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Traditional Chinese medicine (TCM) has demonstrated superior therapeutic effect for
musculoskeletal diseases for thousands of years. Recently, the herbal extracts of TCM
have received rapid advances in musculoskeletal tissue engineering (MTE). A literature
review collecting both English and Chinese references on bioactive herbal extracts of TCM
in biomaterial-based approaches was performed. This review provides an up-to-date
overview of application of TCMs in the field of MTE, involving regulation of multiple signaling
pathways in osteogenesis, angiogenesis, anti-inflammation, and chondrogenesis.
Meanwhile, we highlight the potential advantages of TCM, opening the possibility of its
extensive application in MTE. Overall, the superiority of traditional Chinese medicine turns it
into an attractive candidate for coupling with advanced additive manufacturing technology.
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1 INTRODUCTION

Musculoskeletal tissues, composed of bone, cartilage, tendon, ligament, and skeletal muscle,
demonstrate poor recovery ability. In fact, the unsatisfactory regeneration of severely damaged
tissue often causes pains, joint instability, and even disabilities which remains a tricky problem for
surgeons. Although autologous tissue grafts, allografts, or xenografts have been broadly applied in the
clinic, they have several limitations, including donor site morbidity and poor plasticity in terms of
shape and structure. Furthermore, allografts and xenografts are at risk of transmitting infectious
agents or even being rejected (Campana et al., 2014).
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Musculoskeletal tissue engineering (MTE) emerged as a
promising solution to surmount the limitations of auto- and
allografts. Current strategies involve the application of tissues
grafts with embedded growth factors to accelerate tissues healing.
However, advanced molecules are frequently associated with high
production costs or deleterious side-effects, limiting wide
applicability, and therapeutic efficacy in clinical practice
(Campana et al., 2014). In an effort to discover effective
strategies for musculoskeletal tissues regeneration, much focus
has been put on the pursuit of natural-based products owing to
their availability, cost-effectiveness, and biological activity.

Traditional Chinese medicine (TCM) are becoming
increasingly popular in musculoskeletal tissue regeneration. As
an indispensable component of complementary and alternative
medicine, TCM has evolved over thousands of years and still
plays an important role in human health (Campana et al., 2014;
Deng et al., 2014; Li et al., 2014). Over the last 3 decades, the
application of scientific methodology has partly elucidated the
underlying mechanisms of some herbal treatments. The potent
bioactivity of some traditional therapies was revealed in recent
years, owing to alternative therapies rigor to the study. For
example, the 2015 Nobel Prize was awarded for discovering an
antimalarial medicine extracted from TCM. With the improved
understanding of the underlying mechanism, TCM is becoming
increasingly popular in musculoskeletal tissue regeneration
(Putnam et al., 2007; Liu et al., 2017; Song et al., 2018b; Zhu
et al., 2021).

TCM combining conventional therapies with the MTE is a
promising strategy to treat orthopedic diseases with unfavorable
outcomes previously. Scientists have successfully isolated,
identified, and purified various bioactive components in TCM,
such as flavonoids, saponins, terpenes, alkaloids, and others (Lu
and Jiang, 2012). Typically, these formulations modulate multiple
signaling pathways and exert their effects on different cellular
targets, enabling the treatment of orthopedic diseases with
multifactorial pathogenesis. This review provides an up-to-date
overview of the use of TCMs as signaling molecules and
functional materials in the field of MTE, and further
highlights their new and promising directions for the future.

2 TRADITIONAL CHINESE MEDICINE
THEORY

TCM originated over 3,500 years ago, and is enjoying a
resurgence in the late 20th century. The theoretical medical
system of TCM was gradually developed through thousands of
years of practice and refinement. It is a sophisticated set of many
systematic techniques and methods including acupuncture,
herbal medicine, acupressure, “qi gong”, and oriental massage.

Unlike modern medicine, TCM theory not only considers the
whole person, but focuses the systematic interrelatedness of the
person and nature. It is more focused on the vitalistic and
synthetic aspects of humans. The major position of TCM is
the balance of “yin” and “yang”. Moreover, it is through the
diagnosis of “qi” disturbance that the TCM practitioner restores
the “qi” balance, returning the person to a state of health.

According to TCM theories, the occurrence, development, and
outcome of diseases are closely related to TCM constitutions.
These constitutions form during an individual’s lifetime and are
based on natural and acquired endowments (Liang et al., 2020).
In addition, constitutions can not only affect disease susceptibility
but also the development, outcome, and prognosis of disease.
Some aspects of the orthopedic disease in modern mainstream
medicine are gradually coinciding with the constitution theory of
TCM. For example, the current consensus regarding the etiology
and pathogenesis of osteonecrosis states that phlegm and blood-
stasis constitutions are the main pathogenic factors (Yu et al.,
2016). The blood-stasis constitution has a strong repair ability,
but the yang-deficiency constitution has a poor repair ability and
tends to collapse, requiring positive treatment. As TCM develops
further, intervention measures can be established to improve
TCM constitutions.

3 TRADITIONAL CHINESE MEDICINE
APPLICATIONS IN ORTHOPEDICS

Recently, the application of TCM in MTE is booming and show
superior therapeutic potential. Some herbs have been proven to
be beneficial to bone health, such as Eucommiae Cortex (Du-
Zhong) (Qi et al., 2019), Achuranthes (Huai-niu-xi) (Zhang et al.,
2018; Song et al., 2018a), Dipsaci Radix (Xu-Duan) (Ke et al.,
2016), Testudinis Plastrum (Gui-ban) (Liang et al., 2016; Ren
et al., 2017; Shen et al., 2018), Drynariae Rhizoma (Gu sui-bu)
(Qiu et al., 2016; Song et al., 2017b), Du Huo Ji Sheng Tang
(Wang et al., 2017b), and zuo Gui Wan (Lai et al., 2015). Among
these TCMs, the epimedii herb and its multicomponent
formulation ‘Xian Ling Gu Bao’ have icariin as their main
ingredient and have been used to cure bone diseases such as
osteoporosis and bone fracture (Zhang et al., 2014). In parallel,
lamiophlomis rotate (Du Yi Wei) pill was used to treatment of
pain in clinic, such as bone and muscle pain, joint pain, and
dysmenorrhea. It has the effect of promoting blood circulation,
relieving pain, stopping bleeding, and removing silt form the
perspective of TCM (Li et al., 2010). Moreover, another TCM
regent named salvia miltiorrhiza injection, has therapeutic effects
in cardiovascular disease with the antioxidant, antibacterial, and
anticoagulant properties (Wang et al., 2017b). These herbal
medications were approved officially by the Chinese Food and
Drug Administration and have been widely used in clinic
nowadays. Various studies discussed in the following
paragraphs would provide further evidence of the realistic
possibility of TCM being used as a therapeutic alternative in
the foreseeable future.

4 MULTIFUNCTIONAL TRADITIONAL
CHINESE MEDICINE

4.1 Icariin
Icariin (Figure 1)is a prenyl flavonoid glycoside isolated from
Epimedium herb, demonstrating extensive therapeutic capacities
such as osteoprotective effect, neuroprotective effect,
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cardiovascular protective effect, anti-cancer effect, anti-
inflammation effect, immunoprotective effect, and
reproductive function (Li et al., 2015).

4.1.1 Osteogenesis
Currently, the significant osteogenic effect of icariin made it a
promising drug candidate in bone tissue engineering. As early as
2008, the osteoinductive potential of icariin on pre-osteoblastic
cells was elucidated (Zhao et al., 2008). The extremely low cost of
icariin and its high abundance makes it appealing for bone
regeneration (Fan et al., 2011). Importantly, icariin can be
steadily and locally released by using biomaterials, making it
an attractive osteoinductive candidate for bone tissue engineering
(Zhao et al., 2010; Fan et al., 2012; Zhang et al., 2013).

Previous studies have shown that icariin could induce
osteogenic differentiation of preosteoblastic cells. For
example, Zhao et al. confirmed the anabolic effect of icariin
in vivo employing a mouse calvarial defect model. Calcium
phosphate cement loaded with icariin filled in the mouse
calvarial bone defect induced significant new bone formation
and increased bone thickness. The study utilizing senescence-
accelerated mouse models further demonstrated that icariin
significantly enhanced bone formation in vivo (Zhao et al.,
2010). Moreover, Wu et al. constructed the calcium
phosphate cement scaffolds, which loaded with icariin and
then implanted into the calvarial defect of the ovariectomized
rats. The results demonstrated that icariin could up-regulate the
expression of osteogenic and angiogenic genes in bone marrow
stem cells (BMSCs) (Wu et al., 2017).

In parallel, icariin could also be loaded into porous
β-tricalcium phosphate (β-PTCP) ceramic disks to enhance
the ability of calcium phosphate-based biomaterials for bone
defect repair. β-TCP has been employed extensively as a
substitution material for bone defect repair (Park et al., 2014;
Sándor et al., 2014). It was showed that loading icariin in β-TCP
(Ica/β-TCP) disks had no effect on the attachment and
morphology of Ros17/28 cells. However, the Ica/β-TCP disks
expressed support for the proliferation and differentiation of
Ros17/28 cells better compared with the β-PTCP disks. After
back intramuscular implantation of rats for 3 months, no obvious
osteogenic evidence was detected in β-PTCP disks, but new bone
formation was observed in Ica/β-TCP disks (Zhang et al., 2011).

In addition to synthetic scaffolds, icariin could be loaded onto
the natural scaffold or small intestine submucosa (ICA-SIS) to
improve their osteoinductivity (Li et al., 2017). In vitro
experiments revealed that expression of osteogenic
differentiation markers (Alp, Bsp, and Ocn) was increased
after treatment of ICA-SIS scaffold while no significant
cytotoxicity was indicated. In an in vivo mouse calvarial defect
model, bone regeneration was enhanced by SIS implantation at
8 weeks, compared to the control defect. These results suggest
that icariin had the potential to be used for bone defect repair.

4.1.2 Angiogenesis
Vascularization is considered to be a crucial step in bone
formation (Wernike et al., 2010). It is reported that icariin
stimulated in vitro endothelial cell proliferation, migration,
and tubulogenesis, as well as increasing in vivo angiogenesis

FIGURE 1 | Illustration of icariin: the origin, molecular structure, and biomedical researches. Icariin is obtained from the leaves of Epimedium herb. As a widely used
TCM, icariin demonstrates extensive therapeutic capacities such as osteogenic differentiation, tubulogenesis, and chondrogenic factor expression. Calvarial defect,
distal femoral defect and ONFH mice/rabbits are commonly used animal models.
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(Chung et al., 2008). In a recent study, three-dimensional (3D)
printing β-TCP scaffold loaded with icariin was implanted into
the steroid-induced osteonecrosis of the femoral head rabbit
models. Immunohistochemical staining revealed that a higher
positive rate of vascular endothelial growth factor in the
composite scaffold group. This result suggested that icariin
could not only protect the injured vascular endothelial cells,
but also stimulate angiogenesis directly (Ji et al., 2005; Wang
and Huang, 2005; Xu and Huang, 2007), and it might be the
potential drugs in angiogenic therapy.

4.1.3 Chondrogenesis
Hyaline articular cartilage lacks blood vessels, lymphatics, and
nerves and exhibits limited self-repair ability after injury.
Traditional techniques of articular cartilage repair and
regeneration all have certain limitations. The development
of tissue engineering technology has brought hope to the
regeneration of articular cartilage. Icariin at a low dose of
0.94 G/kg was identified to have significantly promoted the
proliferation of chondrocytes and enhance the secretion of
glycosaminoglycan (Zhang et al., 2019). Femoral condyle from
rabbits treated with icariin conditioned serum and hyaluronic
acid was observed to regenerate more native cartilage and
subchondral bone regeneration. In vitro study, ICA
significantly upregulated the mRNA expression levels and
protein synthesis of collagen II, aggrecan, and Sox9, which
were chondrogenic differentiation markers (Wang et al.,
2014).

In a recent study, BMSCs were cultivated in a self-assembling
peptide nanofiber hydrogel scaffold in a chondrogenic medium
for 3 weeks (Wang et al., 2018). Icariin was added to the medium
throughout the culture period. The results demonstrated that
icariin significantly enhanced cartilage extracellular matrix
synthesis and gene expression levels of collagen II and Sox9,
and additionally promoted more chondrocyte-like rounded
morphology in BMSCs. In another study, icariin was added
into cell-hydrogel constructs derived from neonatal rabbit
chondrocytes and collagen type I (Li et al., 2012). The results
showed that icariin-added cell-hydrogel constructs obviously up-
regulated the expressions included aggrecan, Sox9, and collagen
type II of seeded chondrocytes from 99.7 to 248%. Moreover, the
icariin-loaded hydrogel improved the restoration efficiency of
supercritical-sized osteochondral defects in adult rabbit model,
and enhanced the integration of new-formed cartilage with
subchondral bone. These results demonstrated the potential of
icariin to promote a reparative response in cartilage defects and
the possible application in bioactive material-based cartilage
regeneration therapies.

4.2 Ginseng
Ginseng (Figure 2), regards as the king of all herbs, has been used
as a traditional medicine for the treatment of diseases for
thousands of years in East Asian countries. The principal
bioactive components of ginseng are ginsenosides such as Rb1,
Rb2, Rc, Rd, Re, and Rg1, showing various anti-inflammatory,
antioxidant, antibacterial, antiviral, and antifungal functions.

FIGURE 2 | Illustration of ginseng: the origin, molecular structure, and biomedical researches. Ginsenoside is the major active ingredient in ginseng, including Rb1,
Rb2, Rc, Rd, Re, Rg1, and so on. Thus far, ginseng has been frequently studied form the aspects of cells, biomaterials, and animals. It shows potent angiogenesis,
osteogenesis, and anti-inflammation activity by inducing osteogenic cell proliferation, tube formation, and macrophage chemotaxis.
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Based on the advantages above, ginseng may provide the basis for
the development of novel therapeutic agents.

4.2.1 Osteogenesis
Previous studies have demonstrated that Rg1 could improve the
anti-aging ability of BMSCs, whichwas attributed to the anti-oxidant
and anti-inflammatory capacities (Hu et al., 2015; Zeng et al., 2018).
Moreover, differentiation culture analysis showed that Rg1 could
guide human bone marrow-derived mesenchymal stem cells (hBM-
MSCs) towards osteogenic lineage while suppressing adipogenic
differentiation (Wang et al., 2020c). Additionally, Hong et al.
observed that Rg3 increased proliferation and suppressed
senescence of hBM-MSCs (Hong et al., 2020). Suitable scaffold
materials were prepared using fish scale collagen, hydroxyapatite,
chitosan, and beta-tricalcium phosphate. Ginseng compound K was
incorporated into the composite scaffold. In vitro analysis showed
that the prepared scaffold was biocompatible and supported the
growth of MG-63 cells (human osteosarcoma cells), and therefore
has potential as an alternative approach for bone regeneration
(Muthukumar et al., 2016).

4.2.2 Angiogenesis
On the other hand, Rg1 has been proven to have estrogen-like
activity (Chan et al., 2002). It is well known that estrogen could
modulate angiogenesis via effects on endothelial cells (Morales
et al., 1995). Therefore, it suggests that Rg1 may be used to
stimulate angiogenesis.

Based on the above potential, Rg1 was encapsulated into
biodegradable poly propylene fumarate (PPF) microspheres to
facilitate osteogenesis (Salarian et al., 2016). In the presence of
Rg1 within the dose range of 1–32 μg/ml, elongated and robust
capillary-like networks were formed in vitro attributed to a
greater number of cells compared with the control, indicating
the angiogenic activity of Rg1. The previous results suggested that
Rg1 could be a novel group of angiogenic agents with superior
stability and may be used for the MTE (Liang et al., 2005).

4.2.3 Anti-Inflammation
Inflammatory cytokines induced by traumatic lesions in cartilage
and osteoarthritis (OA) are involved in lubricin catabolism and
cartilage degeneration, further disrupting the normal homeostasis
in articular cartilage to the breakdown of cartilage in the pre-OA
conditions (Billinghurst et al., 1997; Elsaid et al., 2007; Goldring
and Otero, 2011; Wojdasiewicz et al., 2014). Thus, it is vital to
maintain a proper microenvironment for the chondrogenic
differentiation of endogenous stem cells at the defected area.
Ginseng has been demonstrated to have therapeutic potential in
anti-inflammatory, anti-apoptosis, and neuroprotective
responses (Radad et al., 2004; Hashimoto et al., 2012).

Porous, stable and biodegradable bone microsphere scaffold
loading with ginseng compound was studied, and in vitro results
indicated that the composite microspheres expressed higher
osteogenic markers in rat bone marrow stem cells seeded
(Thangavelu et al., 2020). In another study, Wu et al. designed
a novel Rb1/TGF-β1 loaded silk fibroin-gelatin porous scaffold
with the advantages of inflammation attenuation and
chondrogenesis promotion (Wu et al., 2020). As the results

showed, the scaffold promoted the chondrogenic
differentiation of BMSCs and suppressed inflammation gene
expression. Moreover, it effectively promoted the regeneration
of hyaline cartilage of the osteochondral defects in rats. These
results prove Rb1 has a great potential to maintain an anti-
inflammation microenvironment for cartilage repair.

4.3 Naringin
Gu sui-bu is a commonly used Chinese medical herb for
therapeutic treatment of bone-related diseases, and naringin
(Figure 3) is the main active component in Gu sui-bu. Recent
research has focused on the potential applications as a bone
therapeutic or as a mediator of MSC osteogenic lineage
differentiation (Chen et al., 2016).

4.3.1 Osteogenesis
Pang et al. confirmed naringin significantly prompted osteogenic
in osteoblast-like cells via estrogen receptor-dependent pathways
(Pang et al., 2010). Importantly, this study demonstrated that
naringin exerts tissue-selective estrogenic effects on bone and
possibly in adipose tissue, suggesting the potential antiresorptive
capacity of naringin. The low bioavailability and extensive
metabolism of naringin motivated researchers to explore MTE
for immobilizing or protecting it from degradation and for
achieving a sustained spatiotemporally controlled release to
improve its therapeutic effect.

Initially, human periodontal dental ligament stem cells were
seeded in a nanohydroxyapatite scaffold and cultured in a naringin-
containingmedium for 1 week, following by implanting into healthy
mice. The transplant was harvested 8 weeks later and the naringin-
treated group exhibited improved trabecular bone maturity
surrounding the scaffold (Yin et al., 2015). In a recent study,
naringin was incorporated in the electrospun nanoscaffold
containing poly (ε-caprolactone) (PCL) and poly (ethylene
glycol)-block-poly (ε-caprolactone) (PEG-b-PCL) (Ji et al., 2014).
Osteoblast-nanoscaffold interactions were studied and osteoclast-
nanoscaffolds response was evaluated in a mouse calvarial defect
organ culture model. The results demonstrated that controlled-
release naringin nanoscaffolds supported osteoblast adhesion,
proliferation, differentiation, and mineralization more effectively
while suppressing osteoclast formation. Alternatively, Chen et al.
developed a porous biodegradable composite comprising genipin-
crosslinked gelatin and β-Ca3(PO4)2 ceramic microparticles (GGT)
mixed with naringin (10 mg/ml) (Chen et al., 2013). The potential of
the composites in repairing bone defects was evaluated and
compared in vivo by using the biological response of rabbit
calvarial bone to these composites. After 8 weeks of implantation,
naringin-loaded GGT composites promoted a significant deposition
of new bone formation when compared with GGT controls.

4.3.2 Anti-Inflammation
Moreover, previous studies have further demonstrated the
antibacterial function of naringin (Tsui et al., 2008). To better
exert inherent antimicrobial and pro-osteogenic effects of
naringin, Yu et al. designed a multifunctional mineralized
collagen coating on titanium with the aid of metal-organic
framework nanocrystals to control the release of naringin (Yu
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et al., 2017). The attachment, proliferation, osteogenic
differentiation, and mineralization of mesenchymal stem cells
on the coating were significantly enhanced. Meanwhile,
antibacterial abilities against Staphylococcus aureus were also
promoted.

4.3.3 Angiogenesis
In addition to the properties of osteogenesis and anti-
inflammation, naringin could also regulate the function of
endothelial cells to promote angiogenesis in bone (Shangguan
et al., 2017). Meanwhile, oral administration of naringin could
improve the expression of vascular endothelial factor, further
augmenting the vascularization of the callus in osteoporotic
fractures in ovariectomized rats (Song et al., 2017a). Although
these studies have illustrated the angiogenic activity of naringin,
the application of naringin to promote vessel ingrowth is still
scarce. Given the superior osteogenic, anti-inflammation, and
angiogenic properties, naringin is regarded as an excellent
candidate for MTE and regenerative medicine application.

5 MONOFUNCTIONAL TRADITIONAL
CHINESE MEDICINE

5.1 Psoralen
Psoralen is an active component in TCM Buguzhi which means
‘‘material for bone strengthening,” which has been reported to
have antibacterial, anti-tumor, coronary artery broadening, and

estrogen-like activity (Guo et al., 2003). It has also been reported
that the extract of psoralen could promote osteoblastic
differentiation as evidence of increased Alp (Xiong et al., 2003).

In order to determine whether psoralen could also increase the
amount of new bone formation locally, Wong and Rabie
measured the amount of new bone produced by psoralen with
collagen matrix carrier grafted into bone defects in rabbits (Wong
and Rabie, 2011). As the histological assessment showed, a total of
454%more new bone was present in defects grafted with psoralen
in collagen matrix than those grafted with collagen matrix. There
was also more amount of bone forming osteoblasts in the
psoralen group than the negative control–collagen group. This
comparison showed that psoralen was osteogenic when used with
the collagen matrix.

5.2 Kaempferol
Kaempferol (Kaem) is a widespread naturally occurring flavonoid
in plants and herbs. It is known for its activity in anti-
inflammatory, anti-oxidant, anti-cancer, and anti-ulcer
properties (Chen and Chen, 2013). In orthopedic aspects,
Kaem has been reported to reduce glucocorticoid-induced
bone loss and promote osteoblast differentiation (Prouillet
et al., 2004; Adhikary et al., 2018). Moreover, Kaem exerts
profound anti-osteoclastogenic effects by specifically
antagonizing tumor necrosis factor receptor family action on
bone cells, by disrupting production of osteoclastogenic cytokines
from osteoblasts and attenuating osteoclast precursor cell
differentiation (Pang et al., 2006).

FIGURE 3 | Illustration of naringin: the origin and biomedical researches. Naringin is a natural flavonoid present in several fruits of the Citrus genus. As a flavonoid
with multiple therapeutic targets in orthopedic tissues, naringin exhibits osteogenic, angiogenic, and anti-inflammation effects in preclinical studies.
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A recent study investigating the bioactive glass scaffold loaded
with Kaem showed that Kaem could support bioactivity and cell
attachment (Ranjbar et al., 2021). In another study, TiO2 implant-
immobilized Kaem could be an effective tool for bone
regeneration in rats (Tsuchiya et al., 2018). The results showed
that BMSCs cultured on alkali-treated TiO2 samples containing
Kaem promoted alkaline phosphatase activity, calcium
deposition, and osteogenic differentiation. The in vivo
histological analysis revealed that Kaem stimulated new bone
formation around implants.

5.3 Ursolic Acid
Ursolic acid (UA) is one of many ubiquitous triterpenoids in
medicinal herbs. It is found throughout the plant kingdom and
constitutes an integral part of the human diet (Xia et al., 2011).
Pharmacological effects of UA include anti-cancer (Hsu et al.,
1997), pro-differentiation (Lee et al., 1994), anti-viral (Quéré
et al., 1996), and anti-invasion activities (Cha et al., 1998).

Interestingly, Lee et al. reported that UA promotes bone
formation and induces bone forming activity in vivo (Lee
et al., 2008). Furthermore, they showed that the expression of
osteoblast-specific genes was enhanced after UA treatment, and
that UA could induce osteoblastogenesis and mineralization of
osteoblasts in vitro, which was associated with the activation of
mitogen-activated protein kinases (MAPKs), activator protein-1
(AP-1), and nuclear factor-kappaB (NF-kB). Studies have also
demonstrated that UA activates chondrocytes through the NF-
kB/NLRP3 inflammasome pathway, thus preventing cartilage
degeneration in osteoarthritis (Wang et al., 2020a). In
consideration of the various beneficial effects of UA, it can be
considered an effective treatment strategy for OA.

Mesoporous bioglass/chitosan porous scaffolds loaded with
UA have been demonstrated to enhance bone regeneration (Ge
et al., 2019). The as-released UA drugs from the scaffolds
increased the alkaline phosphatase activity, osteogenic
differentiation-related gene type I collagen, runt-related
transcription factor 2 expression, and osteoblast-associated
protein expression remarkably.

5.4 Curcumin
Curcumin, the active constituent for turmeric, is known for its
antioxidant, anti-inflammatory, anticancer, and osteogenic
activities. Numerous studies published in diverse in vivo
models, such as lung inflammation, asthma, sepsis, intestinal
inflammation, osteoarthritis, and psoriasis (Daily et al., 2016;
Burge et al., 2019; Karimi et al., 2019; Panahi et al., 2019; Shahid
et al., 2019; Zahedipour et al., 2020), documenting the anti-
inflammatory properties of curcumin. However, its poor
bioavailability, rapid metabolism, and rapid systemic
elimination led to limiting oral efficacy in various preclinical
and clinical studies. To enhance its bioavailability and to provide
higher release, several scaffolds loaded with curcumin have been
designed.

Cur-loaded microspheres were incorporated into a fish
collagen nano-hydroxyapatite scaffold to promote bone repair
under diabetic conditions (Li and Zhang, 2018). Curcumin
released from the composite scaffolds lasted up to 30 days and

remarkably alleviated the negative effects of diabetic serum on the
proliferation, migration, and osteogenic differentiation of
mesenchymal stem cells. Furthermore, tissue scaffolds
containing a low concentration of curcumin could increase
gene and protein expression related to osteogenesis (Jain et al.,
2016). Interestingly, in another study, liposomal curcumin
released from the three-dimensional printed scaffold showed
significant cytotoxicity toward in vitro osteosarcoma cells,
whereas it promoted osteoblast cell viability, and proliferation
(Sarkar and Bose, 2019). Moreover, the composite hydrogel
loading with Mg2+ and curcumin could simultaneously exert
anti-inflammatory and pro-differentiation effects to accelerate
rotator cuff healing (Chen et al., 2021).

Calcium silicate cements have excellent bioactivity and can
induce the bone-like apatite formation (Chen et al., 2015; Huang
et al., 2015). However, they have degradability and the dissolved
calcium silicate can cause the inflammatory response at the early
post-implantation stage. Based on these, a study designed the
curcumin-loaded mesoporous calcium silicate cement to reduce
the inflammatory reaction after implantation (Chen et al., 2017).
As the results showed, it could inhibit the expression of TNF-α
and IL-1 after inflammatory reaction induced by
lipopolysaccharides and had good anti-inflammatory ability. It
can provide an excellent strategy to inhibit the inflammatory
response for MTE and bone regenerative medicine.

5.5 Thymol
Thymol is a natural product obtained from oregano leaves and
is used for various purposes, such as for their antimicrobial,
antioxidant, and anti-inflammatory activities (Burt et al., 2005;
Liang et al., 2014). It has been shown to reduce the key
mediators of inflammatory cytokines (Fachini-Queiroz
et al., 2012; Amirghofran et al., 2016). The bioactive effects
of thymol combined with MTE is still understudied. A study
investigated the effect of thymol on osteogenesis, specifically
with osteoblast, and osteoclast cells, from surface-modified
Ti6Al4V with plasma sprayed hydroxyapatite coatings (Vu
and Bose, 2020). Thymol shows bacterial inhibition of
Staphylococcus epidermidis and no cytotoxic effects on
osteoblast proliferation in vitro. Despite the scarcity of
research, the potential application of thymol in combination
with orthopedic biomaterials has been shown.

5.6 Danshen
In order to achieve better bone formation performance, it is
necessary to develop some alternative agents with both
osteogenesis and angiogenesis, especially for the patients with
osteonecrosis of the femoral head. Danshen, or Salvia miltiorrhiza
Bunge is a TCM widely used for the treatment of cardiovascular
diseases by improving blood circulation and inhibiting
inflammatory responses (Zhou et al., 2005). Animal studies
have supported the bone protective effect of danshen, and
investigation on individual active components of danshen
showed a similar effect (Chae et al., 2004; Cui et al., 2011).
Salvianolic acid B (SB) is the most abundant molecule isolated
from the aqueous fraction of danshen (Yuan et al., 2005), and it
has been proven to have the bioactivities of both angiogenesis
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(Lay et al., 2003; Liu et al., 2007; Tang et al., 2014; Xu et al., 2014;
Guo et al., 2014a).

A recent study constructed a SB-loaded chitosan/
hydroxyapatite scaffold and loaded it onto the rabbit radius
defect model to evaluate the bone repair effect. The angiogenic
bioactivities of the SB-loaded chitosan/hydroxyapatite scaffold
were proved to be effective by in vivo and in vitro tests (Ji et al.,
2019). In another study, SB was bound to the graphene oxide
(GO) (Wang et al., 2020b),and silk fibroin (SF) substrates were
combined with functionalized GO through the freeze-drying
method. After the SF/GO/SB scaffolds were implanted in a rat
cranial defect model, the defect area showed more new bone and
angiogenesis than that following SF and SF/GO scaffold
implantation. Lin et al. developed a bioactive composite
scaffold incorporated with SB and evaluated the effects on
spinal fusion models (Lin et al., 2019). Results revealed the
effect of SB on new bone formation, mineral apposition rate,
and vessel density within the scaffold. In summary, these studies
suggested that SB could enhance bony fusion through the
promotion of angiogenesis.

6 OTHERS

In fact, in addition to the therapeutic potential of TCMs
mentioned above, there are other interesting targets. For
example, Asperosaponin VI, a natural compound isolated
from the well-known traditional Chinese herb Radix
Dipsaci, promotes osteoblast formation. The
pharmacological study has demonstrated that
Asperosaponin VI promoted MC3T3-E1 and primary rat
osteoblasts proliferation, and enhanced the formation of
bone nodules in osteoblast cells (Niu et al., 2011). In
addition, it can promote osteogenic differentiation of
adipose-derived stem cells by inducing the expression of
bone-related proteins (Ocn and RUNX2, and Smad2/3

phosphorylation) (Ding et al., 2019). Another TCM called
cinnamaldehyde, a bioactive cinnamon essential oil from
Cinnamomum cassia, has been reported to have
multipharmacological activities including anti-inflammation.
Recently, researchers have found it can suppress
proinflammatory cytokines secretion in rheumatology
arthritis synoviocyte cells by Janus kinase/signal transducer
and activator of transcription pathway (Luo et al., 2020). As
the in vivo results showed, cinnamaldehyde ameliorated
collagen-induced arthritis in rats. These findings indicate
that cinnamaldehyde is a potential traditional Chinese
medicine-derived, disease-modifying, antirheumatic
herbal drug.

There have been many in vitro and animal studies provided
multidimensional evidence of the efficacy and mechanisms of
icariin in treating OA models. Interestingly, a recent study
suggests an endocannabinoid-related pathways associated with
OA pain and a hypothalamic-related mechanism involving
icariin effects (Li et al., 2021). The quantitative proteomics
and bioinformatics analyses confirmed that relieving OA pain
might be an important mechanism involved in the effects of
icariin. These findings contribute to considering icariin as a novel
therapy for OA.

MSCs are multipotent stem cells and have the potential to
differentiate into several cell linages, including osteoblasts,
chondrocytes, adipocytes, cardiomyocytes, and endothelial cells
(Ghasroldasht et al., 2014; Oryan et al., 2017). Thus, recruiting
MSCs from surrounding tissues or circulation to the fracture
callus is very important for bone repair and regeneration
(Herrmann et al., 2015; Zhou et al., 2017). In a recent study,
Zhu et al. investigated the effect of cyasterone (exact from Radix
cyathulae) on MSCs migration and osteogenic differentiation
in vitro, as well as its role in the healing of rat fractures (Zhu
et al., 2021). As the results showed, cyasterone could promote the
migration and osteogenesis capacities of MSCs. The fractured
femurs healed faster with the treatment of cyasterone. Meanwhile,

FIGURE 4 | Schematic representation of the musculoskeletal application of traditional Chinese medicines.
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cyasterone could significantly increase the level of stromal-
derived factor-1α (SDF-1α), which is one of the main
chemokines of stem cells, in rats with femur fracture. Even
though these findings were not combing with MTE, they
enriched the function of TCM as a regenerative medicine and
shed new light for the treatment of bone defects in clinical
research.

7 FORECAST

Musculoskeletal tissues damage, which can be caused by trauma,
cancer, and bone disorders, poses formidable public health
burdens. Although the strong evidence of the effect of herbal
extracts in orthopedics and its potential when combined with
biomaterials, there are still some obstacles on the application of
herbal extracts in effective clinical use.

7.1 Current Obstacles in TCM Clinical
Translation
Despite its promising therapeutic action in several pathologies,
particularly in improving degenerative diseases and treating bone
defect, most TCM is yet to be widely used in modern medicine.
This fact is mainly related to the extensive metabolism of TCM in
vivo, a crucial factor that limits their therapeutic efficacy.
Nowadays the effects of TCM have been mainly explored via
oral absorption; due to the poor solubility and high intestinal liver
metabolism of some herbs, it showed limited oral efficacy in
various preclinical and clinical studies. Additionally, the intestinal
microbiota plays a crucial part in defining the bioavailability of
TCM such as naringin (Cassidy and Minihane, 2017). In fact, this
microbiome is characterized by substantial heterogeneity between
individuals, and defines the clinical efficacy of dietary TCM
ultimately.

Adding to this, another problem of studying TCM is to
quantify Chinese herbs. Current Chinese herb studies focus on
the identification of active components (Guo et al., 2011; Feng
et al., 2014; Guo et al., 2014b), which greatly differ from those
used in the clinical setting. TCM stresses compatibility when uses
medications, which means that active ingredients are combined
to produce a therapeutic effect, and the single active ingredient of
a single drug cannot fully prove the mechanism of action.
Concerning the compatibility of TCM, relevant literature
remains scarce and there is a great untapped potential to be
exploited for this part. Future exploration should concentrate on
enhancing the bioavailability and providing higher release
of TCMs.

7.2 Herbal Extracts and Biomaterials
On account of these limitations, there have been many in vitro
attempts for improving bioavailability and absorption, by
combining biomaterials with herbal extracts, including
encapsulation in nanoparticles or microparticles. As
recognized from previously highlighted studies with the
natural compounds (e.g., quercetin), controlled delivery via
nanocarriers can significantly improve their in vivo therapeutic

effect (Ahmad et al., 2016). These nanocarriers can provide a
sustained release profile for locally improving accumulation at the
desired locations, ultimately improving the bioavailability of
herbal extracts (Muhamad et al., 2018). Moreover, 3D bio-
printing has enabled the fabrication of well-designed 3D
constructs for use as transplants with specific shapes and
features using various biomaterials and cells (Murphy and
Atala, 2014). A new sustained release hydrogel scaffolds
composited of mesoporous bioactive glass, sodium alginate,
and gelatin were fabricated by the 3D printing technique (Wu
et al., 2019). Naringin was used to prepare drug-loaded scaffolds
by direct printing or surface absorption. The results showed that
MG-63 cells cultured with the extract containing released drugs
displayed promoted cell proliferation and the expression of
osteogenesis-related genes more effectively compared with the
drug-free extract.

In turn, biomaterials used in MTE should have homologous
mechanical properties to maintain the morphology and
function of tissues. Some herbal extracts can add specific
properties to biomaterials, and therefore improves efficacy of
the biomaterial. The incorporation of ginseng extract improved
the physical characteristics (i.e., hydrophilicity) of PCL
nanofibers, as well as the mechanical properties
(Pajoumshariati et al., 2016). Although ginseng extract
increased the degradation rate of pure PCL nanofibers, the
porous structure and morphology of fibers did not change
significantly after 42 days. Additionally, a recent study
fabricated TCMs incorporated fish collagen film, which has
good biocompatibility in mammalian cell growth. In this
study, three types of TCMs including genistein, icariin, and
naringin were used for film fabrication (Wang et al., 2021).
Mechanical properties of collagen films were improved by the
addition of TCMs, especially in collagen-naringin films.
Furthermore, the solubility and in vitro biodegradation of
collagen films were enhanced by the hydrophobicity and
chemical interaction of TCMs with collagen. Considering the
mutual effects between herb extracts and biomaterials, it can be
used to investigate the effect of in vitro stem cell culture.

7.3 Conclusion
In conclusion, TCM have triggered the enthusiasm of many
researchers due to their excellent and diverse therapeutic
properties. In the past few decades, the demand for safer
and more suitable agents has guided researchers to explore
the potential of TCM for treating chronic bone diseases. These
results reveal the novel approaches toward the fabrication of
MTE, which couples the advanced additive manufacturing
technology with the wisdom of alternative medicine; the
reported potential of TCM makes it a very attractive
candidate for coupling with the advanced additive
manufacturing technology (Figure 4). Most of these
attempts have been effective but remain in a preclinical
stage, and more efforts should be paid on in vivo studies.
Besides, studies about the regeneration of skeletal muscle
tissue are obviously less than those for hard tissues. Thus,
further research and development would be necessary to ensure
their safe and effective clinical use.
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