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Abstract

ATM kinase is a master regulator of the DNA damage response (DDR). A recently published 

report from the d’Adda di Fagagna laboratory1 sheds a light onto our understanding of ATM 

activation. In this short-commentary we will expand on this and other work to perceive better 

some of the aspects of ATM regulation.

ATM and DNA damage response activation

ATM belongs to PI3K-like kinase family that consists of ATR, DNA-PKcs, mTOR, TRRAP 

and SMG1 kinases, which share similar structures and ability to phosphorylate their 

substrates on Serine and Threonine residues2. ATM was first discovered and cloned over 20 

years ago in the laboratory of Yossi Shiloh3. ATM is recruited to DNA double strand breaks 

(DSBs) by MRN complex, composed of MRE11, RAD50 and NBS1 proteins, which senses 

DNA damage and quickly localizes to the DSBs. This process induces ATM activation and 

triggers a downstream cascade that leads to the engagement of DDR factors like: MDC1 and 

53BP1, around DNA lesions (Figure 1).

Upon recruitment to DSBs, ATM dimer undergoes a complicated process of activation. First, 

it is acetylated by lysine acetyltransferase 5 (KAT5/TIP60) at Lysine 301615, which is 

followed by autophosphorylation, in-trans on Serine 1981, leading to its monomerization 

and conferring access of ATM substrates to the kinase domain16,17(Figure 2A).

In recent work, Adamowicz et al., show that ATM localizes to the DSBs in a protein 

complex together with FOXO3a and KAT5/Tip60 (from now on referred to as AAC (ATM 

Activation Complex)). Formation of this complex is dependent on FOXO3a bridging an 

interaction between ATM and KAT5 (Figure 2A and B). Formation of AAC is inhibited by a 

well-known transcription factor, NOTCH1, which is a negative regulator of ATM activation 

through its ATM binding ability24 (Figure 2B). Interestingly this leads to MRN-mediated 

recruitment of ATM to DSBs without the latter being activated at the site of the damage, as 

observed by the lack of autophosphorylation (pSer1891ATM)1. Strikingly, although all 
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downstream DDR events are attenuated due to NOTCH1-mediated ATM inactivation 

(including ATM-mediated phosphorylations like: p53, CHK2, SMC1), phosphorylation of 

the ATM main substrate, histone H2AX (Ser139H2AX, from now on referred as γH2AX) is 

not affected1,24. Below I will try to focus on those two aspects of ATM activation (ATM 

autophosphorylation and phosphorylation of H2AX), putting them in the context of already 

published reports. At the end, I will speculate about the role of NOTCH-FOXO3a 

competition in cells and possible future areas of ATM research.

ATM phosphorylation – is it still a thing?

ATM phosphorylation on Serine 1981 is commonly used as a marker for activated ATM. 

ATM phosphorylation was first observed almost 20 years ago26,27 and since then many of 

ATM’s autophosphorylation sites have been identified28,29. It has been established that 

ATM autophosphorylation on Serine 1981 is necessary for ATM monomerization and kinase 

activation 16, 20. Additionally it has been shown that ATM mutants carrying the S1981A 

substitution do not rescue radio-sensitivity of the A-T cells in transfection experiments16. In 

agreement with those reports we have shown that NOTCH1-mediated inhibition of ATM 

autophosporylation resulted in the attenuation of phosphorylation of ATM downstream 

substrates and checkpoint impairment1,24. On the other hand it has been reported that 

mouse Atm S1987A mutants (mouse equivalent of human S1981A) are proficient in DDR 

and ATM kinase activity30. Moreover, it seems that other Atm autophosphorylation sites 

(S367 and S1893) are dispensable for Atm activation31. Interestingly in the in vitro kinase 

assay ATM S1981A mutant can phosphorylate CHK2 and p53 in response to linear dsDNA 

to the same extent as the wild-type ATM32. Although we observed NOTCH1 inhibiting 

ATM-mediated p53 phosphorylation in vitro24, in the light of the new results demonstrating 

disruption of KAT5 and FOXO3a from the AAC1 it would be interesting to see if addition 

of: KAT5, FOXO3a, H3K9m3 and cAbl would give similar results in an in vitro ATM kinase 

assay in the presence of NOTCH1 and mutated ATM (S1981A).

It has been suggested that ATM autophosphorylation is necessary for ATM retention at the 

DSBs33 because the ATM S1981A mutant, although recruited normally to DSBs, was not 

stabilized properly at the site of the damage33. In contrast we have reported that although 

NOTCH1 inhibited ATM autophosphorylation it did not affect ATM’s retention at the 

DSBs1. To understand these apparently contradictory observations one should look not just 

at the ATM autophosphorylation. We have previously reported that NOTCH1 inhibits kinase 

activity of ATM24, therefore it would be better to compare our results with the reports 

describing recruitment of the ATM kinase dead mutant (ATM KD). Indeed it has been 

shown that ATM KD mutant (that cannot undergo autophosphorylation) is recruited to the 

DSBs without any impairment of retention34,35. This is similar to our observation of the 

NOTCH1-mediated impact on ATM recruitment and autophosphorylation. Additionally, it 

was reported that cells carrying mutations in the KU70 and MRE11 nuclease actively recruit 

ATM to the DSBs (without retention impairment); although ATM does not undergo 

autophosphorylation in those conditions36. Overall, our results1,24, together with above 

mentioned reports, show our still incomplete understanding of ATM autophosporylation and 

its role in the ATM activity and DDR, that needs further elucidation.
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Meeting γH2AX at the FATC end

We have repeatedly observed that NOTCH1 inhibits ATM activation by blocking its 

autophosphorylation (Ser1981) and phosphorylation of downstream substrates such as 

KAP1, SMC1, p53, DNA-PKcs or CHK21,24(Adamowicz et al – in press). Additionally, we 

have observed in our initial study using Xenopus laevis egg extract that NOTCH1 blocked a 

substantial amount of ATM-mediated phosphorylation24. However, of all observed 

NOTCH1-mediated ATM phosphorylation defects, phosphorylation of ATM’s main 

substrate, H2AX, remained unaffected.

It has been suggested that there is redundancy between PI3K-like kinases in terms of H2AX 

phosphorylation. DNA-PKcs or ATR kinases have been shown to phosphorylate 

H2AX37,38. Additionally, it has been reported that H2AX is phosphorylated to the same 

extent in the ATM WT and KO cells37,39. Indeed, experiments carried out in our laboratory 

showed that NOTCH1 neither blocks ATR nor DNA-PKcs kinase activity (Adamowicz et al 

– in press). However unexpectedly, when we performed analysis of the γH2AX foci 

formation in NOTCH1-expressing cells in the presence of either DNA-PKcs or ATR 

inhibitors we did not observe any difference in the H2AX phosphorylation (data unpublished 

– data available upon request).

These results suggest that H2AX can be phosphorylated by protein kinases other than ATM, 

ATR and DNA-PKcs. Indeed, it has been reported that JNK and p38 can phosphorylate 

H2AX in response of UV light irradiation or starvation respectively40,41. Additionally, it 

has been reported that VRK1 kinase can phosphorylate H2AX in response to IR in parallel 

to ATM kinase42. Moreover, VRK1 was shown to be necessary for the accumulation of 

DDR factors around DSBs, which implies more complex role of VRK1 in the DDR that 

needs further elucidation43.

Because NOTCH1, unlike small molecule ATM inhibitors, cannot directly inhibit ATM 

kinase activity we can speculate that NOTCH1 binding to ATM could strongly impair ATM 

substrate recognition, resulting in an inhibition of phosphorylation of some substrates such 

as p53 or CHK2, but not H2AX. It has been already reported that NOTCH1 can bind and 

hence modulate the substrate recognition of LSD1 demethylase44. Therefore, it can be 

possible that by binding to the FATC domain of ATM, NOTCH1 would strongly impair 

substrate recognition of ATM. Interestingly, it has been shown in yeast that deletion of last 

10 amino acids (aa) of the FATC domain can impair Tel1 phosphorylation of Rad53, which 

was connected with the loss in its ability to interact with MRX complex45. Moreover, MRN 

complex was shown to help ATM in the substrate recognition by stimulating ATM binding 

to its substrates like p53 or CHK246. On the other hand it has been published that in human 

cells deletion of last 10aa of the FATC domain of ATM does not lead to the impairment of 

ATM MRN-mediated response, but rather its ability to activate upon oxidative stress47. We 

have shown that although NOTCH1 binds to the FATC domain it does not affect interaction 

between ATM and MRN complex1. This suggests that if by binding to the ATM FATC 

domain NOTCH1 is perturbing ATM substrate recognition this effect is rather mediated by 

inhibition of KAT5-mediated acetylation. Impairment of ATM acetylation will then block 

structural changes in ATM that would lead to its monomerization and activation, inhibiting 
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this way release of the ATM kinase domain otherwise hindered inside of its dimer 

structure17.

Taking ATM down a NOTCH

NOTCH1 was very early connected to the tumorogenesis and marked as an oncogene due to 

its ability to induce tumour growth48. Activating mutations in NOTCH1 are present in many 

T-cell acute lymphoblastic leukemias (T-ALL)49 or breast cancers50. Indeed, we have found 

that NOTCH1 expression was negatively correlated with the ATM activation in the human 

breast cancer patients24. At the same time, other group reported that ectopic expression of 

NOTCH1 in cancer cells lead to their increased resistance to DNA damage in vivo51. Those 

data show that expression of high levels of NOTCH1 (due to activating mutations or ectopic 

expression) stimulate radioresistance and survival in cancer cells, resulting probably from 

the inhibition of p53-mediated apoptosis. Additionally, increased levels of NOTCH1 induce 

faster proliferation52 leading to replication stress. Although we showed that NOTCH1 

inhibits ATM activation, this is not true for ATR kinase (Adamowicz et al – in press) 

resulting in the protection of NOTCH1-driven cancers from replication stress.

Neural stem cells (NSC) are known to express moderate levels of activated NOTCH1, which 

is necessary for their proliferation53. Interestingly it has been reported that induction of 

DDR in NSC leads to their spontaneous differentiation to astrocytes, which is dependent on 

ATM activation54. It is therefore possible to speculate that NOTCH1-mediated 

downregulation of ATM activation could tip the balance allowing for DNA damage repair 

without inducing differentiation. It is important to remember that physiological levels of 

NOTCH1 are low as compared to those observed in T-ALL cells or those achieved by 

ectopic expression, therefore observed effects of NOTCH1 activation might be very mild. 

Additionally, observed results might be an outcome of many different factors impacting at 

the same time on DDR. Indeed, it has been shown that SALL4 transcription factor expressed 

in stem cells favours ATM activation by its binding to MRN complex55.

In summary, I would like to propose that the physiological role of NOTCH1 is not to inhibit 

fully ATM activation, but rather to induce its mild impairment, to modulate a balance 

between the amount of DNA damage and DDR signalling. This would result in the 

suppression of DNA damage induced apoptosis or differentiation, giving time for necessary 

repair.

There is plenty more ATM in the sea

Formation of AAC is necessary for ATM activation at DSBs and DDR1,24. Apart from 

AAC, ATM relies also on MRN complex, which allows proper AAC localization and 

substrate recognition. Interestingly, in the nucleus, ATM has been described to exist in two 

different complexes. In has been shown that there is competition between MRN complex 

and ATMIN for binding to ATM (Figure 3)56,57. Studies have found that while MRN 

complex guides ATM in the response to DSBs, ATMIN is necessary during oxidative and 

hypotonic stresses58,59. It is possible that like MRN, ATMIN by binding to ATM regulates 

it substrate recognition and therefore its kinase activity in response to different stimuli. It 
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would be interesting to see if the structure of AAC is preserved while complexed with 

ATMIN, and if so how it is involved in the ATM activation (Figure 3).

We tend to think about ATM through its role in DDR regulation, although ATM has been 

described to be involved in many more cellular processes like: stress response60, neuronal 

signal transmission61 or pexophagy62,63(Figure 3), which in every case requires its 

presence outside the nucleus. This implies that ATM is not always in complex with KAT5 or 

MRN complex. The presence of ATM in peroxisomes is a result of its interaction with 

PEX5, which is responsible for ATM peroxisome localization. In peroxisomes, ATM is 

activated by reactive oxygen species and formation of an active dimer, allowing ATM to 

control peroxisome phagocytosis63. The involvement of ATM in the stress response is 

connected to its interaction with NEMO and with shuttling between nucleus and cytosol60. 

Additionally, ATM has been described to localize in the cytosol of neuronal cells64 and has 

been implicated in the neuronal signal transmission by its interaction with VAMP2 and 

Synapsin-I61. It would be interesting to see if NOTCH1, which has very strong affinity to 

the FATC domain of ATM1, could be used as a tool for identifying new regulatory 

components of ATM complexes in the cytosol.

It is thought-provoking to picture ATM in different complexes that differentially regulate its 

activity and substrate recognition. The identification of different active ATM complexes 

opens new and exciting areas of research and raises even more fascinating questions. For 

example, how is ATM activation in those complexes stimulated, and how is ATM substrate 

recognition and kinase activity regulated? Hopefully, in the near future we will know the 

answers.
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Figure 1. DNA damage response cascade.
First step in the DDR activation is recruitment of ATM kinase by MRN complex to DSBs 

through its interaction with NBS14,5. At the DSB ATM is activated (for details see Figure 2) 

and phosphorylates both itself and other substrates (1). One of the most important substrates 

of ATM is H2AX6, which provides a scaffold for the further accumulation of DDR factors7. 

γH2AX is recognized and bound by MDC1 that then enables further accumulation of ATM-

MRN complex and spreading of γH2AX around DSBs (2)8,9. ATM-mediated 

phosphorylation of MDC1 allows also for the recruitment of RNF8 ubiquitin ligase (3), 

which ubiquitinates histone H1 and enables the recruitment of another ubiquitin ligase 

RNF168 (4)10,11, which in turn ubiquitinates histone H2A12. Ubiquitination of H2A 

together with the deposition of methyl group done by MMSET13 results in the recruitment 

of 53BP1 (5), which coordinates with other factors DNA repair pathway choice14.

Adamowicz Page 9

J Immunol Sci. Author manuscript; available in PMC 2018 April 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Close-up on ATM activation.
A) Upon MRN-mediated recruitment to DSBs ATM undergoes an activation process. First, 

cAbl kinase phosphorylates KAT5 on Tyrosine 44 (1)18, which together with KAT5 

interaction with H3K9m3 leads to KAT5 activation19. This way stimulated KAT5 will 

mediate acetylation of ATM in its PRD domain (Lysine 3016)(2)15,20. As a consequence of 

acetylation, ATM undergoes structural changes in its dimer form that allows for the 

phosphorylation in trans each of ATM monomers (3)16,20. ATM autophosphorylation leads 

to its monomerization and full activation16. At the end, activated ATM will generate a 

positive feedback loop and phosphorylate cAbl kinase leading to its increased activation 

(4)21.

B) Structure of the ATM kinase (1-3056aa; Domains: FAT 1966–2566aa; kinase domain 

2614–2960aa and FATC 3025–3056aa) together with its most important interactors and their 

binding sites1,22–25. Competition between FOXO3a and NOTCH1 for the binding to the 

FATC domain is depicted with arrows.
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Figure 3. Existence of different ATM complexes in the cells.
Schematic representation of the existence of different ATM complexes both in the nucleus as 

well as in the cytosol. For details please look into the text.
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