hydrogen bond length. EHB—hydrogen bond energy. pKi was calculated from the AutoDock4 and
estimated inhibition constant Ki, which is reported in the AutoDock4 output.

2.2.2. Nifedipine

NFD is a 3,5-dimethyl 2.6-dimethyl-4-(2-nitrophenyl)-1.4-dihydropyridine-3,5-
dicarboxylate (Figure 2). It is classified as a dihydropyridine subclass compound. It
is a highly apolar photosensitive compound. The NFD docking experiment revealed
that this molecule can interact with an active site of all the studied proteins (Table 2). It
can be set to the following descending order of binding energies EB(NFD-hKv11.1) ≈ −4.42,
EB(NFD-hNav1.5) ≈ −7.00 and EB(NFD-hCav1.2) ≈ −10.71 kcal/mol, respectively. The bind-
ing energies obtained in the docking experiment show that NFD forms a more stable
complex in the case of the hCav1.2 channel. The in silico data obtained for blocking of
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hCav1.2 channel (pKi = 7.85) are in line with data in the literature (pIC50 = 7.48) [35] and
(pKi = 7.66) [39]. Based on the predicted binding affinity, the highest affinity was observed
with the hCav1.2 and NFD in all cases of studied channels. Additionally, the blocking
effect of NFD with hNav1.5 was also proven (Table 2). It has to be highlighted that in NFD-
hNav1.5 and NFD-hKv11.1 complexes, NFD interacts via one normal h-bond. In contrast,
the complex NFD-hCav1.2 shows two h-bonds, both of which are short (≈1.68 Å) and
strong (≈−3.8 kcal/mol) (Table 2.). The assessment of the data obtained for the hydrogen
bonds clearly leads to the conclusion that they all have incomparable energies and bond
lengths. Interestingly, NFD forms the strongest h-bond with hKv11.1 and the weakest one
with hNav1.5 channel (Table 2. Figure S2). The h-bond with hCav1.2 is characterized by
an indirect force of influence. However, taking into account the data from Table 2, there
is no correlation between the binding affinities of NFD and h-bond energy. The obtained
distribution of estimated pKi measure shows that in case of the hKv11.1 channel, NFD
has no inhibitory effect for this channel (pKi < 4. Table 2). These data prove that NFD has
potency only in inhibiting the hCav1.2 and hNav1.5 channel, which is in agreement with
the pharmacological data previously presented in pharmacological literature [40].

2.2.3. Batrachotoxin

BTX as a steroidal alkaloid belongs to class A channel opening toxins [41]. Its molecule
contains an oxazepane ring with tertiary amine and an aromatic pyrrole ring connected to
the rigid polycyclic steroidal core via the ester group (Figure 2). Its 3D structure adopts
a horseshoe conformation [42,43]. The outer surface of the horseshoe is hydrophobic,
while the inner one is rather hydrophilic and forms the oxygen triad (at C3, C9 and
C11) [44,45]. The outer surface of the horseshoe is hydrophobic, while the inner one is
rather hydrophilic and forms oxygen triad (at C3, C9 and C11) [44]. It was suggested in
the literature that this oxygen triad forms a hydrophilic arc, which can be regarded as a
chelating site attracting some cations [46]. In the preliminary analysis of the docking, it
was observed that BTX interacts with the active site of all studied proteins (Figure S2). The
achieved data demonstrated that Nav1.5 forms one h-bond, while hCav1.2 and hKv11.1
form two h-bonds. The energies obtained in the present in silico experiment show that
hCav1.2 and hKv11.1 form more and form stronger hydrogen bonds than the remaining one
(hNav1.5). The predicted binding affinity can be arranged in the following increasing order:
hKv11.1 < hCav1.2 < hNav1.5 (Table 2). Obtained results revealed that BTX-hNav1.5 is an
energetically more stable complex with a binding energy of −9.01 kcal/mol. The stability
of the complex with the hCav1.2 and hKv11.1 is slightly lower than that with hNav1.5 (i.e.,
EB BTX-hCav1.2 = −7.17 and EB BTX-hKv11.1 = −6.75 kcal/mol, respectively). The calculated
BTX affinity value of pKi = 6.68 is consistent with the relevant inhibitory potential data
known from the specialized literature (pIC50 = 6.71) [47]. The BTX-hNav1.5 complex is
formed via a single key interaction with residues of hNav1.5. The hydroxyl group at
position C-11 of the steroid skeleton donates one h-bond to the sulfur atom of Ser1458.
This interaction is non-linear (157◦) and with weak energy, i.e., −3.43 kcal/mol and a small
bond length equal to 2.18 Å. This is in line with the literature data according to which
the atom included in oxygen triad is responsible for the toxic interaction of BTX with its
molecular target [44]. We can treat these data as a strong argument proving that BTX acts
on the cytoplasmic side of the channel just as other Class A neurotoxic compounds do, as it
is shown in Figure S2.

For hCav1.2 and hKv11.1 channels, BTX has pKi ≈ 5.2, which suggests comparable
blocking effects. The BTX-hCav1.2 complex is a more energetically stable form than the
BTX-hNav1.5 complex (Table 2). This complex has one normal h-bond. In the bifurcated h-
bond, the major component is Ser1132 and the minor component is Gln1060; the associated
energies are weak (EHB = −0.37 kcal/mol and −3.23 kcal/mol, respectively). The distances
of the hydrogen bonds lay in the range from 1.69 to 2.22 Å and, due to this, the three-
centered hydrogen bond is highly not symmetric. In the case of BTX-hCav1.2 complex, it is
formed via one normal h-bond interaction (Table 2).
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2.2.4. Tiagabine

As it can be seen from the data collected in Table 2, TGB complexes between hNav1.5,
hCav1.2 and hKv11.1 have a calculated pKi ≤ 4, which is commonly used as a threshold and
this drug can thus be considered as an inactive ligand for those proteins. These data refer
to both R/S enantiomers of TGB (Figure 3). Docking TGB into the hNav1.5 channel showed
the highest pKi value in Table 2, however, the value is still below the activity threshold
level of pKi > 4. The lowest pKi was observed for hKv11.1. We can treat these data as a
partial explanation of the reported adverse TGB interactions in the cardiovascular system.
It also seems that a small percentage of the observed cardiac disorders can be attributed to
the fact that TGB does not interact with hKv11.1, for which inhibition is responsible for QTc
prolongation. In all analyzed cases, R-TGB shows slightly higher binding affinities than
S-TGB. This observation is in line with many previous pharmacological studies indicating
the greater biological activity of R enantiomers compared to the S ones [10–12]. It is also
worth emphasizing that all h-bonds formed between hCav1.2 channels and R/S-TGB
possess very favorable key interaction energy values (EHB ≈ −7.32 for hCav1.2-R-TGB and
−5.54 kcal/mol for hCav1.2-S-TGB, Table 2) and geometrically nonlinear systems.
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To sum up, the docking experiment revealed that R/S-TGB has lower intermolecular
forces with all studied ion channels (EB ≈ −5.30 kcal/mol, Table 2). The combination
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of the above-mentioned docking data with pharmacological as well as literature data
regarding the risk for tachycardia due to TGB administration suggests that this adverse
effect observed in humans is not likely to result from TGB interaction with molecular
anti-targets (i.e., ion channels tested in this study) used for the cardiac risk assessment. The
data obtained in this study allowed the supplementation of information on the impact of
TGB on other than GAT-1 molecular targets. As is currently known, TGB has no significant
affinity to other uptake systems, such as those for dopamine, noradrenaline, acetylcholine,
adenosine, serotonin, histamine, opiate, glycine, glutamate or GABA [48,49]. It only has a
weak affinity towards benzodiazepine receptors and does not affect K+ and Ca2+, while it
slightly affects Na+ and cardiovascular channel function [19].

2.3. Validation Experiment

The validation was carried out by the docking of molecules with no affinity to hNav1.5,
hCav1.2 and hKv11.1 channels, such as progabide (PRG) [50,51] and acetylsalicylic acid
(ASA) [52]. This choice of PRG and ASA was made based on their chemical and biolog-
ical similarity to TGB (ATC code: N03AG06 [53]). PRG (ATC code: N03AG05 [53]) is a
first-generation antiepileptic drug without analgesic properties [12,54]. ASA (ATC code:
N02BA01 [52]) is a classical and peripherally-acting nonsteroidal anti-inflammatory drug
that is inactive at GAT and recommended for the prevention of several cardiovascular
diseases due to its antiplatelet activity [52].

The results of the validation experiments, such as the complex binding energies, the
specific hydrogen bond components and detailed data of the hydrogen bond features
(energies, lengths and angles) are gathered in Table 3. The binding modes between hNav1.5,
hCav1.2 and hKv11.1; and the control compound are illustrated in Figure S3 in the supple-
mentary file. As it can be observed from the data, all control complexes have a calculated
pKi < 4, which is commonly used as the threshold and therefore the test compounds can be
considered to be inactive ligands for those proteins. In addition, all control complexes have
higher binding energy values and lower hydrogen bond energy than the TGB-hVGICs
complex.

Table 3. The summary of validation experiment results.

Complex
EB

pKi Amino Acid
Residues

HB Angle LHB EHB

Protein Ligand donor acc θ Å kcal/mol

hNav1.5
PRG −3.90 2.86

ASP945 %CONH1 #COO 157.949 1.998 −5.425

ASN1474 %CONH2 #CO 155.21 2.00 −5.04

ASN1474 #NH2 %CO 141.795 1.987 −2.731

ASA −3.29 2.41
LYS1477 #NH1 %CO 159.455 1.905 −2.071

LYS1477 #NH2 %COO 157.938 1.737 −0.015

hCav1.2

PRG −3.29 2.41
THR1056 %OH #OH 163.88 1.99 −4.82

SER1132 #OH %CONH 156.74 1.94 −3.02

ASA −2.41 1.77
THR1056 #OH %COO 159.14 1.84 −2.30

SER1132 #OH %CO 176.21 1.945 −6.00

hKv11.1
PRG −3.4 2.50

TYR652 %CONH2 #PhOH 139.884 1.902 −2.015

TYR652 %NH #PhOH 139.121 2.182 −1.695

SER660 %OH #OH 170.052 2.129 −0.893

ASA −3.26 2.39 ASN658 #CONH2 %COO 167.92 1.78 −7.29

Abbreviations in Table. Components of the investigated complexes: protein-hNav1.5, hCav1.2 and hKv11.1 (hERG); and ligands, ASA—
acetylsalicylic acid, PRG—Progabide. Other abbreviations: HB—hydrogen bond. acc—hydrogen bond acceptor. Hydrogen bond
components: from the ligand % and from the protein #. EB—complex energy binding. θ—hydrogen bond angle. LHB—hydrogen bond
length. EHB—hydrogen bond energy. pKi was calculated from the AutoDock4 and estimated inhibition constant Ki, which is reported in
the AutoDock4 output [55].
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3. Discussion

Taking into consideration the new action profile of drugs already on the market,
pharmacological safety is a particularly important issue. The main reason for this is the
fact that for drugs with an extended therapeutic range (i.e., repurposed medications), the
number of patients for whom a given drug is recommended will increase significantly.
TGB discussed in this study belongs to this group of drugs. TGB is an anticonvulsant
medication. It is also used in the treatment of anxiety-related disorders, as are a few other
anticonvulsants [21]. In the case of this drug, the above mentioned point is particularly
important because TGB was originally prescribed to a relatively small group of patients
due to its narrow range of indicators (adjunctive treatment of partial seizures in adults
and children 12 years of age and older) [56]. However, when we consider its analgesic
and anxiolytic effects in our considerations, we include therapeutic indications for a
significantly larger group of patients. Reports presented in the scientific literature indicate
an approximate 70% increase in the number of patients on TGB therapy [57]. This is all the
more important as the safety and efficacy of TGB have not been systematically evaluated
for indications other than epilepsy.

Modern technology provides us with many different possibilities, the use of which
should create the conditions to learn about safety pharmacology. Undoubtedly, in silico
research is one of many possibilities for seeking answers in this regard. It seems to us that
the research presented above makes some important contributions to this issue. The study
tried to answer the question about the cardiovascular safety assessment of TGB. This is all
the more important in the light of the recent expert discussions focused on extending the
pharmacological profile of TBG. Many modern studies indicate that, in addition to the ther-
apeutic use of TGB in epilepsy, we should strongly consider its utilization for non-epileptic
indications. On the other hand, it is known that drugs that show this type of biological ac-
tivity might have a strong effect on a heart. This, in turn, undoubtedly forces us to increase
the effort focused on assessing cardiac safety. Considering the assessment of the effect of
the compound on so-called anti-targets adopted from CiPA in the cardiac risk assessment,
the TGB interaction was investigated with the following channels: hKv11.1, hNav1.5 and
hCav1.2. Drugs strongly affecting individual channels (such as TEF, BTX and NFD) were
selected as reference compounds for this study. TEF is a prodrug metabolized by intestinal
CYP3A4 to fexofenadine, the active form being a selective histamine H1-receptor antagonist
with antihistaminic and non-sedative effects. As it is well known, antihistamines may
increase the rate of heart beat [58,59]. TEF causes prolonged repolarization, as is reflected
in the broadening of the electrocardiographic QT interval, with the potential for serious
ventricular arrhythmia and death [60–62]. Due to this, in the U.S. TEF was superseded by
its active metabolite fexofenadine in the 1990s [59]. Numerous studies have proven that the
ability of TEF to extend the QT interval depends on its binding to the Kv11.1 (Figure S1)
protein encoded by hERG [63,64]. Nevertheless, TEF does not readily cross the blood–brain
barrier and due to this its CNS, depression is minimal. NFD is a calcium channel blocker,
a specific antagonist of Cav1.2 channels [65]. It is used to treat hypertension and chronic
stable angina. NFD binds directly to inactive calcium channels and stabilizes their inactive
conformation. By inhibiting the influx of calcium in smooth muscle cells, NFD prevents
calcium-dependent myocyte contraction and vasoconstriction [31,40]. BTX was chosen
as a reference compound in our docking experiment study due to its extremely potent
cardiotoxic and neurotoxic characteristics [29,42,46,47,66]. In animals, BTX inactivates
sodium channels in nerve cells and muscle cells, thereby interfering with the electrical
signals sent throughout the body and causing fibrillation, arrhythmias, cardiac failure
and death [29]. It is worth emphasizing that the obtained data from molecular modeling
confirmed the high selectivity of the reference compounds for the appropriate ion channels
(Table 2). The response obtained from molecular studies also indicates that the mechanisms
underlying tachycardia in patients treated with TGB appear to be unrelated to its effect on
the hNav1.5, hCav1.2 and hKv11.1 heart ion channels. Moreover, it is known that one of
the most common mechanisms of drug-induced ventricular tachycardia is the blocking of
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hERG channels [67,68]. For this reason, additional evidence supporting the conclusions of
the in silico study appears to provide epidemiological data (pharmacological reports) in
which tachycardia is noted in approximately 1.0% of patients treated with TGB. In light
of these facts, if TGB-induced tachycardia contacts the hKv11.1, hNav1.5 and hCav1.2.
blocking mechanism, one would expect a higher rate of these side effects. In addition to
the above-mentioned in vivo tests, as a part of safety pharmacology experiments, the TGB
effects on PQ, QRS and QT intervals and the effects of TGB on heart rate were assessed.
Many years of research have demonstrated that proarrhythmic effect, QT prolongation
and hERG blocking cannot be treated as the only determinants of the occurrence of TdP.
For instance, verapamil and ranolazines are examples of drugs that are strong inhibitors
of the hERG channel and are simultaneously devoid of the risk of inducing arrhythmias
and, vice versa, devoid of serious disorders of cardiomyocyte electrophysiology caused
by drugs that are weak hERG inhibitors (e.g., sotalol and alfuzosin) [24,69]. Thus, this
proves the insufficient specificity of the tests based only on the assessment of the hERG
channel blocking potential. The risk of drug-induced TdP is rather balanced by multiple
internal cardiac ionic currents that define ventricular repolarization. Therefore, studies that
utilize the whole tissue seem to be a good option for the reflection of pharmacodynamics
and potential adverse effects of a drug in a living organism. The in vivo results obtained
from studies in rats showed that TGB did not prolong the QT interval or alter the QRS
complex which suggests that it did not affect ventricular depolarization and repolarization.
Taking into account that as in many other animal models of human diseases and also in this
particular rat model, there might be basic translational problems. Some fundamental differ-
ences in the cardiac electrophysiology and myocyte calcium/potassium handling between
rodents and humans have been suggested [70], but, nonetheless, the ECG in rats is still a
widely applied experimental method in basic cardiovascular research. The technique of
ECG recordings is simple; however, the interpretation of electrocardiographic parameters
might be challenging. This is because the analysis may be biased by experimental settings,
such as the type of anesthesia and the strain or age of animals. Furthermore, differences
and similarities between rat and human ECG are frequently discussed in the context of
translational cardiovascular research. Despite this, rat electrocardiography is an important
investigational tool in experimental cardiology, even if the interpretation of electrocardio-
graphic parameters is problematic [71]. In addition to this, a number of studies have shown
that cardiotoxic drugs prolong QT interval in rodents and ECG recordings in rats have
been used as a screening tool to assess the cardiotoxicity of various drugs. However, it
needs to be stressed that the translation of the results of those studies to human application
also possesses limitations. This is because rats’ hearts do not express hERG, whereas the
cardiotoxicity of drugs is strongly associated with the blockade of hERG-related potassium
channels. However, rat hearts express a variant of Ether-à-go-go-Related Gene (rat ERG,
also known as Kcnh2) [72,73], which may also play a key role in the assessment of drug-
induced cardiotoxicity. Taken together, we are aware that extrapolating the results from
our rat model to humans should be performed extremely cautiously and this, of course,
should be regarded as the main limitation of our study. Therefore, one can assume that its
direct interaction with heart sodium and potassium channels can be neglected. TGB also
marks no significant effect on the PQ interval, which suggests that it does not influence
the atrio-ventricular conduction time. Consequently, we can postulate that TGB has low
pro-arrhythmic potential, at least, after a single administration. Given that tachycardia
may result due to a number of different mechanisms and not all of them directly affect
ion channels, it is also necessary to evaluate the effects of TGB on several neurotransmit-
ters/neuromodulators and the activity of the autonomic nervous system. However, these
effects were not investigated in the present research. Further studies are necessary to assess
the effect of TGB on the cardiovascular system, especially after chronic administration. On
the basis of our research, we can state that TGB did not bind to voltage-gated ion channels
and did not affect them directly. Furthermore, the observed accidents of tachycardia are
probably not due to the direct effect of TGB on voltage-gated ion channels.
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4. Methods
4.1. Pharmacological Studies General Information

The experiments were carried out using male Wistar rats (Krf:(WI) (WU), 200–250 g).
The animals were housed in constant temperature facilities exposed to 12:12 h light/dark
cycles and were maintained on a standard pellet diet with tap water given ad libitum.
All procedures were conducted according to guidelines of ICLAS (International Council
on Laboratory Animal Science) and approved by the Second Local Ethics Committee in
Krakow, Poland (resolution No. 106/2016, 14 June 2016).

4.1.1. Voltage-Dependent Calcium Channels—Functional Assays

In order to investigate the calcium entry blocking properties of TGB, it was tested on
isolated rat aorta precontracted with KCl. Rats were anaesthetized with thiopental sodium
(75 mg/kg, i.p., Rotexmedica, Germany) and the thoracic aorta was dissected, cleaned,
denuded of endothelium, cut and mounted as described earlier [35]. Briefly, aorta rings
were incubated in 30 mL chambers filled with a Krebs–Henseleit solution (NaCl 118 mM,
KCl4.7 mM, CaCl2 2.25 mM, MgSO4 1.64 mM, KH2PO4 1.18 mM, NaHCO3 24.88 mM,
glucose 10 mM, C3H3O3Na 2.2 mM and EDTA 0.05 mM) at 37 ◦C and pH 7.4 with constant
oxygenation (O2/CO2, 19:1) and connected to an isometric FDT10-A force displacement
transducer (BIOPAC Systems, Inc., COMMAT Ltd., Ankara, Turkey). The aortic rings were
stretched and maintained at an optimal tension of 2 g and permitted to equilibrate for 2 h.
The aortic rings were contracted to submaximal tension with KCl (60 mmol/L). Once the
plateau was attained, concentration-relaxation curves were obtained by the addition of
cumulative doses of tiagabine to the precontracted preparations.

Concentration-response curves were analyzed using GraphPad Prism 5.0 software
(GraphPad Software Inc., San Diego, CA, USA). Relaxations are expressed as a percentage
of inhibition of the maximal tension obtained with the contractile agent (Emax = 100%).
Data are the means ± SEM of at least 4 separate experiments.

4.1.2. The Effect on Normal Electrocardiogram

In vivo electrocardiographic investigations were carried out using an ASPEL ASCARD
B5 apparatus (Aspel, Poland), standard lead II and paper speed of 50 mm/s. The ECG
was recorded just prior to and also at 1, 5, 10, 20, 30, 40, 50 and 60 min following the i.p.
administration of TGB at a dose of 100 mg/kg. The QTc was calculated according to the
formula of Bazzett: QTc = QT/

√
RR [74]

4.2. In Silico Studies

The calculation procedures applied in the study are typical for the processing of
docking studies.

4.2.1. Ligand Preparation

For the 3D molecular structure calculations, the Gaussian 09 (version D.01. for
Unix/Linux) package was used [75]. The initial acceptable 3D structures of 6 stud-
ied compounds (Figure 2) were downloaded (as mol2 file) from ZINC [76]. Later, the
GaussView [75,77] was applied for preparation of Gaussian input files. All the molecules
were geometry-optimized in water as described by the PCM (polarizable continuum
model). DFT/B3LYP level of theory 6311 + G(d, p) basis set was used. After geometrical
optimization, (the root-mean-square gradient value smaller than 10−6 a.u.) compounds
were saved as mol2 files using the GaussView. Subsequently, torsionals and the number
of active torsions for ligands were defined and the Gasteiger charges were assigned to
each compound via AutoDockTools (ADT) [78]. Finally, ligands prepared for docking were
saved as pdbqt files.

4.2.2. Voltage-Gated Ion Channels Preparation

• hNav1.5 preparation:
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The lack of crystal structure of hNaV1.5 pore domain causes the need for preparing
homology 3D models for this protein. For our research, the sequence for the hNav1.5
protein was gained from the Swiss Model Repository (SMR). SMR is a database which
currently holds over 400,000 high quality 3D protein structure models generated by the au-
tomated SWISS-MODEL homology modeling pipeline [79]. The pdb file was downloaded
from SWISS-MODEL SERVER (accession number Q14524) [80]. For this alignment, X-ray
structure of human Nav1.2-β2-KIIIA ternary complex (PDB entry 6J8E) was employed.
Sequence identity between template and the monomer of sodium channel protein type
5 subunit α is 66.70%. Subsequently, the pdb file was opened in ADT [78]. ADT read
coordinates, added charges, merged non-polar hydrogens and assigned appropriate atom
types. Before formatting a molecule for AutoDock, we removed 9Z9 ((3β,14β,17β,25R)-3-
[4-methoxy-3-(methoxymethyl)-butoxyl]-spirost-5-en), which is irrelevant molecule in this
experiment. Finally, the prepared protein was saved as a pdbqt file. In the computational
part of the study, we pondered the interaction between the investigated ligands and the
intracellular pore gate formed from the proper residues of chain A.

• hCav1.2 preparation

The dearth of a 3D structure of hCav1.2 proper region also causes need for prepar-
ing homology models of this protein. The sequence for the hCav1.2 was gained from
the SMR as well (accession number Q13936). For this alignment, X-ray structures of
nifedipine complex with rabbit Cav1.1 (PDB entry 6JP5) were employed. The sequence
identity between template and isoform 4 of CAC1C_HUMAN Voltage-dependent L-type
calcium channel subunit alpha-1C is 70.31% and, according to the best of our knowl-
edge, this is one of the highest identities currently available. Subsequently, similar to the
hNav1.5 protein, the pdb file was opened in ADT [58]. The next steps were also analogous.
Before the docking experiment, we removed C8U (methyl (4~{S})-2,6-dimethyl-5-nitro-4-[2-
(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate)), which is a pointless ligand
in this case. The pore forming and dihydropiridyne binding residues (from ARG1109 to
LYS1198) were considered as the ligand binding site [81].

• hKv11.1 preparation:

The sequence for the potassium voltage-gated channel subfamily H member 2 protein
was downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB)
Protein Data Bank (PDB entry 5va2) as the crystal structure [82]. As in previous proteins, the
pdb file was opened in ADT, read coordinates, added charges, merged non-polar hydrogens
and assigned the appropriate atom types. As usual, we also removed crystallographic
waters from 5va2. The binding pocket of the studied molecule were composed of the pore
forming segment H5 and transmembrane helical fragment-Segment S6 [83].

4.2.3. Molecular Docking

Molecular docking was performed using the AutoDockTools 4.2 suite of the pro-
gram [55]. A grid box with a dimension of 60 × 60 × 60 Å3 and grid spacing of 0.375 Å,
which is large enough for a free rotation of a ligands, was built in the middle of the binding
pockets of the studied Voltage Gated Ion Channels (VGICs) channels, which are composed
using the appropriate residues (Table 4).

Torsionals in the residuals of the binding pocket were not rotatable. The rigid docking
was carried out using the Lamarckian genetic algorithm 4. The optimized docking parame-
ters were set as default values, with the exception of the number of genetic algorithms run
which was 100. Torsionals in the ligands were rotatable-6 active torsions in each ligand
(except for terfenadine, where it was 11). A cluster analysis was performed using RMS
tolerance of 2 Å. In each case, the best docking result was considered as the complex with
the lowest binding energy. Interactions between ligands and the related channel models
were analyzed using the AutoDockTools program (ADT. Version 1.5.4) [78].
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Table 4. The composition of the binding pocket of the analyzed channel models: hNav1.5, hCav1.2 and hKv11.1.

Protein Intramembrane Pore-Forming Region Sequences

hNav1.5

358–382 (Phe, Ala, Trp, Ala, Phe, Leu, Ala, Leu, Phe, Arg, Leu, Met, Thr, Gly, Leu, Ans, Asp, Cys, Trp, Glu, Arg, Leu, Tyr, Gly, Leu, Ans,
Gly, Leu, Ans, Thr, Leu)

884–904 (Phe, Phe, His, Ala, Phe, Leu, Ile, Ile, Phe, Arg, Ile, Leu, Cys, Gly, Glu, Trp, Ile, Glu, Thr, Met, Trp)
1406–1427 (Gly, Ala, Gly, Tyr, Leu, Ala, Leu, Leu, Gly, Leu, Ans, Val, Ala, Thr, Phe, Lys, Gly, Trp, Met, Asp, Ile, Met, Tyr, Ala)

1697–1719 (Phe, Ala, Ans, Ser, Met, Leu, Cys, Leu, Phe, Gly, Leu, Ans, Ile, Thr, Thr, Ser, Ala, Gly, Trp, Asp, Gly, Leu, Leu, Ser, Pro) [84,85]

hCav1.2

351–372 (Phe, Ala, Met, Leu, Thr, Val, Phe, Gly, Leu, Ans, Cys, Ile, Thr, Met, Glu, Glu, Trp, Thr, Asp, Val, Leu, Tyr, Trp, Val)
694–715 (Gly, Leu, Ans, Ser, Leu, Leu, Thr, Val, Phe, Gly, Leu, Ans, Ile, Leu, Thr, Gly, Glu, Asp, Trp, Ans, Ser, Val, Met, Tyr, Asp, Gly)

1122–1142 (Leu, Ala, Ala, Met, Met, Ala, Leu, Phe, Thr, Val, Ser, Thr, Phe, Glu, Gly, Trp, Pro, Glu, Leu, Leu, Tyr)
1453–1471 (Ala, Val, Leu, Leu, Leu, Phe, Arg, Cys, Ala, Thr, Gly, Glu, Ala, Trp, Gly, Leu, Ans, Asp, Ile, Met, Leu) [86,87]

hKv11.1 612–632 (Val, Thr, Ala, Leu, Tyr, Phe, Tphe, Ser, Ser, Leu, Thr, Ser, Val, Gly, Phe, Gly, Ans, Vsp) [88,89]

Supplementary Materials: The following are available online, Figure S1: Model transport proteins
selected for the study: hNav1.5, hCav1.2, Kv11.1. Figure S2: Figure S3: Binding modes between
hNav1.5, hCav1.2 and Kv11.1 and the four tested compounds () and two validated compounds
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Abbreviations

AP Cardiac action potential
(R/S)-TGB (R/S)-Tiagabine
(R/S)-TEF ((R/S)-Terfenadine
NFD Nifedipine
BTX Batrachotoxin
# Hydrogen bond components: from the protein
% Hydrogen bond components: from the ligand
Acc Hydrogen bond acceptor
EB Complex energy binding
EHB Hydrogen bond energy
θ Hydrogen bond angle
VGICs Voltage-Gated Ion Channels
VGKCs Voltage-Gated Potassium. Channels
VGNaCs Voltage-Gated Sodium Channels
VGCaCs Voltage-Gated Calcium Channels
KV11.1 (hERG) Cardiac Voltage-Gated Potassium Channels
NaV1.5 Cardiac Voltage-Gated Sodium Channels
CaV1.2 Cardiac Voltage-Gated Calcium Channels
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