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Trapping mammalian protein complexes in viral
particles
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Cell lysis is an inevitable step in classical mass spectrometry-based strategies to analyse
protein complexes. Complementary lysis conditions, in situ cross-linking strategies and
proximal labelling techniques are currently used to reduce lysis effects on the protein
complex. We have developed Virotrap, a viral particle sorting approach that obviates the need
for cell homogenization and preserves the protein complexes during purification. By fusing a
bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped
within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP
enrichment protocol, Virotrap allows the detection of known binary interactions and
MS-based identification of novel protein partners as well. In addition, we show the
identification of stimulus-dependent interactions and demonstrate trapping of protein
partners for small molecules. Virotrap constitutes an elegant complementary approach to the
arsenal of methods to study protein complexes.
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roteins mostly exert their function within supramolecular

complexes. Strategies for detecting protein-protein inter-

actions (PPIs) can be roughly divided into genetic systems'
and co-purification strategies combmed with mass spectrometry
(MS) analysis (for example, AP-MS)%. The latter approaches
typically require cell or tissue homogenization using detergents
followed by capture of the protein complex using affinity tags® or
spec1ﬁc antibodies?. The protein complexes extracted from this
‘soup’ of constituents are then subjected to several washing
steps before actual analysis by trypsin digestion and liquid
chromatography-MS/MS analysis. Such lysis and purification
protocols are typically empirical and have mostly been optimized
using model interactions in single labs. In fact, lysis conditions
can profoundly affect the number of both specific and nonspecific
proteins that are identified in a typical AP-MS set-up. Indeed,
recent studies using the nuclear pore complex as a model protein
complex describe optimization of purifications for the different
proteins in the complex by examining 96 different conditions’.
Nevertheless, for new purifications, it remains hard to correctly
estimate the loss of factors in a standard AP-MS experiment due
to washing and dilution effects during treatments (that is, false
negatives). These considerations have pushed the concept of
stabilizing PPIs before the actual homogenization step. A classical
approach involves cross-linking with simple reagents (for
example, formaldehyde) or with more advanced isotope-labelled
cross-linkers (reviewed in ref. 2). However, experimental
challenges such as cell permeability and reactivity still preclude
the widespread use of cross-linking agents. Moreover, MS-
generated spectra of cross-linked peptides are notoriously difficult
to identify correctly. A recent lysis-independent solution involves
the expression of a bait protein fused to a promiscuous biotin
ligase, which results in labelling of protems proximal to the
activity of the enzyme-tagged bait protein®. When compared with
AP-MS, this BiolD approach delivers a complementary set of
candidate proteins, including novel interaction partners’8, Such
particular studies clearly underscore the need for complementary
approaches in the co-complex strategies.

The evolutionary stress on viruses promoted highly condensed
coding of information and maximal functionality for small
genomes. Accordingly, for HIV-1 it is sufficient to express a single
protein, the p55 GAG protein, for efﬁc1ent production of
virus-like particles (VLPs) from cells>!. This protein is highly
mobile before its accumulation in cholesterol-rich regions
of the membrane, where multimerization initiates the budding
process!l. A total of 4,000-5,000 GAG molecules is required to
form a single particle of about 145 nm (ref. 12). Both VLPs and
mature viruses contain a number of host proteins that are
recruited by binding to viral proteins. These proteins can either
contribute to the infectivity (for example, Cyclophilin/FKBPA!3)
or act as antiviral proteins preventmg the spreading of the virus
(for example, APOBEC proteins!?).

We here describe the development and application of Virotrap,
an elegant co-purification strategy based on the trapping of a bait
protein together with its associated protein partners in VLPs that
are budded from the cell. After enrichment, these particles can be
analysed by targeted (for example, western blotting) or unbiased
approaches (MS-based proteomics). Virotrap allows detection of
known binary PPIs, analysis of protein complexes and their
dynamics, and readily detects protein binders for small molecules.

Results

Concept of the Virotrap system. Classical AP-MS approaches
rely on cell homogenization to access protein complexes, a step
that can vary significantly with the lysis conditions (detergents,
salt concentrations, pH conditions and so on)>. To eliminate the
homogenization step in AP-MS, we reasoned that incorporation
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of a protein complex inside a secreted VLP traps the interaction
partners under native conditions and protects them during
further purification. We thus explored the possibility of protein
complex packaging by the expression of GAG-bait protein
chimeras (Fig. 1) as exFresswn of GAG results in the release of
VLPs from the cells>'%. As a first PPI pair to evaluate this
concept, we selected the HRAS protein as a bait combined with
the RAF1 prey protein. We were able to specifically detect the
HRAS-RAF1 interaction following enrichment of VLPs via
ultracentrifugation (Supplementary Fig. 1a). To prevent tedious
ultracentrifugation steps, we designed a novel single-step protocol
wherein we co-express the vesicular stomatitis virus glycoprotein
(VSV-G) together with a tagged version of this glycoprotein in
addition to the GAG bait and prey. Both tagged and untagged
VSV-G proteins are probably presented as trimers on the surface
of the VLPs, allowing efficient antibody-based recovery from
large volumes. The HRAS-RAFI interaction was confirmed using
this single-step protocol (Supplementary Fig. 1b). No associations
with unrelated bait or prey proteins were observed for both
protocols.

Virotrap for the detection of binary interactions. We next
explored the reciprocal detection of a set of PPI pairs, which were
selected based on published evidence and cytosolic localization!”
After single-step purification and western blot analysis, we could
readily detect reciprocal interactions between CDK2 and CKS1B,
LCP2 and GRAP2, and S100A1 and S100B (Fig. 2a). Only for the
LCP2 prey we observed nonspecific association with an irrelevant
bait construct. However, the particle levels of the GRAP2 bait
were substantially lower as compared with those of the GAG
control construct (GAG protein levels in VLPs; Fig. 2a, second
panel of the LCP2 prey). After quantification of the intensities of
bait and prey proteins and normalization of prey levels using bait
levels, we observed a strong enrichment for the GAG-GRAP2 bait
(Supplementary Fig. 2).

To compare Virotrap with other technologies, we performed a
binary analysis of the human positive reference set (hsPRS-v1,
92 PPI pairs) and the corresponding random reference set
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Figure 1 | Schematic representation of the Virotrap strategy. Expression
of a GAG-bait fusion protein (1) results in submembrane multimerization
(2) and subsequent budding of VLPs from cells (3). Interaction partners of
the bait protein are also trapped within these VLPs and can be identified
after purification by western blotting or MS analysis (4).
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Figure 2 | Virotrap experiments for binary PPI detection. (a) Virotrap experiments for reciprocal detection of binary protein-protein interactions.
HEK293T cells were transfected with GAG-bait constructs and E-tagged prey constructs. Additional co-transfection of VSV-G/FLAG-VSV-G expression
constructs allowed efficient purification, which was followed by direct on-bead lysis and analysis by western blotting using anti-E-tag (for the presence of
the prey protein), anti-GAG (bait expression levels and particles) and anti-B-actin antibodies. A representative experiment is shown for three biological
repeat experiments. (b) Virotrap analysis of weak protein-protein interactions. Cells were transfected with MYD88 TIR bait constructs or control bait
plasmids (GAG-EGFP) and combined with MYC-tagged MAL prey constructs or FADD prey controls. In the western blot analysis, proteins were revealed
using anti-MYC for prey presence, anti-GAG for bait expression and VLP formation, and anti-B-actin for normalization of lysates. Analyses were performed
for VLPs and for lysates of the producer cells. A representative experiment for three biological experiments is shown. Uncropped gel images and molecular

weight markers are presented in Supplementary Fig. 10.

(hsRRS-v1, 92 randomly selected pairs). Both sets contain
proteins from all cellular compartments to remove any bias in
protein localization. In this western blotting screen, all 184 baits
and 184 preys were expressed in combinations as published by
Braun et al.!>. After expression, purification and western blot
analysis, we were able to detect 28 (30%) interactions in the PRS,
whereas 5 (5%) interactions were detected in the RRS
(Supplementary Data 1 and Supplementary Fig. 3). Western
blot analysis of the lysates of the producer cells showed that
~30% of the bait proteins (56 out of 184) and 40% of the prey
proteins (E-tag, 25 out of 41) were not expressed at a detectable
level, indicating a large underestimation of detectable interactions
(Supplementary Data 1). Supplementary Fig. 3 shows the overlap
between Virotrap and data obtained with other PPI methods for
the PRS as published by Braun et al.'®, underscoring the notion
that Virotrap detects known interactions and further confirms
additional PPIs from the PRS, complementary to the other
approaches.

To further evaluate the sensitivity of Virotrap, we assessed the
interaction between two signalling molecules in Toll-like receptor
signalling: myeloid differentiation primary response 88 (MYD88)
and MAL (TIRAP), which bind via their Toll/interleukinl
receptor (TIR) homology domains'® (Kq=8uM (ref. 17)).
A panel of MYC-tagged MAL mutant prey proteins with
reduced binding affinities'® was tested against the MYD88 TIR

domain as bait. Figure 2b shows western blotting results for prey
presence in the particles. These binary Virotrap experiments
generally show the same trend as the data obtained with the
mammalian PPI trap (MAPPIT) assay'®(Supplementary Fig. 4),
a mammalian two-hybrid method for which the readout reflects
the affinity between protein partners'®. In addition, these data
illustrate that Virotrap enables the detection of weak PPIs.

Virotrap for unbiased discovery of novel interactions. For the
detection of novel interaction partners, we scaled up VLP
production and purification protocols (Supplementary Fig. 5 and
Supplementary Note 1 for an overview of the protocol) and
investigated protein partners trapped using the following
bait proteins: Fas-associated via death domain (FADD), A20
(TNFAIP3), nuclear factor-kB (NF-kB) essential modifier
(IKBKG), TRAF family member-associated NF-«kB activator
(TANK), MYD88 and ring finger protein 41 (RNF41). To obtain
specific interactors from the lists of identified proteins, we
challenged the data with a combined protein list of 19 unrelated
Virotrap experiments (Supplementary Table 1 for an overview).
Figure 3 shows the design and the list of candidate interactors
obtained after removal of all proteins that were found in the 19
control samples (including removal of proteins from the control
list identified with a single peptide). The remaining list of
confident protein identifications (identified with at least two
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Figure 3 | Use of Virotrap for unbiased interactome analysis. A total of three (A20, TANK, MYD88 and RNF41) or four (FADD and NEMO) transfections
were performed for interactome profiling. After single-step purification, specific elution, lysis and protein digestion, samples were analysed by liquid

chromatography-tandem mass spectrometry. The obtained data were challenged with all the identifications obtained for 19 unrelated Virotrap experiments.
The tables show the candidate interaction partners for the different baits identified with at least two peptides. The number of protein identifications in the
biological repeats for the different baits is shown next to the gene name identifier. Higher recurrence is expected to increase confidence. Proteins in bold
were described before (BioGRID32). Analysis of the A20 interactome after activation of the TNF pathway is shown as one of the conditions (in red font).

Five transfections were performed for this condition.

peptides in at least two biological repeats) reveals both known
and novel candidate interaction partners. All candidate inter-
actors including single peptide protein identifications are given
in Supplementary Data 2 and also include recurrent protein
identifications of known interactors based on a single peptide; for
example, CASP8 for FADD and TANK for NEMO. Using alter-
native methods, we confirmed the interaction between A20 and
FADD, and the associations with transmembrane proteins
(insulin receptor and insulin-like growth factor receptor 1) that
were captured using RNF41 as a bait (Supplementary Fig. 6). To
address the use of Virotrap for the detection of dynamic inter-
actions, we activated the NF-kB pathway via the tumour necrosis
factor (TNF) receptor (TNFRSF1A) using TNFa (TNF) and
performed Virotrap analysis using A20 as bait (Fig. 3). This
resulted in the additional enrichment of receptor-interacting
kinase (RIPK1), TNFR1-associated via death domain (TRADD),
TNFRSF1A and TNF itself, confirming the expected activated
complex?0.

Further, Virotrap was compared side-by-side with classical
AP-MS experiments using A20 and RNF41 as baits. Both
overlapping and unique prey proteins were identified for these
bait proteins (Supplementary Fig. 7). Taken together, when
compared with classical AP-MS, Virotrap provides a
complementary view on bait interactomes.

4

We additionally explored the use of Virotrap for the detection
of protein interactions with small molecules. To this end,
we fused the Escherichia coli dihydrofolate reductase protein
(eDHFR) as a bait to GAG and treated the particle-producing
cells with bivalent molecules consisting of methotrexate (MTX)
linked via a polyethylene glycol linker to a small molecule of
interest (Fig. 4a). In this study, we used simvastatin, tamoxifen
and reversine as small molecule baits (Fig. 4b (ref. 21)). Data
analysis was performed by elimination of all proteins previously
identified in the 19 control experiments (as before) combined
with the protein identifications from 4 additional eDHFR bait
experiments treated with dimethyl sulfoxide (DMSO). This
resulted in the consistent enrichment of the known targets
for simvastatin (HMG-CoA reductase enzyme (HMGCR)) and
reversine (Aurora kinase A (AURKA)). The novel interactions of
tamoxifen with HSDB17B4, and reversine with NQO2 were
confirmed using an orthogonal MASPIT assay?? (Supplementary
Fig. 8).

An important issue in AP-MS is defining the actual set of
background, nonspecific interactors>>*4, Analysis of 19 Virotrap
control samples reveals a high recurrence of ~174 proteins
(identified in at least 15/19 samples) (Supplementary Note 2 and
Supplementary Fig. 9). Structural proteins (for example, ACTB
and EZR), serum proteins (for example, A2M and albumin) and
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proteins related to HIV biology (GAG and its host interaction
partners such as Cyclophilin/PPIA and ALIX/PDCD6IP) are
found as highly recurrent background proteins. Further, the
distribution of the abundance of these background proteins is
similar for Virotrap and AP-MS, although there is a high
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recurrence in the background of known low abundant proteins,
which is likely to be due to the unique biology underlying
Virotrap (Supplementary Fig. 9).

Discussion

Lysis conditions used in AP-MS strategies are critical for the
preservation of protein complexes. A multitude of lysis conditions
have been described, culminating in a recent report where protein
complex stability was assessed under 96 lysis/purification
protocols®. Moreover, the authors suggest to optimize the
conditions for every complex, implying an important workload
for researchers embarking on protein complex analysis using
classical AP-MS. As lysis results in a profound change of the
subcellular context and significantly alters the concentration of
proteins, loss of complex integrity during a classical AP-MS
protocol can be expected. A clear evolution towards TIysis-
independent’ approaches in the co-complex analysis field is
evident with the introduction of BioID® and APEX?® where
proximal proteins, including proteins residing in the complex, are
labelled with biotin by an enzymatic activity fused to a bait
protein. A side-by-side comparison between classical AP-MS and
BioID showed overlapping and unique candidate binding
proteins for both approaches”®, supporting the notion that
complementary methods are needed to provide a comprehensive
view on protein complexes. This has also been clearly
demonstrated for binary approaches!® and is a logical
consequence of the heterogenic nature underlying PPIs
(binding mechanism, requirement for posttranslational
modifications, location, affinity and so on).

In this report, we explore an alternative, yet complementary
method to isolate protein complexes without interfering with
cellular integrity. By trapping protein complexes in the protective
environment of a virus-like shell, the intact complexes are
preserved during the purification process. This constitutes a
new concept in co-complex analysis wherein complex stability
is physically guaranteed by a protective, physical structure.
A comparison of our Virotrap approach with AP-MS shows
complementary data, with specific false positives and false
negatives for both methods (Supplementary Fig. 7).

The current implementation of the Virotrap platform implies
the use of a GAG-bait construct resulting in considerable
expression of the bait protein. Different strategies are currently
pursued to reduce bait expression including co-expression of a
native GAG protein together with the GAG-bait protein, not only
reducing bait expression but also creating more ‘space’ in the
particles potentially accommodating larger bait protein com-
plexes. Nevertheless, the presence of the bait on the forming GAG
scaffold creates an intracellular affinity matrix (comparable to the
early in vitro afﬁnitg columns for purification of interaction
partners from lysates?) that has the potential to compete with
endogenous complexes by avidity effects. This avidity effect is a

Figure 4 | Use of Virotrap for detection of protein partners of small
molecules. (a) Scheme for the application of Virotrap for small molecules.
E. coli DHFR is coupled to GAG, allowing the direct recruitment of
methotrexate (MTX) fused via a polyethylene glycol linker (PEG6) to a
small molecule of interest (SM). (b) Chemical structure of the bivalent
molecules used in this study. For tamoxifen and reversine, only the active
compound with the linker group is shown. (¢) Design of the Virotrap study
for proteins binding to simvastatin (three replicates), tamoxifen (three
replicates) and reversine (four replicates). Control samples consisted of 19
experiments with unrelated bait proteins (see higher) and 4 DMSO-treated
GAG-eDHFR Virotrap experiments. The high confidence results (more than
one peptide in two biological replicates) are shown in the specific tables.
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powerful mechanism that aids in the recruitment of cyclophilin to
GAG?, a well-known weak interaction (Kq=16puM (ref. 28))
detectable as a background association in the Virotrap system.
Although background binding may be increased by elevated
bait expression, weaker associations are readily detectable
(for example, MAL—MYD88-binding study; Fig. 2c).

The size of Virotrap particles (around 145nm) suggests
limitations in the size of the protein complex that can be
accommodated in the particles. Further experimentation is
required to define the maximum size of proteins or the number
of protein complexes that can be trapped inside the particles.

The underlying biology of the system makes it best suited for
the study of cytosolic complexes. However, we could identify prey
proteins residing in the plasma membrane compartment or in the
endoplasmic reticulum (ER) membrane. The current version of
the platform is probably not applicable to mitochondria,
peroxisomes or other confined cellular compartments. The
introduction of alternative or artificial viral matrix variants
combined with adapted purification protocols will open the way
to protein complex trapping in other compartments of the cell.
The activity of antiviral factors (for example, tetherin?®) may
interfere with Virotrap in other cell types. Via genome
engineering approaches, these factors can be eliminated. The
use of artificial or mutated GAG variants can also prevent the
activity of antiviral mechanisms and may thus facilitate the
introduction of the system in other cell lines and primary cells.

It is still highly challenging to find protein interaction partners
for small molecules, not only for clarifying the mechanism of
action of orphan drugs but also for identification of the proteins
responsible for the off-target effects of known drugs. Besides the
classical pull-down approach using biotinylated variants of the
small molecules, some technologies were specifically developed
for this purpose including MAPPIT variants?>*? and the more
recent thermal profiling strategy coupled to proteomics®!. Using a
bivalent small molecule as a bait we here show successful capture
of the well-known simvastatin target HMGCR, a transmembrane
ER-resident protein. UBIADI (ref. 32) is probably a member of
the HMGCR complex that is co-sorted to the particles. A physical
interaction between HMGCR and SQLE has not been formally
shown, but the specific identification by Virotrap of this second
rate-limiting enzyme in the cholesterol pathway may point to a
beneficial off-target effect of simvastatin.

In this study we employ a stringent filtering approach to reveal
specific protein partner candidates based on the elimination of
all proteins identified in a large number of control experiments
(19 controls for standard discovery+4 additional DMSO
experiments for the small molecule application). A number of
filtering approaches have been described** and the careful
application of some of these tools may provide a useful
alternative for the current ‘black list’ strategy. For example,
application of the bait-centred tool SFINX3? using AURKA as
artificial bait for the reversine study revealed association with
TTK (SFINX P value of 1.79E — 43), a well-known target of this
small molecule®®. However, TTK is removed in the black
list strategy, because of sporadic identification in control
experiments.

In conclusion, Virotrap captures significant parts of known
interactomes and reveals new interactions. This cell lysis-free
approach purifies protein complexes under native conditions and
thus provides a powerful method to complement AP-MS or other
PPI data. Future improvements of the system include strategies to
reduce bait expression to more physiological levels and applica-
tion of advanced data analysis options to filter out background.
These developments can further aid in the deployment of
Virotrap as a powerful extension of the current co-complex
technology arsenal.

6

Methods

Plasmids and antibodies. The p55 GAG fusion constructs were generated by PCR
amplification of the p55 GAG coding sequence from the pCMV-dR8.74 packaging
construct (Addgene) and by subsequent In-Fusion reaction (Clontech) in
PMGI-Ras, a HRAS expression vector used in the MAPPIT system>?, resulting in a
p55 GAG-RAS under control of the strong SRalpha promoter (pMET7-GAG-Ras).
Enhanced green fluorescent protein (EGFP) was transferred from pEGFP-C1
vector (Clontech) to generate the pMET7-GAG-EGFP construct. Using PCR-based
cloning, a Gateway cassette was inserted to allow recombination-assisted cloning.
The complete set of positive and random reference clones were transferred in a
single direction (no bait-prey swap) using standard GATEWAY cloning. Prey open
reading frames from these sets were transferred into a GATEWAY-compatible
PMET?7 expression vector with an amino-terminal E-tag fused in frame. The
MYD88 TIR and MAL prey constructs were generated from plasmids that were
previously described!®. The complementary DNAs for A20, RNF41, TANK, FADD
and eDHER were transferred from the ORFEOME 5.1 collection or from previous
constructs®>*® into the pMET7 vector containing in-frame gateway sites and
N-terminal epitope tags (MYC-, FLAG- or VSV) or an N-terminal GAG sequence,
to allow Virotrap experiments. The TNFR plasmid (pSV25S-hTNFR 55) was
obtained from the BCCM/LMBP plasmid collection.

The pMD2.g pseudotyping vector was kindly provided by D. Trono
(EPFL, Lausanne, Switzerland; Addgene). The pcDNA3-FLAG-VSV-G and
pcDNA3-Etag-VSV-G will be described elsewhere.

Antibodies used for western blotting were anti-p24 GAG (Abcam; ab9071;
1/1,000), anti-FLAG (M2, Sigma Aldrich; 1/2,000), anti-actin (Sigma Aldrich;
A2066; 1/2,000), anti-VSV (Sigma Aldrich; V4888; 1/1,000), anti-MYC (clone
4E10, prepared in-house) and anti-E-tag (GE Healthcare; 27941201; 1/1,000).
Secondary antibodies were from Li-Cor (1/5,000) and blottings were digitally
imaged using an ODYSSEY Imager system (Li-Cor).

Production and purification of Virotrap particles. Standard HEK293T cells
(obtained from the Rufer lab at the CHUV, Lausanne) were cultured in a
humidified atmosphere at 8% CO, using high-glucose DMEM (Invitrogen)
complemented with 10% FCS and antibiotics. Cell cultures were kept at low
passage (<10) and regularly tested for mycoplasma contamination.

Cells were transfected overnight the day after seeding, with a standard calcium
phosphate transfection procedure. For ultracentrifugation experiments, we
transfected 25 g of bait vector (GAG-EGFP and GAG-HRAS) normalized to 50 pug
with a mock vector, in 6 x 10° cells seeded the day before in 75 cm? bottles.

For concentration of the VLPs, we harvested supernatant after 24 h, centrifuged
samples for 3 min at 140 g to remove cellular debris and filtered the supernatant
through 0.45 um filters. The samples were then centrifuged in a Beckman
ultracentrifuge using a Ti41 swinging bucket rotor at 22,000 r.p.m. The supernatant
was discarded and VLP pellets were re-suspended directly in loading buffer for
western blot analysis.

For binary interaction assays, 650,000 HEK293T cells were seeded the day
before transfection in 6-well plates. On the day of transfection, a DNA mixture was
prepared containing the following: 3.5 g bait construct (pMET7-GAG-bait), 0.8 pug
prey construct (pMET7-E-tag prey or pMET7-FLAG-RAF1), 0.7 pg pMD2.G and
1.4 ug pcDNA3-FLAG-VSV-G. Following overnight transfection, cells were washed
once with PBS and 1 ml of fresh growth medium was added to the wells. Cellular
debris was removed from the harvested supernatant by 3 min centrifugation at
400 g. The cleared medium was then incubated with 10 ul Dynabeads MyOne
Streptavidin T1 beads (Invitrogen) pre-loaded with 1 ug monoclonal ANTI-FLAG
BioM2-Biotin, Clone M2 (Sigma-Aldrich) according to the manufacturer’s
protocol. After 2h binding at 4 °C by end-over-end rotation, beads were washed
two times with washing buffer (20 mM HEPES pH 7.4 and 150 mM NaCl) and the
captured particles were released directly in 35l 2 x SDS-PAGE loading buffer.
A 5-min incubation step at 65 °C before removal of the beads ensured complete
release. After boiling, the samples were loaded on a 10% SDS-PAGE gel or on
commercial 4-12% gradient gels (Biorad) and after separation the proteins were
transferred to Hybond-C Extra nitrocellulose membranes (GE Healthcare). Lysates
of the producer cells were prepared by direct addition of 200 il RIPA buffer
(50 mM Tris-HCI pH 7.4, 150 mM NaCl, 1% NP40, 1% sodium deoxycholate, 0.1%
SDS and Complete protease inhibitor cocktail (Roche)) to the 6-well plates after
washing of the cells in chilled PBS. The lysates were cleared by centrifugation at
13,000 g, 4 °C for 15 min, to remove the insoluble fraction.

The PRS and RRS were randomized and processed in sets of about 45
experiments. Each set was loaded on 2 4-12% gradient gels with 26 slots (Biorad).
Each set of experiments also contained the GAG-EGFP expression control, a mock
control and the interaction between GRAP2 and LCP2 as a positive control for
Virotrap functionality. A single pooled positive control for the GRAP2-LCP2
interaction was also loaded on each gel to allow cross-comparison between the gels.
Bands were quantified by fluorescence signals with an ODYSSEY system (Li-Cor).
The detection threshold was based on RRS signals and was set at 28 positive signals
from the positive reference set, at the expense of 5 false-positive measures from the
random reference set.

For MS, 107 HEK293T cells were seeded in three to four 75 cm? bottles
and transfected the next day with a total of 15 g DNA per bottle using
polyethyleneimine (PEI) reagent. The following DNA/PEI quantities were used:
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GAG-bait 7.5 pug; mock vector 5.4 pug; 2.1 pg of a 1/2 pMD2.G-pcDNA3-FLAG-
VSV-G mix versus 37.5 il PEL The cellular supernatant was harvested after 32h
and centrifuged for 3 min at 450 g, to remove cellular debris. For simvastatin,
tamoxifen and reversine experiments, the bivalent MTX-polyethylene glycol-small
molecules?37 were added after transfection to the producing cells at a
concentration of 1 uM. Producer cells transfected with the A20 bait, VSV-G
capture proteins and 1.15 ug TNFR plasmid were treated with 300 [Uml ~! of
human TNFa during production, to monitor dynamic A20 complexes. The cleared
supernatant was then filtered using 0.45 um filters (Millipore). A total of 100 pl
MyOne Streptavidin T1 beads pre-loaded with 10 ul ANTI-FLAG BioM2-Biotin
antibody was used to bind the tagged particles. Particles were allowed to bind for
2h by end-over-end rotation. The total supernatant was processed in three
consecutive binding steps. Bead-particle complexes were washed once with
washing buffer (20 mM Tris-HCI pH 7.5 and 150 mM NaCl) and were then eluted
with FLAG peptide (30 min at 37 °C; 200 ugml ~ ! in washing buffer) and lysed by
addition of SDS to a final concentration of 0.1%. After 5min, SDS was removed
using HiPPR Detergent Removal Spin Columns (Pierce, Thermo Scientific)
followed by boiling and overnight digestion with 0.5 g sequence-grade trypsin
(Promega). After acidification (addition of 1l of 10% trifluoroacetic acid), the
peptides were separated by nano-LC and directly analysed with a Q Exactive
instrument (Thermo Scientific) operating in MS/MS mode as described before®.
Searches were performed using the MASCOT algorithm (Version 2.4.1, Matrix
Science) at 99% confidence against human and bovine SWISSPROT accessions
(Release 2013_02) complemented with HIV-1, EGFP, VSV-G and FLAG-VSV-G
protein sequences. False discovery rates (FDR) were obtained by searches against
the reversed version of the complete search database and by retaining only the
peptide to spectra matches (PSMs) with the highest score in standard or reverse
search. The false discovery rate was then calculated by dividing the number of
PSMs against the reversed database by the number of PSMs against both databases.
Identifications are reported by unique gene name in the tables. Raw data files,
search settings, mascot generic format files (MGFs) and identification lists were
submitted to PRIDE using Proteome Exchange. Protein spectral count files and
peptide spectral count files are provided as Excel files (Supplementary Data 3 and
4, respectively).

AP-MS experiments. Plasmids encoding N-terminally FLAG-tagged A20 and
RNF41 were transfected using PEI in 2 x 15-cm dishes. Cells were scraped in lysis
buffer (50 mM HEPES-KOH pH 8.0, 100 mM KCI, 2mM EDTA, 0.1% NP40, 10%
glycerol, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride,

Protease inhibitor cocktail (Roche), 0.25 mM sodium orthovanadate, 50 mM
glycerophosphate and 10 mM NaF) and then processed according to the protocol
described by Kean et al.3®. MS analysis was performed as described higher for
Virotrap samples. MASCOT searches were performed at 99% confidence against
the human SWISSPROT database. Supplementary Table 2 shows an overview of
the obtained results. Protein spectral count files and peptide spectral count files are
also provided as Excel files (Supplementary Data 5 and 6, respectively).

Co-immunoprecipitation and MAPPIT/MASPIT experiments. For
co-immunoprecipitation experiments, 4-4.5 x 10° HEK293T were seeded in 10 cm
dishes and transfected the next day with 17 pg of each tagged protein. Cells were
lysed in lysis buffer (10 mM Tris-HCI pH 8, 150 mM NaCl, 1% NP40, 10% glycerol,
5uM ZnCl,, phosphatase inhibitors and protease inhibitor cocktail (Complete;
Roche)). Immunoprecipitation was performed with 10 pl MyOne Streptavidin T1
beads preloaded with 1 ug ANTI-FLAG BioM2-Biotin antibody. Control immu-
noprecipitations were performed without ANTI-FLAG antibody. The material was
directly eluted using SDS-PAGE loading buffer, boiled and loaded on SDS-PAGE.
MAPPIT experiments were performed as described before®. The binary MASPIT
assays were essentially performed as described before?!. Briefly, HEK293T cells
were seeded in black, tissue-culture-treated 96-well plates at 10,000 cells per well in
100 pl culture medium (DMEM supplemented with 10% FCS) and grown at 37 °C,
8% CO,. Twenty-four hours later, cells were transfected with a combination of the
pCLG-eDHFR bait plasmid?!, the pMG1-HSD17B4 prey construct and the
pXP2d2-rPAP1-luciferase reporter’?. The prey constructs were generated by
Gateway transfer of the full-size AURKA, ESR1, HSD17B4 and NQO2 open
reading frames, obtained as an entry clone in the hORFeome collection, into the
Gateway compatible pMG1 prey destination vector’’. Twenty-four hours after
transfection, cells were either left unstimulated or treated with 100 ng ml ~ ! leptin,
with addition of DMSO, MTX-modified tamoxifen or MTX-modified Reversine.
Another 24 h later, luciferase activity was assayed using the Luciferase Assay
System kit (Promega).
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