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Abstract
Ecological data sets often record the abundance of species, together with a set of 
explanatory variables. Multivariate statistical methods are optimal to analyze such 
data and are thus frequently used in ecology for exploration, visualization, and in-
ference. Most approaches are based on pairwise distance matrices instead of the 
sites-by-species matrix, which stands in stark contrast to univariate statistics, where 
data models, assuming specific distributions, are the norm. However, through ad-
vances in statistical theory and computational power, models for multivariate data 
have gained traction. Systematic simulation-based performance evaluations of these 
methods are important as guides for practitioners but still lacking. Here, we compare 
two model-based methods, multivariate generalized linear models (MvGLMs) and 
constrained quadratic ordination (CQO), with two distance-based methods, distance-
based redundancy analysis (dbRDA) and canonical correspondence analysis (CCA). 
We studied the performance of the methods to discriminate between causal vari-
ables and noise variables for 190 simulated data sets covering different sample sizes 
and data distributions. MvGLM and dbRDA differentiated accurately between causal 
and noise variables. The former had the lowest false-positive rate (0.008), while the 
latter had the lowest false-negative rate (0.027). CQO and CCA had the highest false-
negative rate (0.291) and false-positive rate (0.256), respectively, where these error 
rates were typically high for data sets with linear responses. Our study shows that 
both model- and distance-based methods have their place in the ecologist's statisti-
cal toolbox. MvGLM and dbRDA are reliable for analyzing species–environment re-
lations, whereas both CQO and CCA exhibited considerable flaws, especially with 
linear environmental gradients.
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1  | INTRODUC TION

Which environmental gradients determine species abundances and 
community composition is one of the most essential questions in 
ecology (Clements, 1907) and the current alteration of ecosystems at 
an unprecedented rate endows it with a new urgency (Pacifici et al., 
2015). Given the complexity of simulating ecological systems under 
artificial conditions (e.g., in microcosms), monitoring the abundance 
or occurrence of taxa across sites with variable environmental con-
ditions has been one approach to tackle this question. Related stud-
ies deliver a sites-by-species matrix Y containing multivariate species 
abundances, which is then statistically related to a sites-by-predictors 
matrix X, containing information on the environmental predictors. 
From a statistical perspective, Y has many undesirable properties such 
as intercorrelations between variables, for example, through biotic in-
teractions (Morales-Castilla, Matias, Gravel, & Araújo, 2015), probabil-
ity distributions other than the normal, more species than sites (high 
dimensionality, especially in DNA barcoding studies, Cristescu, 2014), 
and many zeros, because most species are commonly absent from 
most sites (sparsity, McGill et al., 2007).

While univariate data (i.e., one response but possibly multiple ex-
planatory variables) are routinely analyzed by model-based methods 
such as ANOVA, generalized linear models, and linear mixed mod-
els, multivariate data are most often analyzed with distance-based 
methods. The latter analyze a pairwise matrix of distances or dis-
similarities instead of the sites-by-species matrix. They include a 
multitude of approaches, such as correspondence analysis (CA), non-
metric multidimensional scaling (NMDS), and principal coordinates 
analysis (PCoA). Their common ground lies in not assuming a spe-
cific parametric underlying model for how the data were generated. 
Different authors group slightly different methods under this label. 
Warton, Wright, and Wang (2012), for example, exclude CA, while 
Roberts (2019) explicitly includes it. We follow the wider definition 
of Roberts (2019) and consider constrained correspondence analy-
sis (CCA) as an example of a distance-based method. An alternative 
designation for this group is algorithmic or algorithm-based (Warton, 
Foster, De'ath, Stoklosa, & Dunstan, 2015).

In distance-based method, the researcher takes the data's statis-
tical properties into account when selecting a distance metric. For in-
stance, Minkowski distances (e.g., Manhattan and Euclidean) assume a 
constant variance across all mean values (ter Braak & Prentice, 1988) 
whereas species abundances often show a quadratic mean–variance 
relationship (Routledge & Swartz, 1991; Yamamura, 1999). Whether a 
distance metric is appropriate depends on the properties of the data 
and the aim of the study, as each metric extracts different information 
from the raw data. The choice is complicated by the vast amount of 
available metrics (see Legendre & Legendre, 2012). An alternative to 
distance-based analyses that accounts for mean–variance relationships 
and incorporates ecological assumptions is the model-based approach.

The model-based approach consists of explicitly specifying a statis-
tical model of the process that generated the observed data (Warton, 
Foster, et al., 2015). This includes properties such as marginal distri-
butions and corresponding parameters, overdispersion, zero inflation, 

mean–variance relationship, and correlation structure, all of which can 
be flexibly tailored to the data and the research question. While this 
approach is ubiquitous in univariate analyses (Bolker, 2008; Zuur, Ieno, 
& Elphick, 2010), it has long been uncommon in multivariate ecologi-
cal analyses, largely due to the absence of suitable models (Anderson, 
2001). However, advances in statistical theory and computation 
power have led to a surge of models for multivariate abundance data. 
Recent examples include hierarchical modeling of species communities 
(Ovaskainen et al., 2017), generalized joint attribute modeling (Clark, 
Nemergut, Seyednasrollah, Turner, & Zhang, 2017), and multivariate 
generalized linear models (MvGLM, Warton et al., 2012).

In MvGLM, a separate univariate GLM is fit to each taxon, with 
each model using the same predictors. Univariate GLMs are a flexi-
ble method and are strongly advocated for the analysis of count or 
occurrence data as they can handle different residual distributions 
and mean–variance relationships (O'Hara & Kotze, 2010; Szöcs & 
Schäfer, 2015; Warton & Hui, 2011). Extending them to multispecies 
abundance data was thus a natural starting point for multivariate 
model-based analyses (Warton et al., 2012). The univariate mod-
els are combined by summing their test statistics, which allows for 
inference on the whole community. The use of MvGLM, facilitated 
by an easy-to-use implementation in R (in the mvabund R package, 
Wang, Naumann, Eddelbuettel, Wilshire, & Warton, 2019), has 
steadily increased within the ecological community. However, direct 
comparisons of MvGLM to other methods remain rare, with a few 
exceptions. Warton et al. (2012) showed that MvGLMs, in contrast 
to distance-based methods, can differentiate between location (dif-
ference in mean) and dispersion (difference in mean–variance rela-
tionship) effects. Szöcs et al. (2015) found that the statistical power 
of MvGLMs was higher or at least equal to that of principal response 
curves (a form of redundancy analysis) when used for the analysis 
of ecotoxicological semifield studies. However, systematic studies 
of data sets with known properties are lacking and this paucity of 
studies hampers our capacity to make informed decisions on the se-
lection of methods for multivariate data analysis.

We compared the performance of MvGLMs to differentiate be-
tween causal and noise variables to three methods of data analysis: 
constrained quadratic ordination (CQO), which is also model-based, 
canonical correspondence analysis (CCA), and distance-based redun-
dancy analysis (dbRDA), which are distance-based. We applied the 
methods to 190 combinations of abundance data sets and explanatory 
variables. The abundance data differed in distributions and sample 
sizes. Based on the assessment of a variable's statistical significance, 
false-positive rate (FPR) and false-negative rates (FNR) were calculated.

2  | MATERIAL S AND METHODS

2.1 | Data generation

Species abundances were simulated as counts, a common 
abundance measure in ecology (Warton, 2008b). Abundances 
were stored in Y, an N  ×  S matrix of responses, in this case, the 
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abundances of S species, s = 1 … S, at N sites, n = 1 … N. The spe-
cies in Y responded to environmental variable xm with one of three 
different response types: unimodal (U), linear (L), or bimodal (B), as 
shown in Figure 1. Unimodal responses are most common in nature 
(Jansen & Oksanen, 2013; Lawesson & Oksanen, 2002) and bimodal 
shapes are expected to occur when competition restricts realized 
niches to gradient extremes (Hardin, 1960; Mueller-Dombois & 

Ellenberg, 1978). Linear responses may be the result of a stressor 
gradient shaping communities or may arise if the sampled gradient 
range is short relative to the species' tolerance. The environmental 
variables are stored in X an N × M matrix with M environmental vari-
ables, m = 1 … M. We simulated three different types of communi-
ties. The main focus of this study is the type I communities which 
are described below. Type II and type III communities represent 

F I G U R E  1   Simulated abundance responses along two causal variables (env1 and env2). Response combinations are as follows: unimodal–
unimodal (left), unimodal–linear (middle), and unimodal–bimodal (right). The vertical axis indicates abundance. The different colors represent 
different species. All the examples show the unsampled abundance matrix YLarge of type I communities

F I G U R E  2   Flowchart of the type I community simulations. The environmental space is comprised out of two variables (env1 and env2) 
and 10,000 unique sites. At each site, the abundances of nine species are simulated. Abundance responses to environmental gradients 
display three shapes: unimodal (U), linear (L), and bimodal (B). All nine species of one community show the same response shape (with 
varying parameters) to one gradient, but response shapes can differ between gradients. All six possible combinations of response shapes are 
sampled with six different sample sizes spanning from 25 to 900. Before these data are analyzed, two noise variables are added to X. For 
each response shape–sample size combination, five different pairs of noise variables are appended to X
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communities with more heterogeneous responses to environmen-
tal variables and may be considered more realistic. They were used 
to evaluate the robustness of the results and conclusions based on 
type I communities. They are described in a separate section. The 
simulation process for type I communities is visualized in Figure 2.

We simulated abundances along two environmental gradients 
env1 and env2, which henceforth will be referred to as causal vari-
ables to differentiate them from the noise variables. Both causal 
variables consist of the natural numbers from 1 to 100. Each possi-
ble combination of the two is a site, that is, the total number of sites 
N = 10,000. YLarge holds the simulated abundances for all 10,000 
sites. This data set is larger than most ecological field data sets, and 
fitting models to it would have required considerable computation 
time. Therefore, we sampled from YLarge with six different sample 
sizes (25, 100, 225, 400, 625, and 900) to obtain YSample. Depending 
on the sample size n, a set number (

√
n) of sampling locations per 

causal variable were chosen. These locations always included the 
variable's minimum and maximum values (i.e., 1 and 100); between 
those, the locations were equidistantly distributed. The abun-
dances of all species at all combinations of sampling locations con-
stitute YSample. All species show the same response type toward 
each causal variable, but response types can differ between vari-
ables (Figure 1). This setup allows for six communities each with a 
different combination of response types, including those with iden-
tical response types to both variables (Figure 2). The communities 
are labeled with their abbreviated response types, for example, UB 
for a community in which species' abundances respond unimodally 
to the first and bimodally to the second causal variable (Figure 1c).

Unimodal responses were simulated using the Gaussian response 
model (Gauch & Whittaker, 1972) expanded to multiple dimensions 
(Equation 1).

where us,m is the position of the optimum (i.e., the point with the 
highest abundance) of species s along the environmental variable 
m, ts,m is the tolerance of species s toward that variable and deter-
mines the width of the unimodal curve, and cs,m is the maximal abun-
dance of species s on environmental variable m. Muni is the number 
of unimodal environmental variables. Linear responses were simu-
lated by multiplying the environmental variables with a coefficient 
β (Equation 2).

Bimodal responses were simulated by adding two unimodal mod-
els with different optima us,m.

This way we obtained M = 2 abundance values ym,s,n per species 
and site. To obtain a single abundance ys,n for each species at each 
site, we multiplied the abundances of each environmental variable. 
By multiplying instead of adding the abundance values, we ensured 

that a species is absent from sites where its abundance is zero for 
one of the gradients, that is, is outside of its niche. The products 
were rounded down, as abundances can only take integer values.

After the abundances were simulated, noise variables were 
appended to the matrix of environmental variables X. They were 
simulated from a standard normal distribution, scaled to the same 
magnitude as the causal variables, and restricted to be orthogonal to 
them and to each other. We obtained five different versions of these 
noise variables by altering the random number generation seed, giv-
ing us five different versions of X per sampled community YSampled. In 
total, we sampled six different communities six times each and have 
five matrices with environmental data per sample, resulting in 180 
data sets per method of data analysis.

The simulated communities are a simplification of ecological field 
data. They consist of only nine species and are neither high dimen-
sional nor do they exhibit intercorrelation. However, they are not nor-
mally distributed and sparse, thereby featuring two of the common 
issues mentioned above. This relative simplicity eases interpretation 
of the results. The simulation process is visualized in Figure 2. More 
details on the parameterization of the models are provided in Table A1.

2.2 | Type II and III communities

We simulated two further types of communities to explore the methods' 
performance when used for more heterogeneous communities. Type II 
communities consist of only three species. Each species shows the same 
response shape toward both gradients, but the response shapes differ 
between species. They contrast with type I communities, where all spe-
cies exhibit a uniform response shape and allow us to test the influence 
of deviations from this uniform response on the results. We simulated 
five type II communities with 625 sites and different random number 
generation seeds. The parameters were chosen so that the total abun-
dance over all sites was equal for all species (Table A2). Type III com-
munities represent more realistic assemblages. They harbor 30 species 
sampled at 625 sites, and species abundance distributions (SADs) were 
simulated with a Gambin model (Ugland et al., 2007) with 10 octaves 
and a shape parameter of 5 using the gambin R package (Matthews et 
al., 2014). Octaves followed the common log2 series already used by 
Preston (1948). The actual maximal abundance was randomly sampled 
from the interval of the respective octave, and the tolerance was set to 
the same number as the maximal abundance. All species respond unimo-
dally to both gradients, and the locations of their optima were randomly 
sampled from all coordinates of the grid. Again, five different communi-
ties were simulated. All SADs were drawn from the same Gambin model 
with different random number generation seeds.

2.3 | Overview of methods

In the following, the methods of data analysis will be introduced 
briefly. Each section is concluded with details on how we applied the 
method in this study.

(1)ys,n=

Muni∏
m

Cs,m×exp

(
−
(xm,n−us,m)

2

2t2
s,m

)

(2)ys,n=

Mlin∏
m

xm,n×�s,m
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2.3.1 | Multivariate generalized linear models

A MvGLM consists of S separately fitted univariate GLMs. The likeli-
hood ratio test statistics of all univariate models (i.e., species) are added 
for each environmental variable to obtain the sum-of-likelihood-ratio 
statistics. For these statistics, p-values related the null hypothesis that 
a given environmental variable has no effect on the mean community 
abundance can be calculated. We fit MvGLMs with Poisson, negative 
binomial (both with log-link), and Gaussian residual distributions (with 
identity link) to each community and compared their Dunn–Smyth re-
sidual plots (Dunn & Smyth, 1996) and Akaike's information criteria 
(AIC, Akaike, 1974). We did not test models with quadratic or higher 
order polynomial terms. The likelihood ratio test statistic was calcu-
lated for the best fitting model (least patterns in residuals and lowest 
AIC). To estimate p-values, we used a residual permutation bootstrap 
with 1,000 repetitions (Davidson & Hinkley, 1997).

2.3.2 | Constrained quadratic ordination

Like the MvGLM, the CQO is related to the GLM. It is based on vector 
generalized linear models (VGLMs), which are a further generalization 
of GLMs. All GLMs are special instances of VGLMs, just like linear re-
gression is a special instance of a GLM. They are not restricted to the 
exponential family, include multivariate response models, and can ex-
plicitly model other response parameters than the mean (e.g., the vari-
ance or higher order moments). CQO builds on reduced-rank VGLMs, 
in which the M original predictors are reduced to R latent variables �. 
This entails the reduction of the hat matrix H, which holds the regres-
sion coefficients β, to a rank R matrix HR. So unlike a MvGLM, CQO 
reduces the data's dimensionality, and in contrast to most ordination 
techniques (including dbRDA and CCA), the researcher specifies the 
number of latent variables (i.e., dimensions) a priori. HR is decomposed 
into two matrices HT

R
=AC

T, where HT

R
 denotes the transpose of HR. 

The latent variables � are the linear combinations of the constrained 
coefficients CT and the sites-by-predictor matrix X. This means that 
the higher the constrained coefficient of a given predictor is, the more 
the influence it has on the corresponding latent variable. A holds the 
regression coefficient of the latent variables. CQO extends this model 
by adding a quadratic term (cf. Equation 3).

β1 is the intercept term, and � is the linear predictor. It assumes 
symmetric and unimodal responses to the latent variables. CQOs 
were run with Poisson residual distribution and the canonical log-
link function. The four explanatory variables were scaled and cen-
tered before fitting the models. The effective nonlinear degrees of 
freedom were set to 1.5 as suggested by Yee (2015). Each model 
was run fifty times, and the deviances of each run were compared. 
If the lowest deviances are too far apart, the solution might be local 
and the model should be refitted. Here, we fit the model again, until 
the difference between the lowest and the fifth lowest deviance 

no longer exceeded 3. In its current implementation in the VGAM R 
package (Yee, 2019), CQO does not provide p-values (but see Yee, 
2010). To compare its results with the other methods, we calcu-
lated pseudo-p-values for the CQO (details of the procedures can 
be found in the Appendix 1). Shortly, to determine the pseudo-p-
value of environmental variable m, we permuted the variable 100 
times and fit a CQO to each permuted data set. For every model, 
the absolute values of the constraint coefficient across both latent 
variables were added for environmental variable m, to obtain the 
test statistic 

∑
C�Xm

. The proportion of test statistics of permuted 
data sets that were larger than that of the unpermuted data set is 
the pseudo-p-value. All models were fit with ranks 1 and 2. The op-
timal number of ranks was found to be 2 for all models, determined 
by the AIC as proposed by Yee and Hastie (2003).

2.3.3 | Canonical correspondence analysis

Canonical correspondence analysis is the heuristic solution to re-
stricted Gaussian regression (Zuur, Ieno, & Smith, 2007). In the lat-
ter, one tries to estimate the parameters u, t, and c of a Gaussian 
response model (see Equation 1), but instead of the measured envi-
ronmental variables, their linear combinations are used as x. Though 
it is possible to estimate the parameters with iteratively reweighted 
least squares in a GLM, this was to computationally intensive at the 
time the method was proposed by Gauch and Whittaker (1972). 
Instead, ter Braak (1986) proposed to approximate the results by 
CCA, which is valid as long as: All species have equal tolerances t 
and maximal abundances c, their responses are unimodal and sym-
metrically bell-shaped, and their optima c are spread uniformly in 
the ordination space. These assumptions are collectively known as 
the species packing model. Palmer (1993), Johnson and Altman (1999) 
and Zuur (1999) confirmed the validity of the approximation and its 
robustness toward violations against the species packing model in 
simulation studies. Today, CCA is one of the most widely used and 
cited multivariate statistical methods in ecology (ter Braak, 2014).

An iterative algorithm is used to obtain estimates. First, arbitrary 
values are assigned to the site scores (positions of sites in latent 
variable space, Z). These are used to calculate the species optima u 
(henceforth species scores) as in Equation 4

where u = (u1 … uS)t, Dc is a diagonal matrix with the abundance of spe-
cies s across all sites as its s,s-th element, and Yt denotes the transpose 
of Y. The species scores are in turn used to calculate the site scores as 
their weighted average Zwa (Equation 5)

where Dr is a diagonal matrix with the abundance of all species at site 
n as its n,n-th element, and D−1

r
 denotes the inverse of Dr. Zwa is re-

gressed against X to obtain the weighted regression coefficient α.

(3)�s=�(s)1+�(s)2�+�(s)3�
2 (4)u=DcY

t
Z

(5)Zwa=D
−1

r
Yu
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Lastly, Z is calculated as the product of X and α. This procedure 
is repeated until convergence.

The distance between sites (scaling 1) or species (scaling 2) in a 
CCA approximates their two-dimensional chi-square distance, that 
is, the Euclidean distance between the expected abundances under 
the null hypothesis, that abundances do not change along environ-
mental variables and the actual data. Explanatory variables were 
scaled and centered. Hypothesis tests for environmental variables 
can be conducted using a pseudo-F-statistic with permuted residu-
als (Legendre, Oksanen, & Braak, 2011) and the null hypotheses that 
the effect of the variable on the response is equal to zero after ac-
counting for the effect of all other variables. Hypothesis tests were 
conducted with 999 permutations.

For type I and II communities, we did not transform the abun-
dances as all species had similar or equal maximal abundances. 
For type III communities, the CCA was run with untransformed, 
square root-transformed, base 2 log-transformed, and Hellinger-
transformed abundance data.

2.3.4 | Distance-based redundancy analysis

Distance-based redundancy analysis (dbRDA) is a variation of the com-
monly used redundancy analysis, proposed by Legendre and Anderson 
(1999). It is not based on one specific distance measure but instead 
can adopt any chosen measure. It is the constrained form of principal 
coordinate analysis (PCoA, Legendre & Anderson, 1999), which will 
be shortly addressed here. In PCoA, Y is transformed into a centered 
distance matrix Δ. The columns of the matrix PC are the eigenvectors 
of Δ scaled to a length that is equal to the square root of their eigen-
values (Gower, 1966). Each row of PC gives the eponymous Principal 
Coordinates of one observation. In a dbRDA, this matrix PC is linearly 
related to the explanatory variables by an RDA. The dbRDA preserves 
the distance metric of Δ, which can be metric, semi-, or nonmetric. 
dbRDA was highlighted by Szöcs et al. (2015), because the possibil-
ity to use asymmetrical distance metrics makes them appealing for 
sparse data sets. We used the Bray–Curtis distance, which is the re-
ciprocal of the Steinhaus coefficient (Motyka, 1947), to calculate Δ. As 
in CQO and CCA, environmental variables were scaled and centered. 
The significance tests for explanatory variables are calculated using a 
pseudo-F-statistic in the same manner as for the CCA. dbRDA of type 
III communities was run with untransformed, square root-transformed, 
base 2 log-transformed, and Hellinger-transformed abundance data.

2.4 | Comparison of methods

The benefit of using simulated rather than field data are twofold: 
(a) There is a clear dichotomy between causal and noise variables, 
and (b) we know whether a given explanatory variable is causal or 
noise. This enables us to compare the methods in terms of their 

classification error rates. To this end, we calculated false-positive 
(FPR) and false-negative rates (FNR) for each method.

where FP is a false positive, TN a true negative, FN a false negative, and 
TP a true positive. A false positive occurs when a noise variable is clas-
sified as causal, whereas a false negative when a causal variable is clas-
sified as noncausal. True positives and negatives are instances where 
the variable is labeled correctly. An FPR of 0.5, for example, would in-
dicate that half of all variables that were determined to be causal are in 
fact noise. Variables with a p-value lower than the significance level (α) 
were classified as causal whereas all variables with p > α were classified 
as noise. To alleviate the problematic dichotomy of statistical signifi-
cance (Greenland et al., 2016), we use five different significance levels 
α (0.01, 0.03, 0.05, 0.07, and 0.1). This allows us to evaluate trends in 
classification strength over different thresholds.

2.5 | Software

We used R 3.4.4 (R Core Team, 2018) for all simulations and analy-
ses. MvGLM was conducted with mvabund 3.13.1. (Wang et al., 
2019), dbRDA and CCA with vegan 2.5–2 (Oksanen et al., 2018), 
and CQO with VGAM 1.0–5 (Yee, 2019). All calculations were con-
ducted on an Ubuntu 18.04 machine with 64-bit, 8 GB RAM, and 
1.6 GHz.

3  | RESULTS

We report the means and standard deviations of p-values of MvGLM, 
CQO, CCA, and dbRDA for all explanatory variables on type I com-
munities (Table 1); p-values for all combinations of response shapes 
and sample sizes as well as type II and III communities are given in 
Tables A3–A8.

In most MvGLMs, negative binomial residual distribution 
achieved the lowest AIC and the best fit to model assumptions. 
The plot of Dunn–Smyth residuals against the linear predictor of 
LL (Figure A1) showed arched patterns, which could indicate that 
the residuals were not independent of the explanatory variables. 
Nevertheless, we used a negative binomial residual distribution 
because the visual inspection of the QQ plots suggested that it re-
sulted in a better fit than Poisson or Gaussian distributions.

MvGLMs' p-values for both causal variables and all response type 
combinations were low (Table 1 and Figure 4). The p-values of the linear 
variable in LB and UL and of the bimodal variable in UB were higher at 
the smallest sample size than at higher ones (Table A3). Otherwise, the 
sample size had no effect on the p-values of the causal variables, which 
were often minimal (1 divided by the number of permutations + 1). The 
p-values for noise variables were higher and varied strongly. They only 

(6)�= (X
t
DrX)

−1
X
t
DrZwa

(7)FPR=FP∕
(
TN+FP

)

(8)FNR=FN∕
(
TP+FN

)
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fell below the nominal significance level of 0.05 in three models. All 
three models had the response combination LL, and the low p-values 
occurred at the sample sizes 225, 625, and 900 (Table A3).

The FPR was the lowest of all methods (0.008 at α = 0.05) and 
always well below the respective significance level. Overall, FPRs 
and FNRs of MvGLMs were very low (Figure 3). Interestingly, the 
p-values of noise variables did not show a monotonic positive re-
lationship with sample size, as we expected. Rather, the response 
seemed unimodal in UU, LL, and BB, slightly negative in LB and UL, 
and positive for UB (Table A3).

MvGLM had a FNR and FPR of zero with both type II and type III 
communities at all significance levels (Figure 3).

Constrained quadratic ordinations' performance strongly de-
pended on the response shape (Figure 4). It failed to converge for 
UB with sample size 25 and performed best for UU and BB; both 
had a FNR of 0 FPRs below the average (0 and 0.06, respectively). 
UB performed slightly worse than UU and BB with an FNR of 0.1 
and an FPR of 0.02. As was expected, CQO often assigned high 
p-values to linear causal variables (Figure 4). The mean p-value 
of linear variables was 0.15, and their FNR was 0.53. Both uni-
modal and bimodal causal variables received higher p-values when 
the other causal variable was linear (Table A4). The mean p-value 
of unimodal variables excluding those from UL is 0.006  ±  0.022 
compared to 0.036  ±  0.084 for the unimodal variable in UL. 
Similarly, the mean p-value of bimodal variables except for those 
form LB is 0.004 ± 0.015, and for the bimodal variable in LB, it is 

0.042  ±  0.083. This mixed performance leads to relatively high 
mean p-values for the causal variables (Table 1) and accordingly 
high FNR and FPR (Figure 3).

Constrained quadratic ordination is the only method that has 
nonzero FNR in type II and III communities. In type II communities, 
the FNR is 0.2 for α = 0.1 and zero for all other significance levels. 
In type III communities, the FNR is 0.43 for an α between 0.01 and 
0.03, and then decreases to 0.17 for all higher significance levels 
(Figure 3).

Canonical correspondence analysis has the highest mean p-val-
ues for causal variables and the lowest for noise ones. Accordingly, 
the FPR was the highest of all methods (Figure 3). Irrespective of 
significance level, it is more than one order of magnitude higher than 
for all other methods. These problems are due to two factors: (a) high 
p-values for causal linear variables and (b) low p-values for noise vari-
ables. The mean p-value for causal linear variables is 0.963 ± 0.094. 
Additionally, CCAs of LL with sample sizes 400–900 produced 
constrained inertias (explained variance) of 0 and were therefore 
excluded from significance testing. Noise variable p-values were es-
pecially low in UU and UB (Figure 4), which is interesting since these 
data sets matched closest with the assumed species packing model. 
In BB, they were markedly higher (Table A5). The impact of different 
sample sizes was negligible in all response combinations (Table A5).

The FNR was 0 in all type II and type III communities, whereas 
the FPR depended on the type of transformation. With Hellinger-, 
square root and base 2 log-transformed data, FPR was zero for type 

TA B L E  1   Mean p-values ± standard deviations of the causal (env1 and env2) and noise variables from multivariate generalized linear 
models (MvGLMs), constrained quadratic ordination (CQO), canonical correspondence analysis (CCA), and distance-based redundancy 
analysis (dbRDA) on type I communities

  MvGLM CQO CCA dbRDA

env1 0.006 ± 0.0275 0.067 ± 0.127 0.264 ± 0.433 0.002 ± 0.007

env2 0.009 ± 0.0311 0.090 ± 0.190 0.264 ± 0.433 0.003 ± 0.001

Noise 0.650 ± 0.280 0.680 ± 0.268 0.399 ± 0.348 0.450 ± 0.277

F I G U R E  3   False-positive rate and false-negative rate of the four statistical methods canonical correspondence analysis (CCA), 
constrained quadratic ordination (CQO), distance-based redundancy analysis (dbRDA), and multivariate generalized linear model (MvGLM) 
with type I, II, and III communities. CCA_log and dbRDA_log show the results of CCA and dbRDA on base 2 log-transformed data, which 
yielded to lower or equal FPR than the other two transformations (see Figure A6). Points are jittered slightly along the x-axis
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II and III communities at all significance levels, except for square 
root-transformed data it is at the significance level 0.1 in type III 
communities where it increased to 0.1. The FPR on untransformed 
data was higher. It was overall highest, in type II communities with 
0.5 at the significance level 0.1. In type III communities, CCA main-
tained an FPR of 0.1 between the significance levels of 0.01 and 0.03 
and increased to 0.2 for higher significance levels.

The dbRDA assigned low p-values to most causal variables 
(Figure 4). The only p-values of causal variables above the nominal sig-
nificance level of 0.05 were those of linear variables at a sample size of 
25 (Table A6). However, they were below 0.1, so that the dbRDA had 
an FNR of 0 at α = 0.1 Indeed, the FNR was the lowest of all methods 
(Figure 3). The FPR was relatively high, with 0.039 at α = 0.05. p-val-
ues were relatively similar for all sample sizes (Table A6).

At most significance levels, the FPR of dbRDA in type II and III 
communities was higher than in type I communities. In type II com-
munities, it was 0.1 at α = 0.05 and increased to 0.3 at α = 0.1. For 
type III communities, FPR increased steadily with significance level, 
reaching 0.3 with Hellinger transformation and 0.33 on untrans-
formed data at α = 0.1. Both square root and base 2 log transforma-
tion had lower FPRs, reaching 0.2 at α = 0.1. Log-transformed data 
maintained an FPR of 0 for all sigificance levels below 0.07. Both 
distance-based methods were considerably faster than the mod-
el-based ones (Figure A3).

4  | DISCUSSION

We analyzed 190 simulated abundance data sets that differed 
in response types and sample sizes with four different statisti-
cal methods, to assess the methods' performance when used to 
differentiate between causal and noise variables. MvGLM and 
dbRDA performed best with type I communities showing low FPRs 
and FNRs for all response combinations and sample sizes. CQO 
assigned high p-values to noise variables, resulting in FPRs lower 
than those of dbRDA but higher than MvGLMs. However, it had 
the highest FNR for the lower three significance levels, resulting 
largely from the high p-values of linear variables. CCA assigned 
high p-values to linear variables and additionally assigned low p-
values to noise variables.

The method performed worst with type I communities, show-
ing the highest FPR at all significance levels and the highest FNR 
at the two highest significance levels. However, its performance on 
Hellinger and base 2 log-transformed data for type II and III commu-
nities was as good as that of MvGLM.

MvGLMs had the lowest FPR of all methods and showed the 
best performance when all community types are considered. The 
three noise variable p-values that fell below 0.05 all occurred in LL 
models, which violated the assumption of random residuals and 
thus would likely be identified as unreliable models. The FNR was 
also low and all false negatives occurred in communities with the 
smallest sample size. A drawback of MvGLMs is the long run time 
due to resampling.

The resampling is used for inference, and since whole sampling 
units (rows) are resampled, correlation structures between species 
are preserved (Wang, Naumann, Wright, & Warton, 2012).

Models that explicitly consider correlation structure avoid res-
ampling and can reduce computation time. Such models have been 
proposed, for example, by Jamil, Ozinga, Kleyer, and Braak (2012) 
who used the site effect of a generalized linear mixed model to in-
duce equal correlation between all species pairs. A clear drawback of 
this method is, however, that equal correlation between all species is 
as (im)plausible as no correlation. Structuring the residual covariance 
matrix is important as the number of parameters that need to be 
estimated rises quickly (e.g., 55 in the covariance matrix for 10 spe-
cies). MvGLMs can use an unstructured correlation matrix, but this 
is only advisable for data sets with many more sites than species and 

F I G U R E  4   Mean p-values of response combinations (indicated 
by first letter of response types: unimodal (U), linear (L), and 
bimodal (B)) for multivariate generalized linear models (MvGLM), 
constrained quadratic ordination (CQO), canonical correspondence 
analysis (CCA), and distance-based redundancy analysis (dbRDA). 
Blue points are env1, yellow points are env2, and red points are 
noise variables. Bars show one standard deviation. The vertical 
dashed line indicates a p-value of 0.05. Only type I communities are 
shown
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is computationally expensive. Another option is shrinking the cor-
relation matrix toward identity using ridge regularization (Warton, 
2008a, 2011). Both alternatives use generalized estimation equa-
tions (GEE) with the sandwich-type-estimator of Warton (2011). As 
GEEs do not provide likelihoods, other test statistics than the like-
lihood ratio have to be used. Current options are the score and the 
Wald statistic. However, these methods also require resampling, as 
asymptotic marginal distributions of regression parameters for GEEs 
are not specified for data sets with more species than sites. Testing 
these methods on data sets with known correlation structures could 
highlight stronger performance differences, as the other methods 
lack adjustments to these properties.

MvGLMs are the only method considered here that does not pro-
vide an easy to use and to interpret method for visualizing the data.

dbRDA was least influenced by different response types and 
sample sizes in type I communities.

In type II and III communities, however, FPR was higher than that 
of both model-based methods. Square root and log transformation 
lowered FPR compared to dbRDA on untransformed data, but re-
markably Hellinger transformation did not lead to a lower FPR. For 
α = 0.75, the FPR of dbRDA on Hellinger-transformed data was even 
higher than that of dbRDA on untransformed data.

Small p-values were scarce for noise variables but occurred at 
all sample sizes and response types. dbRDA's good performance 
on type I communities is in concert with other simulation studies 
(Roberts, 2009). These results are only valid for the Bray–Curtis dis-
tance metric, which was used here.

Indeed, Yamamura, Blanchet, and Higa (2019) recently demon-
strated performance differences between dbRDAs with different 
distance metrics.

The selection of an appropriate metric is thus a crucial step 
in any dbRDA analysis. Having to choose a single metric can be 
avoided by using consensus RDA (Blanchet, Legendre, Bergeron, & 
He, 2014). In this method, multiple dbRDAs are run, only differing 
in their distance metric. Site scores on statistically significant axes 
are combined into one matrix, which acts as a response matrix in 
a new RDA. This method extracts the information that is common 
to all individual dbRDAs. Simulation studies comparing properties 
of consensus RDA with those of individual dbRDA and other meth-
ods, distance- or model-based, are lacking. Another avenue for the 
future development of distance-based algorithms, in general, would 
be novel distance metrics, but their development is pending (M. J. 
Anderson, pers. comm.).

The CCA performed worst on the type I communities of the 
methods tested and assigned high p-values to all linear variables. As 
CCA assumes unimodal gradients, which are more frequent than lin-
ear ones in nature (Oksanen & Minchin, 2002), this was expected. 
This study confirmed that CCA should be avoided if exploratory 
analyses indicate linear relationships, which can occur if the sampled 
range of a gradient is short relative to the species' tolerance. Noise 
p-values were lower than in other methods. Most of the low p-values 
for noise variables occurred in communities with uni- or bimodal re-
sponses. This is surprising, given that UU fits the expectations of the 

species packing model perfectly and bimodal models deviate only 
slightly.

In type III communities, CCA on base 2 log-transformed data 
performed as well as the model-based methods, while the FPR of 
untransformed data was slightly lower than in type I communities. 
The latter is likely due to chance; FPR and FNR for both type II and 
III communities were only based on five repetitions instead of 180 
for type I communities, which were the main focus of this study. 
Overall, the result corroborates earlier findings that CCA is robust 
against two specific violations of the species packing model: unequal 
maximal abundances and nonregular distribution of optima in the 
ordination space.

Newer approaches to CCA that can correct for zero inflation 
(Zhang & Thas, 2012) or nonlinear relationships between predictor 
and response variable (Makarenkov & Legendre, 2002) are available 
but not widely used. Indeed, all of the methods we tested here can 
include quadratic terms which would most likely have resulted in 
better fitting models for unimodal and bimodal predictors. Their ap-
plication is uncommon in CCA and RDA and could be the scope of 
future studies.

Similar to the CCA, CQO assigned high p-values to linear vari-
ables. It also assumes unimodal responses, and the nondetection of 
causal linear gradients was expected. The p-values for linear variables 
of CQO were markedly lower than in the CCA; however, the p-value 
of the second variable in these models tends to increase. Overall, 
this resulted in a high FNR. The FPR was still lower than for both 
distance-based methods but slightly higher than for MvGLM. These 
results reflect the performance of CQO when combined with our 
novel approach to compute p-values. CQO has only rarely been used 
in ecological studies and mostly within fisheries research (Carosi, 
Ghetti, Porta, & Lorenzoni, 2017; Top, Tarkan, Vilizzi, & KarakuÅŸ, 
2016; Vilizzi, Stakenas, & Copp, 2012). ter Braak and Šmilauer (2015) 
suggest that this is due to limitations on the number of species that 
can be included, a steep learning curve, and numerical instability. 
This study confirmed that in its current state, the method has issues 
with linear response types but can handle alteration of the symmet-
rical unimodal bell shape.

Constrained Quadratic Ordination encompasses many options 
that we did not test. They include different models for the toler-
ance matrix, further marginal distributions, and additive models. 
Considering all plausible combinations of these exceeded the scope 
of this study, but could improve performance. We refer the inter-
ested reader to the comprehensive treatment in Yee (2015).

Our findings suggest that MvGLMs can be applied in a wide vari-
ety of settings. None of the data sets or their respective properties 
resulted in high FPR or FNR. CQO had low FPR rates in all tests but 
had the highest FNR. However, as stated before, many options of 
CQO remained unexplored in our study, which might remedy the 
problems. In type I communities, CCA had high FNR with linear re-
sponses and a high FPR with unimodal responses. We thus caution 
against the use of CCA if exploratory analysis indicates linear rela-
tionships. Lastly, dbRDAs performed well with type I communities, 
but worse with type II and III communities. Data sets with a high 
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number of species or stronger abundance differences might pose 
problems to dbRDA that can only partially be alleviated by trans-
forming the data.

Our study is the first to directly compare the methods. Warton 
et al. (2012) compared MvGLMs to CCA and RDA (not dbRDA). They 
showed that only MvGLMs successfully differentiate between the 
location effect (difference in means) and dispersion effect (differ-
ence in variance).

Yamamura et al. (2019) compared a Bayesian hierarchical model 
(BHM) with dbRDA focusing on the impact of incomplete and un-
equal sampling. They found that the BHM and dbRDA estimated the 
dependence of the species abundances on environmental variables 
similarly well. However, the BHM differs strongly from MvGLM 
and CQO. Roberts (2019) compared different distance-based and 
model-based ordinations compared with our study. His results con-
trasted with ours in that the distance-based methods (NMDS and 
t-distributed stochastic neighbor embedding) outperformed mod-
el-based methods (Bayesian ordination and regression analysis, and 
random effects ordination), when used to determine environmental 
drivers of community composition.

Comparative studies of multivariate methods, in general, are 
common. Especially, ordination techniques such as CCA and RDA 
were subject to extensive testing in the 1970s and 1980s (Gauch & 
Whittaker, 1972; Gauch, Whittaker, & Wentworth, 1977; Kenkel & 
Orloci, 1986). Roberts (2008) and Roberts (2009) compared dbRDA, 
CCA, and multidimensional fuzzy set ordinations. Roberts (2008) 
used simulated data sets to this end, whereas Roberts (2009) used 
four different field data sets. Both studies concluded that dbRDA 
outperforms CCA, which we also find for type I community data 
but not for type II or type III. CQO is occasionally tested in compari-
sons of individual and community-level species distribution models 
(Baselga & Araújo, 2009; Maguire et al., 2016), where they are an 
instance of the latter. Generally, they exhibited a similar perfor-
mance as classical models (e.g., GLMs or Regression Trees).

Future studies could improve the realism of the simulated commu-
nities by using more complex response patterns like beta-functions 
(Austin, Nicholls, Doherty, & Meyers, 1994), which add asymmetries 
to bell-shaped curves. However, in a study of Oksanen and Minchin 
(2002) only about 20% of the responses were strongly skewed, 
whereas symmetric and bell-shaped responses were most common. 
Alternatively, asymmetry could be introduced through random terms 
added to abundances, environmental variables, or both (McCune, 
1997). When correlated random terms are added to both, this would 
engender endogeneity (a nonzero covariance between the residuals 
and one or more explanatory variables). Simulations with induced en-
dogeneity would be interesting as this phenomenon is underappreci-
ated by ecologists (Armsworth, Gaston, Hanley, & Ruffell, 2009; Fox, 
Negrete-Yankelevich, & Sosa, 2015). Observation and measurement 
are sources of errors in field data sets, and both can be represented in 
a model via binomial functions as in N-mixture models (Royle, 2004). 
This would be interesting to examine the effects of regression dilu-
tion (Frost & Thompson, 2000; McInerny & Purves, 2011).

It would also be of great interest to compare the methods' 
performance with presence–absence data instead of abundance 
data as novel options for analysis have recently emerged for this 
less informative but more available type of data (Podani, Pavoine, 
& Ricotta, 2018; Sander, Wootton, & Allesina, 2017; Tovo et al., 
2019).

Our study shows that model-based multivariate inference can 
outperform more frequently used distance-based methods. The 
answer to our eponymous question is thus: Not categorically, de-
cisions should be made on a case-by-case basis. As model-based 
methods are still at an early stage, new developments and in-
creases in computation speed can be expected. An especially 
active area of development is models using joint probability dis-
tributions (Clark, Gelfand, Woodall, & Zhu, 2014; Pollock et al., 
2014) that estimate the joint distribution of all species conditional 
on the environmental variables instead of only using the marginal 
distribution of every species' abundance. A common interest of 
many joint models is to infer biotic interactions from the residu-
als of the species–environment interaction, as these two sets of 
predictors (biotic and abiotic) were shown to have little redun-
dancy (Meier et al., 2010). Some of the models also anticipate the 
growing challenges of Big Data for ecology (Hampton et al., 2013). 
Generalized linear latent variable models, for example, include 
latent variables instead of random effects to capture residual 
correlation, which considerably reduces the size of the variance—
covariance matrix (Niku, Warton, Hui, & Taskinen, 2017; Warton, 
Blanchet, et al., 2015). In hierarchical modeling of species com-
munities (Ovaskainen et al., 2017), this approach is coupled with 
a fourth corner model (including species traits, Legendre, Galzin, 
& Harmelin-Vivien, 1997) and phylogenetic relationships to cre-
ate a flexible and comprehensive framework for community data 
analysis. In a similar vein, generalized joint attribute models allow 
for different kinds of data (e.g., continuous, discrete counts, ordi-
nal counts, and occurrence) to be included in the same response 
variable and have outperformed Poisson GLM on discrete count 
data and a Bernoulli GLM on binary host status data in a recent 
simulation study (Clark et al., 2017).

Another recent and promising development in ecology is cop-
ula models (Anderson, Valpine, Punnett, & Miller, 2019; Popovic, 
Hui, & Warton, 2018; Popovic, Warton, Thomson, Hui, & Moles, 
2019).

Anderson et al. (2019) highlighted a combination of the model- 
and distance-based approaches. They proposed a copula model 
of ecological count data (see Hofert, Kojadinovic, Mächler, & Yan, 
2018, for an introduction to copula models), which consists of (a) 
fitting a copula model to the data, (b) simulating new count data with 
this copula, and (c) visualizing the centroids of the actual data and 
of the simulated data sets in a metric multidimensional scaling. In 
light of the good performance of dbRDA in our study, this proposal, 
to join features from both approaches, should be further pursued. 
It is now essential that ways to infer ecological processes from the 
modeled patterns develop at a similar pace as these models, to 
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avoid confusing statistical artifacts with genuine biological signals 
(Dormann et al., 2018).

ACKNOWLEDG MENTS
The authors wish to thank Andreas Scharmüller, Stefan Kunz, 
Sebastian Scheu, Verena Schreiber, and Lucas Streib whose valu-
able comments improved the quality of the final document. We 
also thank two anonymous reviewers whose remarks helped the 
manuscript tremendously. The publication was funded by the Open 
Access Fund of the University of Koblenz-Landau.

CONFLIC T OF INTERE S T
None declared.

AUTHOR CONTRIBUTIONS
JFJ and RBS conceived the experiment. JFJ conducted the simulation 
and the analyses. JFJ and RBS wrote the manuscript.

DATA AVAIL ABILIT Y S TATEMENT
All data as well as R scripts are available in the associated GitHub 
repository: https​://github.com/JonJu​p/Should-ecolo​gists-prefer-
model-over-dista​nce-based-multi​varia​te-methods

ORCID
Jonathan F. Jupke   https://orcid.org/0000-0002-6815-1855 
Ralf B. Schäfer   https://orcid.org/0000-0003-3510-1701 

R E FE R E N C E S
Akaike, H. (1974). A new look at the statistical model identification. IEEE 

Transactions on Automatic Control, 19(6), 716–723.
Anderson, M. J. (2001). A new method for non-parametric multivariate 

analysis of variance. Australian Ecology, 26(1), 32–46.
Anderson, M. J., de Valpine, P., Punnett, A., & Miller, A. E. (2019). A path-

way for multivariate analysis of ecological communities using copu-
las. Ecology and Evolution, 9(6), 3276–3294.

Armsworth, P. R., Gaston, K. J., Hanley, N. D., & Ruffell, R. J. (2009). 
Contrasting approaches to statistical regression in ecology and eco-
nomics. Journal of Applied Ecology, 46(2), 265–268.

Austin, M. P., Nicholls, A. O., Doherty, M., & Meyers, J. (1994). 
Determining species response functions to an environmental gra-
dient by means of a β-function. Journal of Vegetation Science, 5(2), 
215–228.

Baselga, A., & Araújo, M. B. (2009). Individualistic vs community model-
ling of species distributions under climate change. Ecography, 32(1), 
55–65.

Blanchet, F. G., Legendre, P., Bergeron, J. A. C. B., & He, F. (2014). 
Consensus RDA across dissimilarity coefficients for canonical ordi-
nation of community composition data. Ecological Monographs, 84(3), 
491–511.

Bolker, B. M. (2008). Ecological models and data in R. Princeton, NJ: 
Princeton University Press.

Carosi, A., Ghetti, L., La Porta, G., & Lorenzoni, M. (2017). Ecological ef-
fects of the European barbel Barbus barbus (L., 1758) (Cyprinidae) 
invasion on native barbel populations in the Tiber River basin. (Italy). 
European Zoological Journal, 84(1), 420–435.

Clark, J. S., Gelfand, A. E., Woodall, C. W., & Zhu, K. (2014). More than the 
sum of the parts: Forest climate response from joint species distribu-
tion models. Ecological Applications, 24(5), 990–999.

Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J., & Zhang, S. 
(2017). Generalized joint attribute modeling for biodiversity analysis: 
Median-zero, multivariate, multifarious data. Ecological Monographs, 
87(1), 34–56.

Clements, F. E. (1907). Plant Physiology and Ecology. New York, NY: Henry 
Holt and Company.

Cristescu, M. E. (2014). From barcoding single individuals to metabar-
coding biological communities: Towards an integrative approach to 
the study of global biodiversity. Trends in Ecology & Evolution, 29(10), 
566–571.

Davidson, A., & Hinkley, D. (1997). Bootstrap methods and their applica-
tion. Cambridge, UK: Cambridge University Press.

Dormann, C., Bobrowski, M., Dehling, M., Harris, D., Hartig, F., Lischke, 
H., … Schmidt, S. I. (2018). Biotic interactions in species distribution 
modelling: Ten questions to guide interpretation and avoid false con-
clusions. Global Ecological Biogeography, 27, 1004–1016.

Dunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. Journal 
of Computational and Graphical Statistics, 5(3), 236–244.

Fox, G. A., Negrete-Yankelevich, S., & Sosa, V. J. (2015). Ecological sta-
tistics: Contemporary theory and application. Oxford, UK: Oxford 
University Press.

Frost, C., & Thompson, S. G. (2000). Correcting for regression dilution 
bias: Comparison of methods for a single predictor variable. Journal 
of the Royal Statistical Society: Series A (Statistics in Society), 163(2), 
173–189.

Gauch, H. G. J., & Whittaker, R. H. (1972). Comparison of ordination tech-
niques. Ecology, 53(5), 868–875. https​://doi.org/10.2307/1934302

Gauch, H. G. J., Whittaker, R. H., & Wentworth, T. R. (1977). A compar-
ative study of reciprocal averaging and other ordination techniques. 
Journal of Ecology, 65(1), 157–174.

Gower, J. C. (1966). Some distance properties of latent root and vector 
methods used in multivariate analysis. Biometrika, 53(3–4), 325–338.

Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, 
S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence 
intervals, and power: A guide to misinterpretations. European Journal 
of Epidemiology, 31(4), 337–350.

Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, 
A. E., Batcheller, A. L., … Porter, J. H. (2013). Big data and the future 
of ecology. Frontiers in Ecology and the Environment, 11(3), 156–162.

Hardin, G. (1960). The competitive exclusion principle. Science, 
131(3409), 1292–1297.

Hofert, M., Kojadinovic, I., Mächler, M., & Yan, J. (2018). Elements of cop-
ula modeling with R (2nd ed.). Cham, Switzerland: Springer.

Jamil, T., Ozinga, W. A., Kleyer, M., & ter Braak, C. J. F. (2012). Selecting 
traits that explain species – environment relationships: A Generalized 
Linear Mixed Model approach. Journal of Vegetation Science, 24, 
988–1000.

Jansen, F., & Oksanen, J. (2013). How to model species responses along 
ecological gradients–Huisman–Olff–Fresco models revisited. Journal 
of Vegetation Science, 24(6), 1108–1117.

Johnson, K. W., & Altman, N. S. (1999). Canonical Correspondence 
Analysis as an approximation to Gaussian ordination. Environmetrics, 
10(1), 39–52.

Kenkel, N. C., & Orloci, L. (1986). Applying metric and nonmetric multi-
dimensional scaling to ecological studies: Some new results. Ecology, 
67(4), 919–928.

Lawesson, J. E., & Oksanen, J. (2002). Niche characteristics of Danish 
woody species as derived from coenoclines. Journal of Vegetation 
Science, 13(2), 279–290.

Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy anal-
ysis: Testing multispecies responses in multifactorial ecological ex-
periments. Ecological Monographs, 69(1), 1–24.

Legendre, P., Galzin, R., & Harmelin-Vivien, M. L. (1997). Relating behav-
ior to habitat: Solutions to the fourth-corner problem. Ecology, 78(2), 
547–562.

https://github.com/JonJup/Should-ecologists-prefer-model-over-distance-based-multivariate-methods
https://github.com/JonJup/Should-ecologists-prefer-model-over-distance-based-multivariate-methods
https://orcid.org/0000-0002-6815-1855
https://orcid.org/0000-0002-6815-1855
https://orcid.org/0000-0003-3510-1701
https://orcid.org/0000-0003-3510-1701
https://doi.org/10.2307/1934302


2428  |     JUPKE and SCHÄFER

Legendre, P., & Legendre, L. F. J. (2012). Numerical ecology (3ed ed.). 
Oxford, UK: Elsevier.

Legendre, P., Oksanen, J., & ter Braak, C. J. F. (2011). Testing the signif-
icance of canonical axes in redundancy analysis. Methods in Ecology 
and Evolution, 2(3), 269–277.

Maguire, K. C., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C., Williams, 
J. W., Ferrier, S., & Lorenz, D. J. (2016). Controlled comparison of 
species- and community-level models across novel climates and 
communities. Proceedings of the Royal Philosophical Society - B, 283, 
20152817.

Makarenkov, V., & Legendre, P. (2002). Nonlinear redundancy analysis 
and canonical correspondence analysis based on polynomial regres-
sion. Ecology, 83(4), 1146–1161.

Matthews, T. J., Borregaard, M. K., Ugland, K. I., Borges, P. A. V., Rigal, 
F., Cardoso, P., & Whittaker, R. J. (2014). The gambin model provides 
a superior fit to species abundance distributions with a single free 
parameter: Evidence, implementation and interpretation. Ecography, 
37, 1002–1011.

McCune, B. (1997). Influence of noisy environmental data on canonical 
correspondence analysis. Ecology, 78(8), 2617–2623.

McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., 
Benecha, H. K., … Hurlbert, A. H. (2007). Species abundance dis-
tributions: Moving beyond single prediction theories to integration 
within an ecological framework. Ecology Letters, 10(10), 995–1015.

McInerny, G. J., & Purves, D. W. (2011). Fine-scale environmental vari-
ation in species distribution modelling: Regression dilution, latent 
variables and neighbourly advice. Methods in Ecology and Evolution, 
2, 248–257.

Meier, E. S., Kienast, F., Pearman, P. B., Svenning, J. C., Thuiller, W., 
Araújo, M. B., … Zimmermann, N. E. (2010). Biotic and abiotic vari-
ables show little redundancy in explaining tree species distributions. 
Ecography, 33(6), 1038–1048.

Morales-Castilla, I., Matias, M. G., Gravel, D., & Araújo, M. B. (2015). 
Inferring biotic interactions from proxies. Trends in Ecology & 
Evolution, 30(6), 347–356.

Motyka, J. (1947). O zadaniach i metodach bada n' geobotanicznych: sur les 
buts et les méthodes des recherches géobotaniques. Annales Universitas 
Mariae Curie-Sklodowska. Sectio C, Supplementum I. Lublin, Poland.

Mueller-Dombois, D., & Ellenberg, H. (1978). Aims and methods of vegeta-
tion ecology. New York, NY: Wiley.

Niku, J., Warton, D. I., Hui, F. K., & Taskinen, S. (2017). Generalized lin-
ear latent variable models for multivariate count and biomass data in 
ecology. Journal of Agricultural, Biological, and Environmental Statistics, 
22(4), 1–25.

O'Hara, R. B., & Kotze, D. J. (2010). Do not log-transform count data. 
Methods in Ecology and Evolution, 1(2), 118–122.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, 
D., …Wagner, H. (2018). vegan: Community Ecology Package. R package 
version 2.4-6.

Oksanen, J., & Minchin, P. R. (2002). Continuum theory revisited: 
What shape are species responses along ecological gradients? 
Ecological Modelling, 157(2–3), 119–129. https​://doi.org/10.1016/
S0304-3800(02)00190-4

Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, 
L., Dunson, D., … Abrego, N. (2017). How to make more out of com-
munity data? A conceptual framework and its implementation as 
models and software. Ecology Letters, 20(5), 561–576.

Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E., Butchart, S. H., 
Kovacs, K. M., … Corlett, R. T. (2015). Assessing species vulnerability 
to climate change. Nature Climate Change, 5(3), 215.

Palmer, M. W. (1993). Putting things in even better order: The advantages 
of canonical correspondence analysis. Ecology, 74(8), 2215–2230.

Podani, J., Pavoine, S., & Ricotta, C. (2018). A generalized framework for 
analyzing taxonomic, phylogenetic, and functional community struc-
ture based on presenceâ€“absence data. Mathematics, 6(11), 250.

Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O'Hara, R. B., Parris, 
K. M., … Mccarthy, M. A. (2014). Understanding co-occurrence by 
modelling species simultaneously with a Joint Species Distribution 
Model (JSDM). Methods in Ecology and Evolution, 5(5), 397–406.

Popovic, G. C., Hui, F. C. K., & Warton, D. I. (2018). A general algorithm 
for covariance modeling of discrete data. Journal of Multivariate 
Analysis, 165, 86–100.

Popovic, G. C., Warton, D. I., Thomson, F. J., Hui, F. C. K., & Moles, A. 
T. (2019). Untangling direct species associations from indirect me-
diator species effects with graphical models. Methods in Ecology and 
Evolution, 10(9), 1571–1583.

Preston, F. W. (1948). The commonness, and rarity, of species. Ecology, 
29(3), 254–283.

R Core Team (2018). R: A language and environment for statistical comput-
ing. Vienna, Austria: R Foundation for Statistical Computing.

Roberts, D. W. (2008). Statistical analysis of multidimensional fuzzy set 
ordinations. Ecology, 89(5), 1246–1260.

Roberts, D. W. (2009). Comparison of multidimensional fuzzy set ordina-
tion with CCA and DB-RDA. Ecology, 90(9), 2622–2634.

Roberts, D. W. (2019). Comparison of distance-based and model-based 
ordinations. Journal of Ecology, 101, e02908.

Routledge, R. D., & Swartz, T. B. (1991). Taylor's power law re-examined. 
Oikos, 60(1), 107–112.

Royle, J. A. (2004). N-mixture models for estimating population size from 
spatially replicated counts. Biometrics, 60(1), 108–115.

Sander, E. L., Wootton, J. T., & Allesina, S. (2017). Ecological network 
inference from long-term presence-absence data. Scientific Reports, 
7(1), 7154. https​://doi.org/10.1038/s41598-017-07009-x

Szöcs, E., & Schäfer, R. B. (2015). Ecotoxicology is not normal. 
Environmental Science and Pollution Research, 22(18), 13990–13999.

Szöcs, E., Van den Brink, P. J., Lagadic, L., Caquet, T., Roucaute, M., Auber, 
A., … Schäfer, R. B. (2015). Analysing chemical-induced changes in 
macroinvertebrate communities in aquatic mesocosm experiments: 
A comparison of methods. Ecotoxicology, 24(4), 760–769.

ter Braak, C. J. F. (1986). Canonical correspondence analysis: a new 
eigenvector technique for multivariate direct gradient analysis. 
Ecology, 67(5), 1167–1179.

ter Braak, C. J. (2014). History of canonical correspondence analysis. In J. 
Blasius, & M. Greenacre (Eds.), Visualization and verbalization of data 
(pp. 61–75). Boca Raton, FL: CRC Press.

ter Braak, C. J. F., & Prentice, I. C. (1988). A theory of gradient analysis. 
Advances in Ecological Research, 18, 271–317.

ter Braak, C. J., & Šmilauer, P. (2015). Topics in constrained and uncon-
strained ordination. Plant Ecology, 216(5), 683–696.

Top, N., Tarkan, A. S., Vilizzi, L., & KarakuÅŸ, U. (2016). Microhabitat interac-
tions of non-native pumpkinseed Lepomis gibbosus in a Mediterranean-
type stream suggest no evidence for impact on endemic fishes. 
Knowledge & Management of Aquatic Ecosystems, 417(36), 01–07.

Tovo, A., Formentin, M., Suweis, S., Stivanello, S., Azaele, S., & Maritan, 
A. (2019). Inferring macro-ecological patterns from local presence/
absence data. Oikos, 128, 1641–1652.

Ugland, K. I., Lambshead, P. J. D., McGill, B., Gray, J. S., O'Dea, N., Ladle, 
R. J., & Whittaker, R. J. (2007). Modelling dimensionality in species 
abundance distributions: Description and evaluation of the Gambin 
model. Evolutionary Ecology Research, 9, 313–324.

Vilizzi, L., Stakenas, S., & Copp, G. H. (2012). Use of constrained additive and 
quadratic ordination in fish habitat studies: An application to introduced 
pumpkinseed Lepomis gibbosus and native brown trout Salmo truttain 
an English stream. Fundamental and Applied Limnology, 180(1), 69–75.

Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J., & Warton, D. 
(2019). mvabund: Statistical methods for analysing multivariate abun-
dance data. R package version 4.0.1.

Wang, Y. A., Naumann, U., Wright, S. T., & Warton, D. I. (2012). Mvabund- 
an R package for model-based analysis of multivariate abundance 
data. Methods in Ecology and Evolution, 3(3), 471–474.

https://doi.org/10.1016/S0304-3800(02)00190-4
https://doi.org/10.1016/S0304-3800(02)00190-4
https://doi.org/10.1038/s41598-017-07009-x


     |  2429JUPKE and SCHÄFER

Warton, D. I. (2008a). Penalized normal likelihood and ridge regu-
larization of correlation and covariance matrices. Journal of the 
American Statistical Association, 103(481), 340–349. https​://doi.
org/10.1198/01621​45080​00000021

Warton, D. I. (2008b). Raw data graphing: An informative but 
under-utilized tool for the analysis of multivariate abun-
dances. Australian Ecology, 33(3), 290–300. https​://doi.
org/10.1111/j.1442-9993.2007.01816.x

Warton, D. I. (2011). Regularized sandwich estimators for analysis of 
high-dimensional data using generalized estimating equations. 
Biometrics, 67(1), 116–123.

Warton, D. I., Blanchet, F. G., Hara, R. B. O., Ovaskainen, O., Taskinen, S., 
Walker, S. C., & Hui, F. K. (2015). So many variables: Joint modeling 
in community ecology. Trends in Ecology & Evolution, 30(12), 766–779. 
https​://doi.org/10.1016/j.tree.2015.09.007

Warton, D. I., Foster, S. D., De'ath, G., Stoklosa, J., & Dunstan, P. K. 
(2015). Model-based thinking for community ecology. Plant Ecology, 
216(5), 669–682. https​://doi.org/10.1007/s11258-014-0366-3

Warton, D. I., & Hui, F. K. (2011). The arcsine is asinine: The analysis of 
proportions in ecology. Ecology, 92(1), 3–10.

Warton, D. I., Wright, S. T., & Wang, Y. (2012). Distance-based multivar-
iate analyses confound location and dispersion effects. Methods in 
Ecology and Evolution, 3(1), 89–101.

Yamamura, K. (1999). Transformation using (x+ 0.5) to stabilize the vari-
ance of populations. Researches on Population Ecology, 41(3), 229–234.

Yamamura, Y., Blanchet, F. G., & Higa, M. (2019). Analyzing community 
structure subject to incomplete sampling: Hierarchical community 
model vs. canonical ordinations. Ecology, 100, e02759.

Yee, T. W. (2010). Vglms and vgams: An overview for applications in fish-
eries research. Fisheries Research, 101(1–2), 116–126.

Yee, T. W. (2015). Vector generalized linear and additive models: With an 
implementation in R. New York, NY: Springer.

Yee, T. W. (2019). VGAM: Vector generalized linear and additive models. R 
package version 1.1-1.

Yee, T. W., & Hastie, T. J. (2003). Reduced-rank vector generalized linear 
models. Statistical Modelling, 3(1), 15–41.

Zhang, Y., & Thas, O. (2012). Constrained ordination analysis in the pres-
ence of zero inflation. Statistical Modelling, 12(6), 463–485.

Zuur, A. F. (1999). Dimension reduction techniques in community ecology 
with applications to spatio-temporal marine ecological data. PhD thesis, 
University of Aberdeen.

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data explo-
ration to avoid common statistical problems. Methods in Ecology and 
Evolution, 1(1), 3–14.

Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data. 
New York, NY: Springer.

How to cite this article: Jupke JF, Schäfer RB. Should 
ecologists prefer model- over distance-based multivariate 
methods? Ecol Evol. 2020;10:2417–2435. https​://doi.
org/10.1002/ece3.6059

APPENDIX 1
C ALCUL ATING PSEUDO - P -VALUE S FOR CQO
Currently, the VGAM R package (Version 1.1-1, Yee, 2019) does not 
implement hypothesis tests regarding the predictors in a CQO. As 
we relied on p-values to compare the tested methods, we calcu-
lated pseudo-p-values for CQO using a permutation-based test. We 
used the absolute sum of constrained coefficients (CΣ) as the test 

statistic. The constrained coefficient Cij is the weight of the vari-
able Xi on the latent variable vj; the higher the Cij is, the stronger 
the Xi influences vj. By summing Ci over all latent variables, we test 
the impact that Xi has on the model as a whole. In this summation, 
we used the absolute values and removed the mathematical sign as 
these only signify the direction of influence, not its magnitude. We 
do not know what distribution to expect from this statistic or if it 
adheres to a specific distribution. The method of choice for such 
cases is permutation-based tests, which produce pseudo-p-values 
(Legendre & Legendre, 2012). Their general approach is as follows: 
A test statistic T is computed for the data set of interest D, with 
X,Y∈D. Some property of D (e.g., the rows of X or Y) is permuted n 
times, and the same test statistic is calculated for each of the per-
muted data sets D*. The pseudo-p-value can then be calculated as 
follows:

We permuted the predictors. Each predictor was tested sepa-
rately so that in any one model only one predictor was permuted 
while the other remained in their original order.

p=

∑n

j=1

�
kj
�

n+1
with kj=

⎧
⎪⎨⎪⎩

1 if T∗
j
≥T

0 else
.

F I G U R E  A 1   The Dunn–Smyth residuals of the LL community 
sampled with 400 samples plotted against the linear predictor. 
A pronounced arched pattern can be observed for every single 
species (different colors)

https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1111/j.1442-9993.2007.01816.x
https://doi.org/10.1111/j.1442-9993.2007.01816.x
https://doi.org/10.1016/j.tree.2015.09.007
https://doi.org/10.1007/s11258-014-0366-3
https://doi.org/10.1002/ece3.6059
https://doi.org/10.1002/ece3.6059


2430  |     JUPKE and SCHÄFER

APPENDIX 2
APPENDIX FIGURE S AND TABLE S
Table A1 shows the model parameters used in the simulations of 
type I communities. The optimum parameter u is the only instance 
of a parameter that is relevant to both gradients and differs between 
them. Table A2 shows the same information for type II communities.

Figure A1 shows the arched patterns in Dunn-Smyth residuals re-
ferred to in the result section

Figure A2 displays false positive and negative rates for dbRDA 
and CCA on square root and Hellinger transformed data

Figure A3 shows the runtimes of the four methods
Tables A3–A6 show the p-values of all explanatory variables 

(env1, env2 and noise) for all response combinations and methods 
in type I communities.

Tables A7 and A8 show the same information for type II and III 
communities.

F I G U R E  A 2   False-positive and 
false-negative rates of canonical 
correspondence analysis (CCA) and 
distance-based redundancy analysis 
(dbRDA) on square root- and Hellinger-
transformed abundance data. Points are 
jittered slightly along the x-axis

  c t u β

UU 100 7.5 20, 50, 80 x

UL 100 7.5 10, 20, 30, 40, 
50,60,70,80,90

0.1

UB 100 5 20, 50, 80, [10, 30], [40, 60], 
[70, 90]

x

LL x x x 0.1, 0.2125, 0.3250, 0.4375, 0.5500, 
0.6625, 0.7750, 0.8875, 1.0000

LB 100 6 [5, 25], [25, 45], [35, 55], [55, 
75], [75, 95]

0.1

BB 100 6 [5, 25], [35, 55], [75, 95] x

Note: An x indicates that the parameter is not relevant to the respective gradient type. c is the 
maximal abundance, t the tolerance, u the location of the optimum, and β the linear response 
parameter. Values in square brackets are the pairs of optima for bimodal gradients.

TA B L E  A 1   Model parameters used 
for unimodal (U), linear (L), and bimodal 
(B) responses in simulations of type I 
communities

TA B L E  A 2   Model parameters used in simulations of unimodal 
(U), linear (L), and bimodal (B) responses in type II communities

  c t u β

U 10 7.5 50 x

L x x x 0.037

B 5 7.5 [25, 75] x

Note: An x indicates that the parameter is not relevant to the respective 
gradient type. c is the maximal abundance, t the tolerance, u the 
location of the optimum, and β the linear response parameter. Values in 
square brackets are the pairs of optima for bimodal gradients.
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F I G U R E  A 3   Run times of multivariate 
generalized linear models (MvGLM), 
distance-based redundancy analysis 
(dbRDA), constrained quadratic ordination 
(CQO), and canonical correspondence 
analysis (CCA). The x-axis is scaled with a 
decimal logarithm. Colors indicate sample 
sizes

, , , ,

   

env1 env2 Noise

μ σ μ σ μ σ

UU 25 0.002 0.001 0.016 0.005 0.342 0.228

UU 100 0.001 0 0.001 0 0.612 0.267

UU 225 0.001 0 0.001 0 0.697 0.265

UU 400 0.001 0 0.001 0 0.849 0.129

UU 625 0.001 0 0.001 0 0.875 0.138

UU 900 0.001 0 0.001 0 0.801 0.219

UL 25 0.001 0 0.146 0.007 0.781 0.162

UL 100 0.001 0 0.001 0 0.738 0.210

UL 225 0.001 0 0.001 0 0.727 0.283

UL 400 0.001 0 0.001 0 0.729 0.258

UL 625 0.001 0 0.001 0 0.642 0.250

UL 900 0.001 0 0.001 0 0.645 0.272

UB 25 0.022 0.003 0.125 0.010 0.477 0.256

UB 100 0.001 0 0.001 0 0.596 0.264

UB 225 0.001 0 0.001 0 0.737 0.224

UB 400 0.001 0 0.001 0 0.788 0.171

UB 625 0.001 0 0.001 0 0.784 0.249

UB 900 0.001 0 0.001 0 0.811 0.170

LL 25 0.001 0.0004 0.001 0 0.406 0.192

LL 100 0.001 0 0.001 0 0.587 0.277

LL 225 0.001 0 0.001 0 0.514 0.301

LL 400 0.001 0 0.001 0 0.574 0.338

LL 625 0.001 0 0.001 0 0.593 0.319

LL 900 0.001 0 0.001 0 0.460 0.301

LB 25 0.166 0.010 0.001 0 0.776 0.162

LB 100 0.001 0 0.001 0 0.717 0.222

LB 225 0.001 0 0.001 0 0.736 0.285

LB 400 0.001 0 0.001 0 0.721 0.257

LB 625 0.001 0 0.001 0 0.639 0.269

LB 900 0.001 0 0.001 0 0.643 0.275

BB 25 0.001 0 0.010 0.002 0.363 0.242

BB 100 0.001 0 0.001 0 0.432 0.230

BB 225 0.001 0 0.001 0 0.618 0.276

BB 400 0.001 0 0.001 0 0.828 0.158

BB 625 0.001 0 0.001 0 0.814 0.191

BB 900 0.001 0 0.001 0 0.717 0.222

TA B L E  A 3   Mean p-values of 
multivariate generalized linear models 
with standard deviations for combinations 
of sample size and response type in type I 
communities
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env1 env2 Noise

μ σ μ σ μ σ

UU 25 0 0 0 0 0.820 0.105

UU 100 0 0 0 0 0.879 0.082

UU 225 0 0 0 0 0.875 0.126

UU 400 0 0 0 0 0.917 0.052

UU 625 0 0 0 0 0.880 0.134

UU 900 0 0 0 0 0.952 0.050

UL 25 0.127 0.158 0.289 0.183 0.646 0.146

UL 100 0.071 0.098 0.240 0.258 0.612 0.267

UL 225 0.004 0.005 0.010 0.012 0.506 0.298

UL 400 0.006 0.013 0.087 0.168 0.569 0.196

UL 625 0 0 0.519 0.269 0.990 0

UL 900 0.008 0.018 0.705 0.401 0.990 0

UB 100 0.024 0.023 0.026 0.026 0.654 0.270

UB 225 0.026 0.058 0.014 0.031 0.702 0.206

UB 400 0.036 0.060 0.002 0.004 0.658 0.274

UB 625 0.010 0.022 0.020 0.044 0.583 0.385

UB 900 0 0 0 0 0.639 0.337

LL 25 0.085 0.048 0.143 0.090 0.400 0.183

LL 100 0.154 0.117 0.095 0.062 0.723 0.176

LL 225 0.091 0.075 0.081 0.060 0.841 0.102

LL 400 0.180 0.137 0.263 0.227 0.761 0.191

LL 625 0.281 0.201 0.208 0.191 0.779 0.126

LL 900 0.295 0.099 0.188 0.146 0.838 0.116

LB 25 0.265 0.127 0.141 0.159 0.619 0.158

LB 100 0.097 0.090 0.038 0.058 0.619 0.278

LB 225 0.067 0.109 0.006 0.013 0.589 0.272

LB 400 0.174 0.237 0.006 0.009 0.586 0.240

LB 625 0.204 0.166 0.044 0.061 0.504 0.260

LB 900 0.164 0.314 0.020 0.028 0.561 0.218

BB 25 0 0 0 0 0.591 0.233

BB 100 0 0 0 0 0.359 0.272

BB 225 0 0 0 0 0.573 0.299

BB 400 0 0 0 0 0.636 0.317

BB 625 0 0 0 0 0.421 0.271

BB 900 0 0 0 0 0.543 0.353

TA B L E  A 4   Mean p-values of 
constrained quadratic ordination with 
standard deviations for combinations of 
sample size and response type in type I 
communities
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env1 env2 Noise

μ σ μ σ μ σ

UU 25 0.001 0 0.001 0 0.001 0

UU 100 0.001 0 0.001 0 0.467 0.355

UU 225 0.001 0 0.001 0 0.093 0.113

UU 400 0.001 0 0.001 0 0.349 0.336

UU 625 0.001 0 0.001 0 0.153 0.275

UU 900 0.001 0 0.001 0 0.247 0.362

UL 25 0.001 0 0.987 0.014 0.403 0.288

UL 100 0.001 0 1 0 0.329 0.294

UL 225 0.001 0 1 0 0.346 0.274

UL 400 0.001 0 1 0 0.393 0.317

UL 625 0.001 0 1 0 0.436 0.219

UL 900 0.001 0 1 0 0.439 0.321

UB 25 0.001 0 0.001 0 0.035 0.074

UB 100 0.001 0 0.001 0 0.344 0.269

UB 225 0.001 0 0.001 0 0.244 0.283

UB 400 0.001 0 0.001 0 0.172 0.195

UB 625 0.001 0 0.001 0 0.111 0.192

UB 900 0.001 0 0.001 0 0.066 0.170

LL 25 0.992 0.012 0.997 0.005 0.976 0.031

LL 100 0.985 0.009 0.989 0.005 0.994 0.011

LL 225 0.712 0.046 0.691 0.031 0.962 0.069

LB 25 0.987 0.015 0.001 0 0.398 0.289

LB 100 1 0 0.001 0 0.358 0.307

LB 225 1 0 0.001 0 0.378 0.278

LB 400 1 0 0.001 0 0.412 0.331

LB 625 1 0 0.001 0 0.438 0.209

LB 900 1 0 0.001 0 0.446 0.321

BB 25 0.001 0 0.001 0 0.564 0.286

BB 100 0.001 0 0.001 0 0.469 0.341

BB 225 0.001 0 0.001 0 0.580 0.301

BB 400 0.001 0 0.001 0 0.566 0.314

BB 625 0.001 0 0.001 0 0.497 0.343

BB 900 0.001 0 0.001 0 0.491 0.330

TA B L E  A 5   Mean p-values of canonical 
correspondence analysis with standard 
deviations for combinations of sample size 
and response type in type I communities
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env1 env2 Noise

μ σ μ σ μ σ

UU 25 0.002 0.001 0.001 0 0.511 0.368

UU 100 0.001 0 0.001 0 0.297 0.177

UU 225 0.001 0 0.001 0 0.350 0.227

UU 400 0.001 0 0.001 0 0.503 0.248

UU 625 0.001 0 0.001 0 0.578 0.253

UU 900 0.001 0 0.001 0 0.412 0.305

UL 25 0.001 0 0.055 0.019 0.371 0.342

UL 100 0.001 0 0.001 0 0.444 0.343

UL 225 0.001 0 0.001 0 0.383 0.257

UL 400 0.001 0 0.001 0 0.474 0.271

UL 625 0.001 0 0.001 0 0.396 0.284

UL 900 0.001 0 0.001 0 0.446 0.246

UB 25 0.002 0.001 0.001 0 0.295 0.188

UB 100 0.001 0 0.001 0 0.473 0.290

UB 225 0.001 0 0.001 0 0.394 0.272

UB 400 0.001 0 0.001 0 0.476 0.280

UB 625 0.001 0 0.001 0 0.579 0.167

UB 900 0.001 0 0.001 0 0.403 0.250

LL 25 0.010 0.005 0.009 0.007 0.520 0.219

LL 100 0.001 0 0.001 0 0.467 0.261

LL 225 0.001 0 0.001 0 0.477 0.261

LL 400 0.001 0 0.001 0 0.665 0.293

LL 625 0.001 0 0.001 0 0.589 0.290

LL 900 0.001 0 0.001 0 0.347 0.298

LB 25 0.037 0.016 0.001 0 0.373 0.344

LB 100 0.001 0 0.001 0 0.446 0.342

LB 225 0.001 0 0.001 0 0.396 0.260

LB 400 0.001 0 0.001 0 0.468 0.261

LB 625 0.001 0 0.001 0 0.393 0.284

LB 900 0.001 0 0.001 0 0.429 0.234

BB 25 0.001 0 0.001 0 0.579 0.368

BB 100 0.001 0 0.001 0 0.446 0.280

BB 225 0.001 0 0.001 0 0.472 0.319

BB 400 0.001 0 0.001 0 0.439 0.243

BB 625 0.001 0 0.001 0 0.516 0.269

BB 900 0.001 0 0.001 0 0.397 0.283

TA B L E  A 6   Mean p-values of distance-
based redundancy analysis with standard 
deviations for combinations of sample size 
and response type in type I communities

TA B L E  A 7   Mean p-values of all four methods with standard 
deviations for type II communities

 

env1 env2 Noise

μ σ μ σ μ σ

CCA 0.001 0.001 0.001 0.001 0.198 0.198

CQO 0.004 0.004 0.002 0.002 0.648 0.648

dbRDA 0.001 0.001 0.001 0.001 0.311 0.311

MvGLM 0.001 0.001 0.001 0.001 0.589 0.589
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env1 env2 Noise

μ σ μ σ μ σ

CCA 0.001 0.001 0.001 0.001 0.678 0.678

CCA_Hellinger 0.001 0.001 0.001 0.001 0.431 0.431

CCA_log 0.001 0.001 0.001 0.001 0.583 0.583

CCA_sqrt 0.001 0.001 0.001 0.001 0.642 0.642

CQO 0.008 0.008 0.055 0.055 0.568 0.568

dbRDA 0.001 0.001 0.001 0.001 0.284 0.284

dbRDA_Hellinger 0.001 0.001 0.001 0.001 0.379 0.379

dbRDA_log 0.001 0.001 0.001 0.001 0.317 0.317

dbRDA_sqrt 0.001 0.001 0.001 0.001 0.327 0.327

MvGLM 0.001 0.001 0.001 0.001 0.711 0.711

TA B L E  A 8   Mean p-values of all four 
methods with standard deviations for 
type III communities


