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Excluding false negative error 
in certification of quantum 
channels
Aleksandra Krawiec1*, Łukasz Pawela1 & Zbigniew Puchała1,2

Certification of quantum channels is based on quantum hypothesis testing and involves also 
preparation of an input state and choosing the final measurement. This work primarily focuses on the 
scenario when the false negative error cannot occur, even if it leads to the growth of the probability 
of false positive error. We establish a condition when it is possible to exclude false negative error 
after a finite number of queries to the quantum channel in parallel, and we provide an upper bound 
on the number of queries. On top of that, we found a class of channels which allow for excluding false 
negative error after a finite number of queries in parallel, but cannot be distinguished unambiguously. 
Moreover, it will be proved that parallel certification scheme is always sufficient, however the 
number of steps may be decreased by the use of adaptive scheme. Finally, we consider examples of 
certification of various classes of quantum channels and measurements.

Being deceived is not a nice experience. People have been developing plenty of methods to protect themselves 
against being cheated and one of these methods concerns verification of objects, also quantum ones. The cor-
nerstone for theoretical studies on discrimination of quantum objects was laid by Helstrom1 a few decades ago.

In the era of Noisy Intermediate-Scale Quantum (NISQ) devices2,3, assuring the correctness of components in 
undeniably in the spotlight. A broad review of multipronged modern methods of certification as well as bench-
marking of quantum states and processes can be found in the recent paper4. For a more introductory tutorial to 
the theory of system certification we refer the reader to5. Verification of quantum processes is often studied in 
the context of specific elements of quantum information processing tasks. Protocols for efficient certification of 
quantum processes, such as quantum gates and circuits, were recently studied in6–8.

Let us introduce the most general problem of verification studied in this work. Assume there are two known 
quantum channels and one of them is secretly chosen. Then, we are given the secretly chosen channel to verify 
which of the two channels it is. We are allowed to prepare any input state and apply the given channel on it. 
Finally, we can prepare any quantum measurement and measure the output state. Basing on the measurement’s 
outcome we make a decision which of the two channels was secretly chosen. In this work we focus on the case 
when we are promised which of the channels is given. After performing some certification procedure we can 
either agree that the channel was the promised one or claim that we were cheated. We want to assure that we 
will always realize when we are cheated. It may happen though, that we appear to be too suspicious and claim 
that we were cheated when we were not.

There are three major theoretical approaches towards verification of quantum channels called minimum error 
discrimination, unambiguous discrimination and certification. All these three approaches can be generalized 
to the multiple-shot case, that is when the given channel can be used multiple times in various configurations. 
The most straightforward possibility is the parallel scheme and the most sophisticated is the adaptive scheme 
(where we are allowed to use any processing between the uses of the given channel).

The first approach is called minimum error discrimination (a.k.a. distinguishability or symmetric discrimina-
tion) and makes use of the distance between quantum channels expressed by the use of the diamond norm. In 
this scenario one wants to minimize the probability of making the erroneous decision using the bound on this 
probability given by the Holevo-Helstrom theorem1,9. Single-shot discrimination of unitary channels and von 
Neumann measurements were studied in10,11 and12–14 respectively. Parallel discrimination of quantum channels 
was studied eg. in15,16. It appeared that parallel discrimination scheme is optimal in the case of distinguishability 
of unitary channels17 and von Neumann measurements18. In some cases however, the use of adaptive discrimi-
nation scheme can significantly improve the certification19,20. Advantages of the use of adaptive discrimination 
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scheme in the asymptotic regime were studied in21. Fundamental and ultimate limits for quantum channel dis-
crimination were derived in22,23. The works24,25 address the problem of distinguishability of quantum channels 
in the context of resource theory.

In the second approach, that is unambiguous discrimination, there are three possible outcomes. Two of 
them designate quantum channels while the third option is the inconclusive result. In this approach, when the 
result indicated which channel was given, we know it for sure. There is a chance however, that we will obtain an 
inconclusive answer. Unambiguous discrimination of quantum channels was considered in26, while unambigu-
ous discrimination of von Neumann measurements was explored in18. Studies on unambiguous discrimination 
of quantum channels took a great advantage of unambiguous discrimination of quantum states, which can be 
found eg. in27–31.

The third approach, known as certification or asymmetric discrimination, is based on hypothesis testing. We 
are promised to be given one of the two channels and associate this channel with the null hypothesis, H0 . The 
other channel is associated with the alternative hypothesis, H1 . When making a decision whether to accept or to 
reject the null hypothesis, two types of errors may occur, that is we can come across false positive and false nega-
tive errors. In this work we consider the situation when we want to assure that false negative error will not occur, 
even if the probability of false positive error grows. A similar task of minimizing probability of false negative error 
having fixed bound on the probability of false positive was studied in the case of von Neumann measurements 
in32. Certification of quantum channels was studied in the asymptotic regime e.g. in21,24,33.

It should come as no surprise that in some cases perfect verification is not possible by any finite number of 
steps. Conditions for perfect minimum error discrimination of quantum operations were derived in34. Similar 
condition for unambiguous discrimination was proved in26. However, no such conditions have been stated for 
certification. In this work we derive a condition when we can exclude false negative error after a finite number 
of uses in parallel. This condition holds for arbitrary quantum channels and is expressed by the use of Kraus 
operators of these channels. We will provide an example of channels which can be certified in a finite number of 
queries in parallel, but cannot be distinguished unambiguously. Moreover, we will show that, in contrast to dis-
crimination of quantum channels19,20, parallel certification scheme is always sufficient for certification, although 
the number of uses of the certified channel may not be optimal. On top of that, we will consider certification of 
quantum measurements and focus on the class of measurements with rank-one effects. The detailed derivation 
of the upper bound for the probability of false positive error will be presented for SIC POVMs.

This work is organized as follows. After introducing basic mathematical concepts in “Preliminaries” section, 
we present our main result, that is the condition when excluding false negative is possible in a finite number of 
uses in parallel, in Theorem 1 in “Parallel certification” section. Next, we apply this result to a specific subclass 
of quantum channels in “Certification of quantum measurements” section. Then, in “Adaptive certification and 
Stein setting” section we state, as Theorem 2,   the condition when excluding false negative error is possible in 
the adaptive scheme.    Finally, summary can be found in “Conclusions” section.

Preliminaries
Let Dd denote the set of quantum states of dimension d, that is the set of positive semidefinite operators having 
trace equal one. Throughout this paper quantum states will be denoted by lower-case Greek letters, usually ρ, σ , τ . 
For any state ρ ∈ Dd we can write its spectral decomposition as ρ =

∑

i pi|�i���i| . Having a set of quantum states 
{ρ1, . . . , ρm} with spectral decompositions ρ1 =

∑

i1
pi1 |�i1 ���i1 |, . . . , ρm =

∑

im
pim |�im ���im | respectively, their 

support is defined as supp(ρ1, . . . , ρm):=span{|�ij � : pij > 0} . The set of unitary matrices of dimension d will 
be denoted Ud.

Quantum channels are linear maps which are completely positive and trace preserving. In this work we will 
often take advantage of the Kraus representations of channels. Let

be the Kraus representations of the channels that will correspond to null and alternative hypotheses respectively. 
The sets of operators {Ei}i and {Fj}j are called Kraus operators of channels �0 and �1 respectively. We will use the 
notation supp(�0):=span{Ei}i , supp(�1):=span{Fj}j , to denote the supports of quantum channels. Moreover, 
the notation 1 will be used for the identity channel.

The most general quantum measurements, known also as POVMs (positive operator valued measure) 
are defined as a collection of positive semidefinite operators P = {M1, . . . ,Mm} which fulfills the condition 
∑m

i=1 Mi = 1d , where 1d denotes the identity matrix of dimension d. When a quantum state ρ is measured by 
the measurement P , then the label i is obtained with probability Tr (Eiρ) and the state ρ ceases to exist. A spe-
cial class of quantum measurements are projective von Neumann measurements. These POVMs have rank-one 
effects of the form {|u1��u1|, . . . , |ud��ud |} , where vectors {|ui�}di=1 form an orthonormal basis and therefore they 
are columns of some unitary matrix U ∈ Ud.

Now we proceed to describing the detailed scheme of certification. There are two quantum channels: �0 and 
�1 . We are promised that we are given �0 but we are not sure and we want to verify it using hypothesis testing. 
We associate the channel �0 with the null hypothesis H0 and we associate the other channel �1 with the alterna-
tive hypothesis H1 . We consider the following scheme. We are allowed to prepare any (possibly entangled) input 
state and perform the given channel on it. Then, we prepare a binary measurement {�0,1−�0} and measure 
the output state. If we obtain the label associated with the effect �0 , then we decide that the certified channel 
was �0 and we accept the null hypothesis. If we get the label associated with the effect 1−�0 , then we decide 
that the certified channel was �1 and therefore we reject the null hypothesis.

(1)�0(X) :=
k

∑

i=1

EiXE
†
i , �1(X) :=

l
∑

j=1

FjXF
†
j
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The aim of certification is to make a decision whether to accept or to reject H0 . While making such a decision 
one can come upon two types of errors. The false positive error (also known as type I error) happens when we 
reject the null hypothesis when in fact it was true. The converse situation, that is accepting the null hypothesis 
when the alternative hypothesis was correct, is known as the false negative (or type II) error. In this work we 
will focus on the situation when the probability of the false negative error equals zero and we want to minimize 
the probability of false positive error.

Let us now take a closer look into the scheme of entanglement-assisted single-shot certification procedure. We 
begin with preparing an input state |ψ� on the compound space. Then, we apply the certified channel extended 
by the identity channel on the input state, obtaining as the output the state either ρ|ψ�

0 = (�0 ⊗ 1)(|ψ��ψ |) , if 
the given channel was �0 , or ρ|ψ�

1 = (�1 ⊗ 1)(|ψ��ψ |) , if the given channel was �1 . Eventually, we perform the 
measurement {�0,1−�0} , where the effect �0 accepts hypothesis H0 and the effect 1−�0 accepts the alterna-
tive hypothesis H1.

Assuming that the input state |ψ� and measurement effect �0 have been fixed, the probability of making the 
false positive error is given by

In a similar manner we have the probability of making the false negative error, that is

We will be interested in the situation when probability of the false negative error is equal to zero and we want 
to minimize the probability of false positive error. Therefore, we introduce the notation

for minimized probability of false positive error in the single-shot scenario.
For a given ǫ > 0 , we say that quantum channel �0 can be ǫ-certified against channel �1 if there exist an input 

state |ψ� and measurement effect �0 such that p2(|ψ�,�0) = 0 and p1(|ψ�,�0) ≤ ǫ . In other words, quantum 
channel �0 can be ǫ-certified against another channel �1 if we can assure no false negative will occur and the 
probability of false positive error is smaller than ǫ.

When performing the certification of quantum channels, we can use the channels many times in various 
configurations. Now we proceed to introducing notation needed for studying parallel and adaptive certification 
schemes.

Parallel certification scheme.  Let N denote the number of uses of the quantum channel in parallel. A 
schematic representation of the scenario of parallel certification is depicted in Fig. 1. In this scheme we consider 
certifying tensor products of the channels. In other words, parallel certification of channels �0 and �1 can be 
seen as certifying channels �⊗N

0  and �⊗N
1  for some natural number N.

Let |ψ� be the input state to the certification procedure. After applying the channel �0 N times in parallel, 
we obtain the output state

if the channel was �0 , and similarly

if the channel was �1 . In the same spirit let

(2)p1(|ψ�,�0):=Tr
(

(1−�0)ρ
|ψ�
0

)

= 1− Tr
(

�0ρ
|ψ�
0

)

.

(3)p2(|ψ�,�0):=Tr
(

�0ρ
|ψ�
1

)

.

(4)p1:= min
|ψ�,�0

{

p1(|ψ�,�0) : p2(|ψ�,�0) = 0
}

(5)σ
N ,|ψ�
0 =

(

�⊗N
0 ⊗ 1

)

(|ψ��ψ |),

(6)σ
N ,|ψ�
1 =

(

�⊗N
1 ⊗ 1

)

(|ψ��ψ |),

Figure 1.   Parallel certification scheme.
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be the probabilities of occurring false positive and false negative errors respectively. When N = 1 , then we 
arrive at single-shot certification. Therefore we will neglect the upper index and simply write p1(|ψ�,�0) and 
p2(|ψ�,�0).

We introduce the notation

for the minimized probability of false positive error in the parallel scheme.
We say that quantum channel �0 can be certified against �1 in the parallel scheme, if for every ǫ > 0 there 

exist a natural number N, an input state |ψ� and measurement effect �0 such that pP,N2 (|ψ�,�0) = 0 and 
pP,N1 (|ψ�,�0) ≤ ǫ.

Let us now elaborate a bit on the number of steps needed for certification. Assume that we have fixed upper 
bound on the probability of false positive error, ǫ > 0 . We will be interested in calculating the minimal number 
of queries, Nǫ , for which pP,N2 (|ψ�,�0) = 0 and pP,N1 (|ψ�,�0) ≤ ǫ for some input state |ψ� and measurement 
effect �0 . Such a number, Nǫ , will be called the minimal number of steps needed for parallel certification.

Adaptive certification scheme.  Adaptive certification scheme allows for the use of processing between 
the uses of the certified channel, therefore this procedure is more complex then the parallel certification. How-
ever, when the processings only swap the subsystems, then the adaptive scheme may reduce to the parallel one.

Assume as previously that |ψ� is the input state to the certification procedure in which the certified channel 
in used N times and any processing is allowed between the uses of this channel. The scheme of this procedure 
is presented in the Fig. 2. Having the input state |ψ� on the compound register, we perform the certified chan-
nel (denoted by the black box with question mark) on one part of it. Having the output state we can perform 
some processing �1 and therefore get prepared for the next use of the certified channel. Than again, we apply 
the certified channel on one register of the prepared state and again, we can perform processing �2 . We repeat 
this procedure N − 1 times. After the N-th use of the certified channel we obtain the state either τN ,|ψ�

0  , if the 
channel was �0 , or τN ,|ψ�

1  , if the channel was �1 . Then, we prepare a global measurement {�0,1−�0} and apply 
it on the output state. Let

be the probabilities of the false positive and false negative errors in adaptive scheme, respectively, when the input 
state and the measurement effects were fixed. When N = 1 , then we will neglect the upper index and simply 
write p1(|ψ�,�0) and p2(|ψ�,�0).

We say that quantum channel �0 can be certified against �1 in the adaptive scheme, if for every ǫ > 0 there 
exist a natural number N, an input state |ψ� and measurement effect �0 such that pA,N2 (|ψ�,�0) = 0 and 
pA,N1 (|ψ�,�0) ≤ ǫ.

For a fixed upper bound on the probability of false positive error, ǫ , we introduce the minimal number of 
steps needed for adaptive certification, Nǫ , as the minimal number of steps after which pA,N2 (|ψ�,�0) = 0 and 
pA,N1 (|ψ�,�0) ≤ ǫ for some input state |ψ� and measurement effect �0.

Parallel certification
Not all quantum channels can be discriminated perfectly after a finite number of queries. Conditions for perfect 
discrimination were states in the work34. Similar conditions for unambiguous discrimination were proved in26. 
In this section we will complement these results with the condition concerning parallel certification. More spe-
cifically, we will prove a simple necessary and sufficient condition when a quantum channel �0 can be certified 
against some other channel �1 . As the condition utilizes the notion of the support of a quantum channel, recall 
that it is defined as the span of their Kraus operators. The condition will be stated as Theorem 1, however its 
proof will be presented after introducing two technical lemmas.

(7)pP,N1 (|ψ�,�0) = Tr
(

(1−�0)σ
N ,|ψ�
0

)

, pP,N2 (|ψ�,�0) = Tr
(

�0σ
N ,|ψ�
1

)

(8)pP,N1 := min
|ψ�,�0

{

pP,N1 (|ψ�,�0) : pP,N2 (|ψ�,�0) = 0
}

(9)pA,N1 (|ψ�,�0) = Tr
(

(1−�0)τ
N ,|ψ�
0

)

, pA,N2 (|ψ�,�0) = Tr
(

�0τ
N ,|ψ�
1

)

Figure 2.   Adaptive certification scheme. The processings �1, . . . ,�N−1 can be arbitrary quantum channels 
where we only assume that the first subsystem must fit the input of the black box. In particular, the processings 
can swap subsystems, and therefore one can obtain the parallel scheme as a special case of the adaptive 
discrimination scheme.
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In fact, the statement of Theorem 1 is a bit more general, that is it concerns the situation when the alternative 
hypothesis corresponds to a set of channels {�1, . . . ,�m} having Kraus operators 

{

F
(1)
j1

}

j1
, . . . ,

{

F
(m)
jm

}

jm
 respec-

tively. We will use the notation supp(�1, . . . ,�m):=span
{

F
(1)
j1

, . . . , F
(m)
jm

}

j1,...,jm
.

Theorem 1  Quantum channel �0 can be certified against quantum channels �1, . . . ,�m in the parallel scheme if 
and only if supp(�0)  ⊆ supp(�1, . . . ,�m).

Moreover, to ensure that the probability of false positive error is no greater than ǫ , the number of steps needed for 
parallel certification is bounded by Nǫ ≥

⌈

log ǫ
log p1

⌉

 , where p1 is the upper bound on probability of false positive error 
in single-shot certification.

Before presenting the proof of this theorem we will introduce two lemmas. The proofs of lemmas are post-
poned to “Supplementary Appendix A”. Lemma 1 states that if the inclusion does not hold for supports of the 
quantum channels, then the inclusion also does not hold for supports of output states assuming that the input 
state has full Schmidt rank. The proof of Lemma 1 is based on the proof in26[Theorem  1], which studies unam-
biguous discrimination among quantum operations.

Lemma 1  Let {|at�}t and {|bt�}t be two orthonormal bases and |ψ�:=
∑

t �t |at�|bt� where �t > 0 for every t. Let 
also ρ|ψ�

0 = (�0 ⊗ 1)(|ψ��ψ |) and ρ|ψ�
j =

(

�j ⊗ 1
)

(|ψ��ψ |) for j = 1, . . . ,m . If supp(�0)  ⊆ supp(�1, . . . ,�m) , 
then supp

(

ρ
|ψ�
0

)

�⊆ supp
(

ρ
|ψ�
1 , . . . , ρ

|ψ�
m

)

.

Lemma 2 also concerns inclusions of supports. It states that if the inclusion of supports does not hold for 
some output states, then it does not hold also for supports of the channels.

Lemma 2  With the notation as above, if there exists a natural number N and an input state |ψ� such that 
supp

(

σ
N ,|ψ�
0

)

�⊆ supp
(

σ
N ,|ψ�
1 , . . . , σ

N ,|ψ�
m

)

 , then supp(�0)  ⊆ supp(�1, . . . ,�m).

Finally, we are in position to present the proof of Theorem 1.

Proof of Theorem  1   (⇐ )  Let  supp(�0)  ⊆ supp(�1, . . . ,�m) .  From Lemma  1 this  implies 
supp

(

ρ
|ψ�
0

)

�⊆ supp
(

ρ
|ψ�
1 , . . . , ρ

|ψ�
m

)

 where the input state is |ψ� =
∑

t �t |at�|bt� . Hence we can always find a 
state |φ0� for which

and therefore

for i = 1, . . . ,m.
Now we consider the certification scheme by taking the measurement with effects {�0,1−�0} . Without loss 

of generality we can assume that �0:=|φ0��φ0| is a rank-one operator. We calculate

Hence after sufficiently many uses, N, of the certified channel in parallel (actually when N ≥
⌈

log ǫ
log p1

⌉

 ) we obtain 

that tr
(

�⊗N
1

(

ρ
|ψ�
0

)⊗N
)

≤ ǫ for any positive ǫ . Therefore after N queries we will be able to exclude false nega-

tive error.
(=⇒ ) Assume that �0 can be certified against �1, . . . ,�m in the parallel scenario. This means that there 

exist a natural number N, an input state |ψ� and a positive operator (measurement effect) �0 on the composite 
system such that

(10)|φ0� �⊥ supp
(

ρ
|ψ�
0

)

and |φ0� ⊥ supp
(

ρ
|ψ�
1 , . . . , ρ|ψ�

m

)

,

(11)�φ0|ρ|ψ�
0 |φ0� > 0 and �φ0|ρ|ψ�

i |φ0� = 0

(12)

tr
(

�0ρ
|ψ�
0

)

= �φ0|ρ|ψ�
0 |φ0� > 0

p2(|ψ�,�0) =
m
∑

i=1

tr
(

�0ρ
|ψ�
i

)

=
m
∑

i=1

�φ0|ρ|ψ�
i |φ0� = 0

p1(|ψ�,�0) = tr
(

(1−�0)ρ
|ψ�
0

)

= 1− �φ0|ρ|ψ�
0 |φ0� < 1.

(13)

pP,N1 (|ψ�,�0) = 1− tr
(

�0

(

�⊗N
0 ⊗ 1

)

(|ψ��ψ |)
)

≤ ǫ < 1

pP,N2 (|ψ�,�0) =
m
∑

i=1

tr
(

�0

(

�⊗N
i ⊗ 1

)

(|ψ��ψ |)
)

= 0.
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Therefore tr
(

�0

(

�⊗N
0 ⊗ 1

)

(|ψ��ψ |)
)

> 0 and thus

where span
{

F
(1)
j1

, . . . , F
(m)
jm

}

j1,...,jm
= span{Kl}l.

Hence

The reminder of the proof follows directly from Lemma 2. 	�  �

It is worth mentioning that in the above proof the measurement effect �0 is a rank-one projection operator. 
This is sufficient to prove that quantum channel �0 can be certified against �1 in the parallel scheme, but this is, 
in most of the cases, not optimal.

In the remaining of this section we will discuss two examples. The first example shows that if quantum 
channels can be certified in the parallel scheme, then it does not have to imply that they can be discriminated 
unambiguously. We will provide an explicit example of mixed-unitary channels which fulfill the condition from 
Theorem 1, and therefore can be certified in the parallel scheme, but cannot be discriminated unambiguously. 
In the second example we will consider the situation when the channel associated with the H1 hypothesis is the 
identity channel and derive an upper bound on the probability of false positive error.

Channels which cannot be discriminated unambiguously but still can be certified.  In this sub-
section we will give an example of a class of channels which cannot be discriminated unambiguously, but they 
can be certified by a finite number of uses in the parallel scheme. The work26 presents the condition when 
quantum channels can be unambiguously discriminated by a finite number of uses. More precisely, Theorem 2 
therein states that if a set of quantum channels S = {�i}i satisfies the condition supp(�i)  ⊆ supp(�j) for every 
�i ,�j ∈ S , then they can be discriminated unambiguously in a finite number of uses.

Now we proceed to presenting our example. Let �0 be a mixed unitary channel of the form

where p = (p1, . . . , pm) is a probability vector and {U1, . . . ,Um} are unitary matrices. As the second channel we 
take a unitary channel of the form �1(ρ) = ŨρŨ† , where we make a crucial assumption that Ũ ∈ {U1, . . . ,Um}.

Therefore we have supp(�0) = span{√piUi}i , while supp(�1) = span{Ũ} . In this example it can be easily 
seen that the condition for unambiguous discrimination is not fulfilled as supp(�1) ⊆ supp(�0) . Nevertheless, 
the condition from Theorem 1 is fulfilled as supp(�0)  ⊆ supp(�1) , and hence it is possible to exclude false 
negative error after a finite number of queries in parallel.

Certification of arbitrary channel against the identity channel.  Assume that we want to certify 
channel �0 , which Kraus operators are {Ei}i , against the identity channel �1 having Kraus operator {1} . We will 
show that as long as the channel �0 is not the identity channel, it can always be certified against the identity 
channel in the parallel scheme.

Proposition 1  Every quantum channel (except the identity channel) can be certified against the identity channel 
in the parallel scheme.

Proof  Let |ψ� be an input state. After applying the certified channels on it, we obtain the state either 
ρ
|ψ�
0 = (�0 ⊗ 1)(|ψ��ψ |) , if the channel was �0 , or ρ|ψ�

1 = |ψ��ψ | , if the channels was �1 . As the final measure-
ment effect we can take �0:=1− |ψ��ψ | , which is always orthogonal to ρ|ψ�

1  , hence no false negative error will 
occur. Having the input state and final measurement fixed, we will calculate the probability of false positive error 
in the single-shot scheme

where the last inequality follows from the fact that �0 is not the identity channel. Therefore, after sufficiently 
many queries in the parallel scheme the probability of false positive error will be arbitrarily small. 	�  �

Note that the expression for the probability of false positive error in Eq. (17) is in fact the fidelity between 
the input state and the output of the channel �0 extended by the identity channel. As we were not imposing 
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any specific assumptions on the input state, we can take the one which minimizes the expression in Eq. (17). 
Therefore, the probability of the false positive error in the single-shot certification yields

Eventually, to make sure that the probability of false positive error will not be greater than ǫ , we will need 
Nǫ ≥

⌈

log ǫ
log p1

⌉

 steps in the parallel scheme.
From the above considerations we can draw a simple conclusion concerning the situation when 

�0(X) = UXU† is a unitary channel. Then, as the unitary channel has only one Kraus operator, it holds that 
p1 = min|ψ� |�ψ |(U ⊗ 1)|ψ�|2 = min|ψ� |�ψ |U |ψ�|2 = ν2(U) , where ν(U) is the distance from zero to the 
numerical range of the matrix U18,32. Thanks to this geometrical representation (see further18) one can deduce 
the connection between the probability of false positive error, p1 , and the probability of making an error in the 
unambiguous discrimination of unitary channels. More specifically, let puerror denote the probability of making an 
erroneous decision in unambiguous discrimination of unitary channels. Then, it holds that puerror = p21 . Therefore, 
in the case of certification of unitary channels the probability of making the false positive error is significantly 
smaller than the probability of erroneous unambiguous discrimination.

Certification of quantum measurements
In this section we will take a closer look into the certification of quantum measurements. We will begin with 
general POVMs and later focus on the class of measurements with rank-one effects. Before stating the results, 
let us recall that every quantum measurement can be associated with quantum-classical channel defined as

where {Mi}i are measurement’s effects and tr (Miρ) is the probability of obtaining the i-th label.
The following proposition can be seen as a corollary from Theorem 1 as it gives a simple condition when we 

forbid false negative error. This condition is expressed in terms of inclusion of supports of the measurements’ 
effects.

Proposition 2  Let P0 and P1 be POVMs with effects {Mi}mi=1 and {Ni}mi=1 respectively. Then P0 can be certified 
against P1 in the parallel scheme if and only if there exists a pair of effects Mi , Ni for which supp(Mi)  ⊆ supp(Ni).

Proof  Let

be the spectral decomposition of Mi (where αi
ki
> 0 for every k). Then

and hence the Kraus operators of P0 are 
{√

αi
ki
|i��xiki |

}

ki ,i
 . Analogously, the Kraus operators of P1 are 

{√

β i
ki
|i��yiki |

}

ki ,i
.

Therefore from Theorem 1 we have that P0 can be certified against P1 in the parallel scheme if and only if

that is when there exists a pair of effects Mi , Ni for which supp(Mi)  ⊆ supp(Ni) . 	�  �

The above proposition holds for any pair of quantum measurements. In the case of POVMs with rank-one 
effects, the above condition can still be simplified to linear independence of vectors. This is stated as the follow-
ing corollary.

Corollary 1  Let P0 and P1 be measurements with effects {αi|xi��xi|}mi=1 and {βi|yi��yi|}mi=1 for αi ,βi ∈ (0, 1] , respec-
tively. Then P0 can be certified against P1 in the parallel scheme if and only if there exists a pair of vectors |xi� , |yi� 
which are linearly independent.

While studying the certification of measurements with rank-one effects, one cannot overlook their very 
important subclass, namely projective von Neumann measurements. These measurements have effects of the form 
{|u1��u1|, . . . , |un��un|} , where {|ui�}i form an orthonormal basis. This class of measurements was studied in32, 
though in a slightly different context. The main result of that work was the expression for minimized probability 
of the false negative error, where the bound on the false positive error was assumed. In this work, however, we 
consider the situation when false negative error must be equal zero after sufficiently many uses. Nevertheless, 
from Corollary 1 we can draw a conclusion that any von Neumann measurement can be certified against some 
other von Neumann measurement if and only if the measurements are not the same.
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SIC POVMs.  Now we proceed to studying the certification of a special class of measurements with rank-one 
effects, that is symmetric informationally complete (SIC) POVMs35–38. We will directly calculate the bounds on 
the false positive error in the single-shot and parallel certification. We will be using the following notation. The 
SIC POVM P0 with effects {|xi��xi|}d

2

i=1 , where |xi��xi| = 1
d |φi��φi| and �|φi�� = 1 , will be associated with the 

H0 hypothesis. The SIC POVM P1 corresponding to the alternative H1 hypothesis will have effects {|yi��yi|}d
2

i=1 , 
where |yi��yi| = 1

d |φπ(i)��φπ(i)| and π is a permutation of d2 elements. Moreover, the SIC condition assures that 
|�φi|φπ(i)�|2 = 1

d+1 whenever i  = π(i).

Remark 1  From Corollary 1 it follows that for a SIC POVMs P0 can be certified against SIC POVM P1 in the 
parallel scheme as long as P0  = P1.

Now we are working towards calculating the upper bound on the probability of the false positive error in 
single-shot certification of SIC POVMs. As the input state we take the maximally entangled state |ψ�:= 1√

d
|1�� . 

If the measurement was P0 , then the output state is

and similarly, if the measurement was P1 , then the output state is

As the output states have block-diagonal structure, we take the measurement effect to be in the block-diagonal 
form, that is

where for every i we assume �i ⊥ |φπ(i)��φπ(i)| to ensure that the probability of the false negative error is equal 
to zero. We calculate

Let k be the number of fixed points of the permutation π . Taking �i:=1− |φπ(i)��φπ(i)| we obtain

So far all the calculations were done for some fixed input state (maximally entangled state) and measurement 
effect �0 , which give us actually only the upper bound on the probability of the false positive error. The current 
choice of �i = 1− |φπ(i)��φπ(i)| seems like a good candidate, but we do not know whether it is possible to find 
a better one. Using the notation for the probability of the false positive error introduced in Eq. (4) and (2) we 
can write our bound as

On top of that, if π does not have fixed points, that is when k = 0 , we have p1 ≤ 1
d+1 and the number of steps 

needed for parallel certification is bounded by Nǫ ≥
⌈

− log ǫ
log(d+1)

⌉

 . In the case when the permutationπ has one 
fixed point, that is when k = 1 , it holds that p1 ≤ 1

d and hence the number of steps needed for parallel certifica-
tion can be bounded by Nǫ ≥

⌈

− log ǫ
log d

⌉

.
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Parallel certification of SIC POVMs.  Let us consider a generalization of the results from previous subsec-
tion into the parallel scenario. We want to certify SIC POVMs P0 and P1 defined as in “SIC POVMs” section, 
however we assume that we are allowed to use the certified SIC POVM N times in parallel. In this setup we 
associate the H0 hypothesis with the measurement P⊗N

0  , and analogously we associate the H1 hypothesis with 
the measurement P⊗N

1  . It appears that the upper bound on false positive error is very similar to the upper bound 
for the single-shot case. Straightforward but lengthy and technical calculations give us

The detailed derivation of this bound is relegated to “Supplementary Appendix B”.

Adaptive certification and Stein setting
So far we were considering only the scheme in which the given channel is used a finite number of times in parallel. 
In this section we will focus on studying a more general scheme of certification, that is the adaptive certifica-
tion. In the adaptive scenario, we use the given channel N times and between the uses we can perform some 
processing. It seems natural that the use of adaptive scheme instead of the simple parallel one should improve 
the certification. Surprisingly, in the case of von Neumann measurements the use of adaptive scheme gives no 
advantage over the parallel one18,32. In other cases it appears that the use of processing is indeed a necessary step 
towards perfect discrimination19,20.

Having the adaptive scheme as a generalization of the parallel one, let us take a step further and take a look 
into the asymptotic setting. In other words, let us discuss the situation when the number of uses of the certified 
channel tends to infinity. There are various settings known in the literature concerning asymptotic discrimina-
tion, like Stein and Hoeffding settings for asymmetric discrimination, as well as Chernoff and Han-Kobayashi 
settings for symmetric discrimination. In the context of this work we will discuss only the setting concerning 
asymmetric discrimination, however a concise introduction to all of these settings can be found e.g. in33. Argu-
ably, the most well-known of these is the Hoeffding setting which assumes the bound on the false negative error 
to be decreasing exponentially, and its area of interest is characterizing the error exponent of probability of false 
positive error. Adaptive strategies for asymptotic discrimination in Hoeffding setting were recently explored in21. 
In the Stein setting, on the other hand, we assume a constraint on the probability of false positive error and study 
the error exponent of the false negative error. Let us define a non-asymptotic quantity

which describes the behavior of probabilities of errors in adaptive discrimination scheme. The probability of 
false positive error after n queries is upper-bounded by some fixed ǫ , and we are interested in studying how 
quickly the probability of false negative error decreases. Therefore we consider the logarithm of probability of 
false negative error divided by the number of queries. Finally, a supremum is taken over all possible adaptive 
strategies, that is we can choose the best input state, final measurement as well as the processings between uses 
of the certified channel.

Note that in the previous sections we were considering pA,N2  instead of pA,n2  , which in used in the Stein setting. 
The aim of this difference is to emphasize that in the Stein setting we study the situation in which the number of 
uses, n, tends to infinity. In contrary, in previous sections we were interested only in the case when the number 
of uses, N, was finite.

Having introduced the non-asymptotic quantity ζn(ǫ) , let us consider the case when the number of queries, 
n, tends to infinity. To do so, we define the upper limit of the Stein exponent as

Note that when ζ (ǫ) is finite, then the probability of the false negative error for adaptive certification will not be 
equal to zero for any finite number of uses N. A very useful Remark 19 from33 states that ζ (ǫ) is finite if and only if

where |ψent� is the maximally entangled state.
Finally, we are in position to express the theorem stating the relation between adaptive and parallel 

certification.

Theorem 2  Quantum channel �0 can be certified against quantum channel �1 in the parallel scenario if and only 
if quantum channel �0 can be certified against quantum channel �1 in the adaptive scenario.

Before presenting the proof of the Theorem we will state a useful lemma, which proof is postponed to “Sup-
plementary Appendix A”.

Lemma 3  Let ζ (ǫ) be as in Eq. (31). Then ζ (ǫ) is finite if and only if supp(�0) ⊆ supp(�1).

(29)pP,N1 ≤
(

d + k

d2 + d

)N

.

(30)ζn(ǫ):= sup
�0,|ψ�

{

−
1

n
log pA,n2 (|ψ�,�0) : pA,n1 (|ψ�,�0) ≤ ǫ

}

,

(31)ζ (ǫ):= lim sup
n→∞

ζn(ǫ).

(32)supp((�0 ⊗ 1)(|ψent��ψent|)) ⊆ supp((�1 ⊗ 1)(|ψent��ψent|)),
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Proof of Theorem 2  When quantum channel �0 can be certified against the channel �1 in the parallel scenario, 
then naturally, �0 can be certified against the channel �1 in the adaptive scenario. Therefore it suffices to prove 
the reverse implication.

Assume that the channel �0 can be certified against �1 in the adaptive scenario. This means that ζ (ǫ) is infi-
nite. Hence from Lemma 3 it holds that supp(�0)  ⊆ supp(�1) . Finally, from Theorem 1 we obtain that �0 can 
be certified against �1 in the parallel scheme. 	�  �

Theorem 2 states that if a quantum channel �0 can be certified against �1 in a finite number of queries, then 
the use of parallel scheme is always sufficient. Therefore it may appear that adaptive certification is of no value. 
Nevertheless, in some cases it still may be worth using adaptive certification to reduce the number of uses of the 
certified channel. For example in the case of SIC POVMs the use of adaptive scheme reduces the number of steps 
significantly20. A pair of qutrit SIC POVMs can be discriminated perfectly after two queries in adaptive scenario, 
therefore they can also be certified. Nevertheless, they cannot be discriminated perfectly after any finite number 
of queries in parallel. On the other hand, in the case of von Neumann measurements the number of steps is the 
same no matter which scheme is used18.

Conclusions
As certification of quantum channels is in the NISQ era a task of significant importance, the main aim of this 
work was to give an insight into this problem from theoretical perspective. Certification was considered as an 
extension of quantum hypothesis testing, which includes also preparation of an input state and the final measure-
ment. We primarily focused on multiple-shot schemes of certification, that is our areas of interest were mostly 
parallel and adaptive certification schemes. The parallel scheme consists in certifying tensor products of channels 
while adaptive scheme is the most general of all scenarios.

We derived a condition when after a finite number of queries in the parallel scenario one can assure that the 
false negative error will not occur. We pointed a class of channels which allow for excluding false negative error 
after a finite number of uses in parallel but cannot be discriminated unambiguously. On top of that, having a 
fixed upper bound on the probability of false positive error, we found a bound on the number of queries needed 
to make the probability of false positive error no greater than this fixed bound.

Moreover, we took into consideration the most general adaptive certification scheme and studied whether 
it can improve the certification. It turned out that the use of parallel certification scheme is always sufficient 
to assure that the false negative error will not occur after a finite number of queries. Nevertheless, the number 
of queries needed to have the probability of false positive error sufficiently small, may be decreased by using 
adaptive scheme.
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