
POLLEN TUBE GUIDANCE

Growing straight through walls
The pollen tube in a flowering plant grows in a direction that is

influenced by the mechanical properties of the stigma papillae and the

organization of structures called cortical microtubules inside these cells.
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I
n a flowering plant, reproduction begins

when grains of pollen stick to cells called

stigma papillae that are located at the top

of the pistil, which is the female part of the

flower. A cell called a pollen tube then delivers

the sperm cells contained in the pollen grains to

the female gametes for fertilization. This is a

long journey that involves the pollen tube travel-

ling from the stigma papillae at the top of the

pistil to the ovules that contain the female gam-

etes, which are at the bottom of the pistil.

So how does the plant ensure that the pollen

tube – which is a single cell that grows longer

over time – finds the ovules and does not get

lost en route? Several molecules and nutrients

secreted by the pistil direct the growth of the

pollen tube (Higashiyama and Takeuchi, 2015).

However, the identity of the cues that guide the

pollen tube in the first stages of its journey have

remained a mystery.

Most plant cells grow by increasing their sur-

face area while remaining attached to neighbor-

ing cells: pollen tubes are different in that they

are tip-growing cells that can grow through the

walls of other cells to reach their target. When

the pollen tube first enters the pistil, it remains

within the cell wall of the stigma papillae (Fig-

ure 1; left): could the components of this cell

wall, or the mechanical properties of these cells,

influence the growth of the pollen tube?

A number of studies have demonstrated how

mechanical properties can influence a variety of

cellular processes – including proliferation, dif-

ferentiation, migration and cell signaling – in ani-

mal cells (Discher et al., 2005; Fu et al., 2010;

Provenzano and Keely, 2011), and there is evi-

dence that mechanical properties can also shape

plant growth and development (Eng and Sam-

pathkumar, 2018; Sampathkumar et al., 2019).

For example, it is known that when a pollen tube

penetrates the cell wall of a stigma papilla, it

causes changes in the mechanical properties of

the cell wall by exerting pressure

(Zerzour et al., 2009; Sanati Nezhad and Geit-

mann, 2013).

However, the role of these mechanical prop-

erties in regulating the growth of pollen tube

has not been explored in detail. Moreover,

although the pollen tube is a good model for

understanding the behavior of plant cells, and

has been used in numerous in vitro studies of tip

growth, it has proved challenging to study the

directed growth of pollen tubes through the cell

walls of stigma papillae in vivo. Now, in eLife,

Thierry Gaude and co-workers at the Université

de Lyon – including Lucie Riglet as first author –

report the results of experiments on the model

plant Arabidopsis thaliana that combine the

power of microscopy, genetics, and chemical

biology to provide new insights into the regula-

tion of pollen tube growth (Riglet et al., 2020).

As stigmas age, they become less receptive

to pollen (Gao et al., 2018), and the observation
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that pollen tubes tend to coil around papillae in

aging stigmas forms the basis of this study. Rig-

let et al. found that aging was associated with

changes in the organization of the cortical micro-

tubules in the cytoskeleton: the orientations of

these microtubules were more isotopic in older

stigmas than in younger stigmas (Figure 1). To

test the hypothesis that the organization of

these microtubules has a role in directing pollen

tube growth, the researchers examined plants

that had a loss of function mutation in an

enzyme called KATANIN (KTN1): this enzyme

can sever microtubules, and thus allows microtu-

bules to be re-oriented following mechanical

stimulation (Sampathkumar et al., 2014). Riglet

et al. found that pollen tubes coiled around the

papillae in both young and old mutant plants:

this indicates that the arrangement of the micro-

tubules affects the ability of pollen tubes to

grow straight through the cell walls and into the

rest of the pistil.

Cortical microtubules are associated with cel-

lulose synthesis, so the researchers tested

whether the stiffness and composition of the cell

wall in mutant and aging papillae was associated

with pollen tube coiling. They found that softer

cell walls and isotropic arrangements of cellulose

microfibrils in mutant and aging papillae were

associated with faster pollen tube growth and

loss of directionality. Overall, the latest work

supports the thesis that the mechanical proper-

ties and cell wall composition of the stigma

papillae have an influence on pollen tube growth

and help to guide it through the stigma. More-

over, by providing fundamental insights into the

process of sexual reproduction in plants, the

work is also relevant in the context of global

food security as pollen-stigma interactions are

critical for successful pollination and seed pro-

duction in flowering plants.

Apart from pollen tubes, several types of

plant, animal and fungal cells grow invasively,

including root hairs, fibroblasts, cancer cells and

fungal hyphae. In the future, it will be important

to determine the contribution of mechanical

forces to invasive growth. New technological

advances such as lab-on-a-chip, MEMS (micro-

electro-mechanical systems), deep-tissue imag-

ing and computational tools will help researchers

to measure the mechanical forces operating on

and in cells (Nezhad et al., 2013). The pollen

tube/pistil system will also make it possible to

explore how chemical guidance cues work

together with mechanical forces to regulate

directional cell growth.
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Figure 1. Pollen tube growth in stigma papillae. When a grain of pollen (shown in mustard)

lands on a papilla in the stigma (green) of a flowering plant, a pollen tube (PT; also shown in

mustard) begins to grow through the cell wall (CW) of the papilla so that the sperm cells (S;

red) in the pollen can be delivered to the female gametes, which are located in ovules deep

inside the plant. In stage 12 flowers (left), the organization of the cortical microtubules

(CMTs; blue lines) inside the papilla is highly anisotropic and the pollen tube grows in a

straight line. In older stage 15 flowers (right), the organization of the microtubules is

isotropic and the pollen tube forms a coil around the papilla as it grows. The vegetative cell

(V) makes up the body of the pollen tube and encloses the sperm cells.
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