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Abstract

The text-mining services for kinome curation track, part of BioCreative VI, proposed a

competition to assess the effectiveness of text mining to perform literature triage. The

track has exploited an unpublished curated data set from the neXtProt database. This

data set contained comprehensive annotations for 300 human protein kinases. For a

given protein and a given curation axis [diseases or gene ontology (GO) biological

processes], participants’ systems had to identify and rank relevant articles in a collection

of 5.2 M MEDLINE citations (task 1) or 530 000 full-text articles (task 2). Explored strate-

gies comprised named-entity recognition and machine-learning frameworks. For that

latter approach, participants developed methods to derive a set of negative instances, as

the databases typically do not store articles that were judged as irrelevant by curators.

The supervised approaches proposed by the participating groups achieved significant

improvements compared to the baseline established in a previous study and compared

to a basic PubMed search.

Database URL: https://www.nextprot.org/

Introduction and motivation

Biomedical big data not only offers tremendous potential
for making discoveries but also demands unprecedented
efforts to keep structured databases up to date with the
findings described in the torrent of publications (1). The
neXtProt database (2–3) aims at representing the current

state of knowledge on the human proteome. Human cura-
tors play a key role in defining the content and ensur-
ing the quality of these reference databases (4–5). Their
mission consists of continuously collecting, verifying and
annotating the literature. Most curation methods are based
on manual approaches, which produce the most accurate
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knowledge but are also time-consuming (6). At the very
first stage of the process, one study (7) estimates that
∼7% of the curation time is assigned to the rejection
of papers, while another study (4) assumes that 15% of
curators’ time is spent on selecting relevant articles. Triage
systems that retrieve, filter and/or prioritize the literature
can hence help curators focus on articles appropriate for
curation.

The Computer and Laboratory Investigation of Proteins
of Human Origin (CALIPHO) group has developed the
neXtProt database (3), a flagship resource of the Swiss
Institute of Bioinformatics (SIB) that integrates information
on human proteins. The data in neXtProt comes from both
integration of external resources, and annotation produced
within the group using an internal annotation tool, the
BioEditor. In a project funded by Merck Serono from 2011
to 2013, the CALIPHO group has annotated 300 human
protein kinases from >13 600 research articles, producing
a data corpus of >30 000 different annotations describing
the kinase functions, their substrates and diseases in which
they have been implicated. This large data corpus was still
unpublished in 2017 (to be released in 2018), providing a
unique opportunity to use an extensive set of curated data
for a text-mining competition.

Thus, in 2017, the BioCreative VI Kinome Track
proposed a competition in literature triage based on the
neXtProt unpublished protein kinase data set. Literature
triage is an information retrieval task—it aims at retriev-
ing/filtering articles that are relevant for curation. This is
a basic task performed by all virtually curated molecular
biology databases to initiate a curation workflow. While
this task is usually manually performed, better methods
are desirable in order to speed up the workflow. Text-
mining groups were invited to develop and test approaches
for the selection and ranking of relevant articles for the
curation of human protein kinases. The BioCreative VI
Kinome Track evaluated triage at two different levels in
two different tasks: abstracts triage and full-text triage.
While all abstracts annotated in the neXtProt data were
available via MEDLINE, the availability of full texts was
more problematic, as only a minor fraction (∼10%) was
available via open access licensing in services such as Europe
PubMed Central (PMC) (8).

Tasks and data

The Kinome Track data set

The BioCreative VI Kinome Track data set contains com-
prehensive annotations about kinase substrates, GO biolog-
ical processes and diseases. It covers a significant fraction
of the human kinome: 300 proteins out of ∼500 human

Table 1. Top 10 journals in data set

Journal No. of articles
in data set

Cumulative
percentage

J. Biol. Chem. 744 7.9%
Proc. Natl. Acad. Sci. USA 314 11.3%
Cancer Res. 301 14.5%
Blood 288 17.6%
Mol. Cell Biol. 253 20.3%
Oncogene 228 22.7%
PLoS One 219 25.1%
J. Immunol. 208 27.3%
Nature 156 28.9%
Clin. Cancer Res. 156 30.6%

The top 10 journals in the data set, ranked by presence in the data set. The cumulative
percentage is computed for the whole collection (e.g. the top 10 journals represent 30.6%
of all the annotated articles in the data set).

kinases. The data set contains >30 000 annotations. Each
annotation is supported by a reference to a publication, a
PubMed identifier (PMID). This data set will be integrated
in the neXtProt database in 2018, but it was still unpub-
lished at the competition time.

The BioCreative VI Kinome Track focused on two dif-
ferent curation axes: diseases and biological processes. The
whole subset represents a total of 4581 curated articles
for diseases and 5357 for biological processes. There is a
slight overlap between both axes: only 6% of the articles
contain both disease and biological process annotations.
In total, 9367 different articles, published in 862 different
journals, are present in the data set. Table 1 shows the 10
most represented journals.

The Kinome Track benchmark

In the Cranfield paradigm (9) for evaluation of information
retrieval systems, benchmarks are composed of three parts:
a collection of documents, a set of queries and relevance
judgements. In the BioCreative VI Kinome Track, the query
was a human kinase and a curation axis (biological process
or diseases). Participants’ systems had to search in a litera-
ture collection and produce a ranked list of articles relevant
for the query. Finally, systems were evaluated on their ability
to rank first the articles that were chosen by the neXtProt
expert curators.
a) Design of the collection: For a fair comparison, all
systems must be running on a common given collection.
For this competition, the collection had to satisfy two
conditions: being small enough to be efficiently processed
by all teams and large enough to make the task realistic. To
reduce the MEDLINE corpus, as the curation was finished
in 2013, we filtered out papers published in 2014 and
after. The final collection thus contained a total of 5.3 M
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Figure 1. Overview of literature triage for the Kinome Track. The

axis is either diseases or biologicial processes. The collection differs

depending on the task, abstracts or full texts.

PMIDs. Unfortunately, for the full-text collection, only a
small fraction of the publications (∼10%) was available in
open-access licence.
b) Queries: Queries were pairs made of one of the 300
curated kinases (e.g. ACVR1B–P36896), and a curation
axis (biological process or diseases). For each kinase, the
gene and protein synonyms (extracted from the neXtProt
database) were provided to the participants. For example,
for the kinase Mast/stem cell growth factor receptor KIT,
synonyms such as PBT or CD117 were provided to the
participants.
c) Relevance judgements: For a given kinase and a given
axis, all articles that were chosen by a neXtProt curator—
thus present in the data set—were considered relevant.
Unfortunately, the rejections of articles after screening by
curators are not stored in the database. Thus, the gold
standard did not contain non-relevant articles. As systems
could submit relevant articles that were never screened by a
curator, final performances could be under evaluated. Yet, as
these articles are assumed to be equally distributed among
all participants’ runs, comparisons between methods are
still valid.

The Kinome Track tasks

Figure 1 presents an overview of the triage process.
The 300 proteins in the data set were randomly dis-

tributed in three different subsets: the tuning set, the task 1
test set and the task 2 test set. The tuning set thus contained
100 kinases, along with the PMIDs of the annotated articles
for each axis (relevance judgments). The tuning set was
made available in April 2017, and participants were free
to use it for analyses and for system tuning. Both test
sets also contained 100 kinases and were delivered in May
2017. Obviously, test sets only contained the queries, while
relevance judgements were kept for the official evaluation.
a) Task 1. abstracts triage: This task focused on abstracts
triage and ranking. The collection (5.3 M citations)
was provided in the form of MEDLINE citations. Thus,
systems had to perform triage based solely on abstracts

Table 2. Distribution of curated papers per kinase

Axis Quartiles Mean Median

1st 2nd 3rd

Disease 7 15 26 21.9 15
GO BP 8 17 28 20.6 17

Different statistics dealing with the number of curated papers per kinases. The Kinome Track
data set contained 300kinases.

Table 3. Benchmarks statistics

Task Collection No. of
topics
(kinases)

No. of
relevant
papers for
disease

No. of
relevant
papers for
biol. Proc.

1. Abstracts 5.3 M abstracts 100 21.9 20.6
2. Full texts 530 000 full texts 100 3.6 2.6

Statistics for task 1 and task 2 benchmarks. Only 10% of the annotated articles were
available via open access licensing, making relevant papers much less numerous in
task 2.

and metadata such as journal, publication year, publication
type etc. Table 2 provides different statistics about the
distribution of papers per kinase in the Kinome Track data
set. The collection was provided in BioC format (10).
b) Task 2. full-text triage: This task focused on full-text
triage. The collection was given in the form of PMC full
texts. Thus, systems had to perform triage based on full-text
contents. As only a fraction of PMC is open access, the col-
lection for the task 2 only contained 530 000 articles. Thus,
in the test set, for each kinase, this collection contained on
average 2.6 relevant articles for the biological process axis
and 3.6 for the disease axis. The collection was provided in
XML format.
These statistics are summarized in Table 3.

Metrics used for evaluation

Text REtrieval Conference (TREC) formats and metrics
(11) were used for evaluation as follows:

• P10 or Precision at rank 10: among the top 10 articles
submitted by the system, how many are relevant. If the
system submits 10 documents and only 4 are relevant,
then P10 is 0.4. P30 and P100 (precision at ranks 30
and 100) were also evaluated.

• R30 or Recall at rank 30: among all the relevant arti-
cles in the collection for a given query, how many are
retrieved in the top 30 articles submitted by the system.
If for a given query there are 20 relevant documents in
the collection, and the system submits 10 of them in the
top 30 documents, then R30 is 0.5. idem for R100 at
rank 100.



Page 4 of 8 Database, Vol. 2018, Article ID bay104

• P at R0: maximum precision observed at all ranks.
• Mean average precision (MAP): average of all Precision

at rank k, for ranks where a relevant article is retrieved
(for queries that have no retrieved articles, 0 is counted).

• R-prec: Precision observed at rank r, where r is the num-
ber of relevant articles for a given query. If for a given
query there are 15 relevant articles in the collection,
R-prec corresponds to the precision at rank 15.

Results

More than 20 teams registered to the Kinome Track, and
finally two of them submitted results. During the workshop,
informal discussions with the various teams revealed that
the task was judged as particularly complex. Beyond simple
ad hoc information retrieval, teams performed information
extraction of biological entities (such as proteins, diseases or
functions) in order to compute the relevance of documents
for triage.

In the following, final participants first describe the
strategies they used for their systems. Then, results for both
tasks are presented. Each team could submit up to 10 runs
for each task. All metrics were computed with the trec eval
reference program (12).

Participants’ strategies

The next two subsections were written by the two partici-
pating teams.
a) The KinDer system: KinDER (Kinase Document Extrac-
tor and Ranker) is comprised of two main components:
(i) Document Retrieval (DR) component, which retrieves
documents annotated with kinases and axis terms using
dictionaries, and (ii) Document Ranking and Information
Extraction (DRIE) component, which uses supervised learn-
ing to rank those retrieved documents based on relevancy.
For document annotation, the DR component uses Con-
ceptMapper (13) with default settings in conjunction with
bio-ontology dictionaries downloaded from National Cen-
ter for Biomedical Ontology annotator webtool (14). For
diseases annotation we used the Human Phenotype Ontol-
ogy (HPO) (15) and NCITd, which is a hand-culled sub-
set comprised only of disease-related subsections in the
National Cancer Institute Thesaurus (16). For biological
process annotation, we used the GO. For annotating kinase
names, we created a dictionary using the kinase information
provided by BioCreative organizers. These kinase dictionar-
ies were expanded by using kinase synonyms from neXtProt
and further enhanced by converting Roman numerals to
Arabic numerals or removing spaces in the protein name
(e.g. from ‘p145 c-kit’, we build the ‘p145 c-kit’ synonym,
which is present in more than 8300 MEDLINE abstracts).

Following the document annotation above, the DR com-
ponent performs (i) cross-reference validation, which filters
out obviously irrelevant documents that do not contain
either the kinase or the axis term; (ii) feature vector gen-
eration for the downstream machine-learning model; and
(iii) creation of corresponding binary labels based on the
BioCreative gold standard. After applying stemming and
stop words removal, it generates two types of features: (i)
standard Bag of Words (BOW) features, which uses two-
and three-gram term combinations, weighted by Term Fre-
quency Inverse Document Frequency (TFIDF) values (17),
and (ii) six-engineered (ENG) feature sets. The ENG set
contains a kinase score, the number of kinase annotations
normalized by total words; Axis Score, the number of axis
term annotations normalized by total words; Relevancy
Score, the product of the kinase score and axis score;
Proximity Score, the minimum number of words separating
a kinase and axis annotation; and Proximity 10-Count and
Proximity 50-Count, the number of pairs of kinase and axis
annotations that are within 10 and 50 words of one another,
respectively.

The DRIE component models the task of ranking
documents as a binary classification problem in which it
distinguishes between relevant and irrelevant articles. We
used the Scikit-learn (18) Python machine-learning library
for implementing the machine-learning models. For the
biological process full text and abstract tasks, eight support
vector machine (SVM) models were developed based on
SVM kernel (linear vs. Gaussian) and feature type (BOW
vs. ENG). For the disease Full Text and Abstract subtasks,
16 models were developed based on kernel (linear vs.
Gaussian), features (BOW vs. ENG) and ontology (HPO
vs. NCITd). Each classifier model was trained using the
full set of gold standard relevant documents and a 10–
20% random sample of the total irrelevant documents
(depending on balancing strategies). Each trained classifier
was used for ranking the test documents based on their
relevance according to the classifier confidence scores.
b) The NCBI system: To address the human Kinome Track
in BioCreative VI, we formulated the problem as a docu-
ment classification task where we used rich co-occurrence
and linguistic features to prioritize the biomedical articles
involving the relations among kinases, diseases and bio-
logical processes. Our system is designed for finding and
ranking relevant articles for neXtProt human curators in
their routine workflow.

Our system consists of automatic bio-concept anno-
tators, feature extractors and machine-learning classifiers.
For each article, we first extracted several types of bio-
concepts using state-of-the-art Named Entity Recognizer
taggers—TaggerOne (19) and tmVar (20, 21)—and inte-
grated their results into the official training set. Since there
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Figure 2. Results for the abstracts triage task, disease axis. The best three runs submitted by each team are presented, along with official baselines.

Conditional formating is used for highlighting best participants results, for each metric, in red. The neXtA5 baseline (in bold) is included in the

highlighting, while the PubMed baseline (in italic) is not.

are no negative training instances provided in the official
training set, we generated pseudo-negative data by using
a one-class classification method (22). Next, we extracted
features such as entity frequency, position and several others
for distinguishing relevant vs. irrelevant articles. To tackle
the high-dimensional features, we experimented with three
different machine-learning algorithms and found that the
lasso and elastic-net regularized generalized linear models
(23) outperformed the SVMs and convolutional neural
networks (24). We find that our system can effectively
reduce the workload of human curators and accelerate the
workflow of manual curation. For example, as revealed
by post-analysis with official gold standard, our system is
able to retrieve 5.2 and 6.5 kinase articles with relevant
disease and biological process information among its top
100 results, respectively (interpolated from R100 values).

Results of task 1—abstracts triage

In (25), the text-mining group at the SIB describes the
development of neXtA5, a curation service and interface,
powered by different ontologies and developed for the
CALIPHO group. This system aims at assisting SIB curators
by prioritizing articles for the curation of a given protein
and a given axis. neXtA5 does not perform any machine
learning. Entity-named recognition is used in order to detect
different entities, such as diseases, GO terms, protein names,
species or chemicals. First, a PubMed search is conducted
with the kinase name. Then, returned abstracts are parsed,
and the density of recognized concepts is used in order
to reorder the results and thus to perform triage. Prior to
the competition, the neXtA5 system was evaluated on the
Kinome Track data set. neXtA5 ranking is also compared
with the basic PubMed ranking. These values can be con-
sidered as baselines for the interpretation of results in the
Kinome Track.

For the first task and the disease axis, 20 runs were
submitted. Figure 2 presents the best results for each team,

along with performances obtained by the SIB neXtA5 plat-
form, and PubMed, on the same test set. The PubMed result
set simply was the output of PubMed when querying with
the kinase name; this is how a curator typically queries in
his workflow.

Best observed performances are obtained by the
National Center for Biotechnology Information (NCBI)
submissions. Comparing with the neXtA5 baseline, metrics
favoring Recall, such as R30 (+122%) and MAP (+113%),
are impressively improved. On the other hand, Precision
at high ranks, measured with P at R0 (+12%) and
P10 (+15%), are slightly improved. Comparing both
participants, we observe that the best KinDer submission is
below, yet quite competitive, with the National Center for
Biotechnology Information (NCBI) submissions.

For the first task and the biological process axis, 20 runs
were also submitted. Figure 3 presents the best results for
each team, along with performances obtained by the SIB
neXtA5 platform, and PubMed, on the same test set.

The KinDer submissions seem to be the most performant
this time, in particular in high ranks. Comparing with the
neXtA5 baseline, observations are similar with the disease
axis: metrics favoring recall, such as R30 (+114%) and
MAP (+93%), are the most improved, while P at R0 (+3%)
and P30 (+13%) are modestly improved. Comparing both
axes, the neXtA5 baseline shows better performances with
biological processes than diseases: 0.104 vs. 0.051 in MAP
(+104%), and 0.451 vs. 0.409 (+10%) in P at R0. The same
trend is observed for the submitted runs, in terms of best
MAP values (0.201 vs. 0.109, +84%) and P at R0 (0.466
vs. 0.455, +2%).

Results of task 2—full-text triage

For the second task, 10 runs were submitted for the disease
axis, and eight for the biological process axis. Figures 4
and 5 present the results for each run. The NCBI team did
not submit any run for task 2, and no baseline was available.
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Figure 3. Results for the abstracts triage task, biological process axis. The best three runs submitted by each team are presented, along with official

baselines. Conditional formating is used for highlighting best participants results, for each metric, in red. The neXtA5 baseline (in bold) is included

in the highlighting, while the PubMed baseline (in italic) is not.

Figure 4. Results for the full-text triage task, disease axis. There was only one submitting team. Conditional formating is used for highlighting best

participants results, for each metric.

Figure 5. Results for the full-text triage task, biological process axis. There was only one submitting team. Conditional formating is used for

highlighting best participants results, for each metric.

As for abstracts, better performances are observed
for the curation of biological processes than diseases.
Yet, comparisons between abstracts and full-text triage
must be done with great care. Indeed, the sizes of the
collections render the direct comparison difficult (5.3 M
in task 1 vs. 530 000 in task 2). Moreover, the number of
relevant articles in the benchmark is 16–18 per query in task
1, vs. 2–3 per query in task 2. In this perspective, the best
reported MAP values are higher for full texts than abstracts,
but the likelihood of missing some relevant articles in the
task 1 is higher. A comparison remains possible with P at
R0, since this metric focuses on the precision of the first
relevant retrieved article: best reported P at R0 values are
higher for abstracts than full texts. P at 0 of 0.349 for the
best run means that (on average) one out of the top three
results is relevant.

Task 3—snippets extraction

A third task was initially considered: snippet extraction.
In this task, the participants’ system should extract from

the full text a snippet of maximum 500 characters, which
contains enough information to be ‘annotatable’. Cura-

tors should judge snippets according to one of the three

following values: 1 = very good (the snippet is sufficient
for making an annotation without reading the paper);

0.5 = acceptable (the curator judges that there is a potential
annotation, but needs to read the paper because the snippet
is not sufficient for making the entire annotation); and

0 = irrelevant (nothing in the snippet indicates that an
annotation is possible).

Several examples made by a SIB curator were provided.

For instance, for the kinase MAPK13 in the PMCID
PMC4695881, one very good snippet (as chosen by the
curator) for disease annotation is ‘Comparison of DNA

sequence reads of PCR products with in silico bisulfite-

converted MAPK13 reference sequence (NC 000006.12)
identified differential CpG methylation in oesophageal
squamous cell carcinoma (Figure 3B)’.

Unfortunately, this task was cancelled due to no submit-
ted runs.
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Discussion and conclusion

Machine learning is currently not considered for the cura-
tion of kinase proteins at neXtProt. Initially, when we
designed this challenge, we thought that the data set of 300
curated kinases was too small in order to be exploited for
such a supervised approach. This is why we only provided
100 kinases in a so-called ‘tuning’ (and not ‘training’)
set. Moreover, a strong limit of the data set was that it
contained only positive instances: articles that were selected
for curation. Articles that were scanned but rejected by
curators are not stored in neXtProt, thus the data set did
not contain any negative instances. Supervised approaches
usually need both positive and negative examples in order
to learn how to discriminate a new input.

However, both participating groups investigated
machine-learning approaches. Pseudo-negative instances
were created in order to feed the algorithm. These pseudo-
irrelevant articles were selected by teams with random sam-
pling or with One-Class Classification method. Compared
with the neXtA5 reference (25), the competing systems
showed slightly better performances in the abstracts task in
terms of Precision at R0 (+10% for the disease axis), but
significant improvements in terms of MAP (+113% for the
disease axis and +93% for the biological process axis).

On one hand, these remarkable performances were
obtained with only a fraction of available data (100 kinases)
used for learning. An optimal design of training and test
sets could provide twice as much data for learning, which
would probably lead to even better performances. On the
other hand, machine learning needs a minimum set of
high quality data to begin forming reliable predictions;
in this perspective, it is worth emphasizing that the tuning
set contained >3300 articles manually selected by human
curators. These high quality data sets are neither easy nor
cheap to acquire. If supervised approaches are promising
for outperforming data-free approaches, they are not suited
for new curation tasks. Moreover, each curation task has
dedicated scopes, dedicated terminologies and dedicated
relevance factors. When high quality data are not available
for machine learning, traditional dictionary-based methods
are still useful for assisting curators in their literature
searches.

To conclude with machine learning and data manage-
ment, curated databases usually do not store negative
examples, such as articles that are screened by the curator
but not selected for curation. This is at least partly due to the
time-consuming aspect of manual curation and high
pressure from the databases to produce as much output
as possible. Paradoxically, this loss of information impedes
potential progress by automated tools to speed up the
curation process. Hopefully, such a data stewardship

‘gap’ should improve as FAIR principles become common
practice (26).
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