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Abstract

Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant
challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect
the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named
ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the
3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures
and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from
nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on
the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models
for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data
using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.

Keywords: graph isomorphism network (GIN); peptide toxicity prediction; deep learning; computational toxicology; protein language
models; 3D structure of peptides

Introduction
Peptides are short chains formed by amino acids linked through
peptide bonds, playing pivotal roles in numerous biological
processes and demonstrating substantial therapeutic potentials
[1, 2]. As integral components of drug development, peptides
exhibit considerable promise in treating refractory diseases,
owing to their specificity and selectivity as optimal therapeutic
targets [3, 4]. Compared to small molecular drugs, therapeutic
peptides offer heightened specificity, efficacy, safety, and reduced
immunogenicity. In contrast to biologics, peptides present lower
immunogenicity, enhanced membrane permeability, and lower
therapy costs [5–7]. However, certain peptides exhibit toxicity, pre-
senting challenges for their uses in drug development [8, 9]. There-
fore, accurate prediction of peptide toxicity is crucial for designing
safe and effective peptide-based drugs. While peptides share
fundamental similarities with proteins, they differ significantly
in terms of length and structural rigidity. Peptides are typically
composed of fewer than 50 amino acids, making them relatively
short, flexible, and variable. This contrasts with proteins, which
consist of longer amino acid chains that form more stable and
complex three-dimensional (3D) structures. The shorter length
and increased flexibility of peptides contribute to their unique

biological functions and therapeutic applications, necessi-
tating specialized approaches for their analysis and toxicity
prediction.

Toxicity prediction is a crucial aspect of drug development.
Traditional methods rely heavily on experimental validation,
which is not only time-consuming and expensive but also plagued
by issues of experimental conditions and reproducibility [10].
This challenge becomes particularly evident as the number
of potential therapeutic peptides rapidly increases. With the
advancements in computational biology and machine learning,
computational approaches have emerged as powerful tools. These
methods can generally be categorized into two types: similarity-
based methods and machine learning-based methods. Similarity-
based methods use alignment tools to measure local and global
sequence similarities, such as BLAST [11] and BLAST-score [11].
However, these methods have several drawbacks: they require
the target peptide to have homologous toxic ones; and their
performance degrades significantly when handling large datasets.
Hence, they necessitate setting an e-value cutoff and an arbitrary
sequence similarity threshold, which can affect prediction
accuracy. In contrast, machine learning-based methods focus
on using manually extracted protein sequence features and
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positive–negative samples to predict peptide toxicity. For instance,
in 2009, Naamati et al. developed ClanTox [12], a machine
learning predictor for animal toxins. It distinguishes toxic
peptides from non-toxic ones using features extracted from
protein sequences, trained with boosted stump classifiers. In
2013, Gupta et al. introduced ToxinPred [13], an in silico method
using machine learning to predict peptide and protein toxicity.
It employs sequence-based feature descriptors, such as amino
acid composition (AAC), dipeptide composition, and sequential
motifs.

Recently, deep learning methods have been increasingly
applied in protein toxicity prediction. In 2021, ToxDL [14] encoded
protein sequences using convolutional neural networks and
employed Skip-gram [15] to generate domain embeddings for
toxicity prediction. In 2022, ToxMVA [16] was introduced as
a novel end-to-end deep learning architecture that integrates
sequence-based features through an autoencoder network,
combining sequence, physicochemical, and contextual semantic
information into discriminative latent representations. In 2023,
Morozov et al. developed CSM-Toxin [17], a tool that relies
entirely on the primary protein sequence by utilizing a model
adapted from ProteinBERT [18], a deep learning language model
originally developed to understand protein sequences in a
manner analogous to natural language processing. In 2024, VISH-
Pred [19] was introduced as an ensemble model that combines a
fine-tuned Transformer model with LightGBM [20] and XGBoost
[21], effectively addressing class imbalance issues and enhancing
prediction accuracy.

Deep learning methods have made significant advances in
predicting toxicity of therapeutic peptides. For example, ATSE [22],
the first deep learning model dedicated to peptide toxicity, utilizes
molecular graph representations extracted by RDKit [23] and
evolutionary information represented by position-specific scoring
matrixes (PSSMs) [24] for peptide toxicity prediction. However,
this model tends to perform poorly for peptides lacking homol-
ogous sequences. ToxIBTL [25] employs the BLOSUM62 (BLOcks
SUbstitution Matrix) [26] and the FEGS (Feature Extraction based
on Graphical and Statistical features) [27] to extract sequence
features of peptides. CAPTP [28] introduces Transformer, leverag-
ing convolution and self-attention mechanisms to enhance pep-
tide toxicity prediction from amino acid sequences. Nevertheless,
these models only extract features from protein sequences and
do not consider the 3D structures of proteins, which is a crucial
determinant of protein properties [29].

In 2018, the emergence of AlphaFold [30] revolutionized protein
design research by enabling the prediction of 3D structures
solely from protein sequences. The transformative advancements
in Natural Language Processing have been applied to protein
sequence analysis, with the advent of protein language models
offering a novel approach to extracting sequence features [31].
Hence, in this study, we proposed a novel model based on Graph
Isomorphism Networks (GIN) [32] to predict short peptide toxicity.
Initially, we represented the 3D structures of peptides predicted
by ColabFold [33] as graphs, with amino acid residues and their
interactions serving as nodes and edges, respectively. Next, to
leverage the capabilities of the ESM2 protein language model [34],
we extracted deep biological features from peptide sequences
and further enriched the feature representation of each amino
acid node with physicochemical properties. Subsequently, GIN
aggregated information from neighboring nodes to extract
local and global features, followed by nonlinear transforma-
tion to output toxicity prediction probabilities. This approach
effectively captured complex amino acid interactions, and

Table 1. Overview of the benchmark datasets.

Dataset Number of positives Number of negatives

Training set 1932 1932
Testing set 282 282

significantly enhanced the accuracy and robustness of toxicity
predictions. The proposed ToxGIN and data could be freely
accessible at https://github.com/cihebiyql/ToxGIN.

Methods and materials
Data collection and preparation
To ensure consistent model comparisons, we adopted the data
collection methodology used in ATSE [22] and ToxIBTL [25]. Our
dataset comprises both training and test sets, each containing
toxic and non-toxic peptide sequences ranging from 10 to 50
amino acids in length. For the training set, we used the same
set of 1932 toxic peptide sequences and 1932 non-toxic peptide
sequences as employed by ATSE and ToxIBTL. For the test set,
we collected additional toxic peptide sequences from three public
databases.

UniProt [35]. Retrieved 1777 toxic peptide sequences using the
keywords ‘KW-0800 AND (reviewed) AND (length: [10 TO 50])’.

ConoServer [36]. Collected 706 toxic peptide sequences related
to conopeptides.

ArachnoServer [37]. Obtained 271 toxic peptide sequences from
spider venom toxins.

After merging and removing duplicates, we obtained a total
of 2400 unique toxic peptide sequences. Excluding the 1932
sequences used in the training set, we had 468 toxic sequences
remaining for test. We then applied CD-HIT [38] with a 90%
sequence identity threshold to remove highly similar sequences,
resulting in 282 toxic peptide sequences for the positive test
set. For non-toxic peptides, we retrieved 10,484 sequences from
UniProt using the keywords ‘NOT KW-0800 AND NOT KW-0020
AND (reviewed) AND (length: [10 TO 50])’. After excluding the
1932 non-toxic sequences used in the training set and applying
CD-HIT at a 90% similarity threshold, we obtained 2886 non-toxic
sequences. From this set, we randomly selected 282 sequences to
serve as the negative test set.

By balancing the test set with an equal number of positive
and negative samples (282 each), we ensured that the evaluation
metrics would not be biased due to class imbalance. Applying CD-
HIT with a 90% sequence identity threshold reduced redundancy
and minimized potential prediction bias due to highly similar
sequences. A summary of the datasets used in this study is
presented in Table 1. A comprehensive table was provided in the
Supplementary Materials (Supplementary Tables S1).

Overview of the proposed ToxGIN
Our ToxGIN model architecture, as illustrated in Fig. 1, comprises
three modules: (i) sequence processing module, (ii) feature
extraction module, and (iii) classification module. In the first
module, we depicted the 3D structures of peptides predicted
by ColabFold [33] as nodes and edges. Leveraging ESM2 [34], we
extracted profound biological features from peptide sequences,
which enhanced the feature representation of each amino acid
node with their respective physicochemical properties. The
second module employed GIN [32] to aggregate information
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Figure 1. Flowchart of the proposed ToxGIN model, comprising three main modules: (A) sequence processing module, which extracts information about
nodes and edges from the peptide’s 3D structure and sequence; (B) feature extraction module, which employs GIN to aggregate information from
neighboring nodes and edges; and (C) classification module, which uses these features to generate the toxicity probability.

from neighboring nodes, which could effectively extract both
local and global features. These features were subsequently
transformed from node-level to graph-level representations,
capturing richer, higher-dimensional information. The third
module, the classification module, integrated four fully connected
layers and a sigmoid layer to predict the toxicity probability of a
given peptide. Detailed explanation of each module was provided
below.

Sequence processing module
Peptide 3D structure feature extraction
In this study, we utilized version 1.5 of local ColabFold [33] to
predict the 3D structures of peptide sequences. To enhance our
understanding of amino acid interactions, we transformed struc-
tural data into a graph representation. Central to this approach
is the construction of a graph’s adjacency matrix based on a
distance threshold, which delineates nodes and edges. Initially,
we computed the coordinate differences for each pair of amino
acids in terms of their 3D positions. Let

(
ri = (

xi, yi, zi
))

denote the
coordinates of amino acid i, and

(
rj = (

xj, yj, zj
))

for amino acid j,
the difference (�rij) is defined as:

Δrij = ri − rj = (
xi − xj, yi − yj, zi − zj

)
(1)

Next, we computed the Euclidean distance dij between every
pair of amino acids in the peptide:

dij =
√(

xi − xj
)2 + (

yi − yj
)2 + (

zi − zj
)2 (2)

By setting a distance threshold θ of 8.0 Å, we generate an
adjacency matrix (A). If the distance between two amino acids is
less than the threshold, an edge is established between them. The
elements of the adjacency matrix (Aij) are defined as follows:

Aij =
{

1 if dij < θ

0 if dij ≥ θ
(3)

Each element in the adjacency matrix indicates whether there
is an edge between the corresponding pair of amino acids. By
applying this threshold to the distances, we determine which
pairs of amino acids interact. This graph representation method
effectively captures the complex spatial relationships between
amino acids in the 3D structure of the peptide.

Feature extraction using ESM2
Protein sequences carry essential information about biological
structure and function across evolutionary scales. This is because
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protein’s biological properties limit sequence mutations, thereby
preserving patterns of structural and functional insights that
artificial intelligence can reveal [31]. ESM2 [34] serves as an
advanced tool for extracting features from extensive protein
sequence datasets using deep learning techniques. ESM2 uses
an advanced transformer architecture and Masked Language
Modeling to randomly mask amino acid segments in sequences. It
predicts these masked positions using contextual clues, capturing
intricate sequence dependencies. In our study, we applied the
encoder component of ESM2 to extract features from amino
acids in short peptide sequences. By inputting peptide sequences
into pretrained ESM2, we generated high-dimensional feature
vectors containing profound characteristics of peptide sequences,
which are effective inputs for subsequent toxicity prediction
models.

Derivation of physicochemical properties from the AAindex
database
AAindex [39] is a numerical database that catalogs various physic-
ochemical and biochemical properties of amino acids and their
pairs. From AAindex version 9.2, we extracted 566 physicochem-
ical properties, each represented by a set of 20 numerical values
corresponding to the 20 standard amino acids. It’s noteworthy that
we focused on 553 properties devoid of NaN values. In contrast
to other models using this database, such as ToxMVA [16], our
study did not average the 553 AAindex descriptors across each
amino acid in the sequence to derive a feature representation for
each sequence. Instead, we enhance the feature set of each amino
acid node by incorporating the physicochemical properties from
AAindex.

Feature extraction module
In this study, we utilized the GIN [32] as the foundational model
component for representing the graph structure of short peptide
sequences. The process comprised three main steps: node fea-
ture extraction, node feature assignment, and graph-level feature
aggregation.

Node feature extraction
Assuming the graph G has N nodes, and each node v has a feature
vector hv, the node feature representation h(k)

v computed through
the GIN at the k-th layer can be expressed as:

h(k)
v = MLP(k)

((
1 + ε(k)

)
· h(k−1)

v +
∑

u∈N(v)
h(k−1)

u

)
(4)

where MLP(k) is a multi-layer perceptron, ε(k) is a learnable or fixed
scalar parameter, and u ∈ N(v) represents the set of neighbors of

node v. This can be divided into two parts:
(
1 + ε(k)

) · h(k−1)
v is the

self-loop term, representing the features of node v itself, adjusted

by multiplying 1 + ε(k) to modify its influence;
∑

u∈N(v)h
(k−1)
u is the

neighbor aggregation term, representing the sum of features of
all neighboring nodes of v. The aggregated features undergo a
nonlinear transformation through MLP.

The updated node features obtained through MLP are accu-
mulated with each layer of GIN convolution, allowing the node’s
feature representation to progressively gather more neighbor and
graph structure information. The first layer mainly focuses on the
node’s direct neighbors (1-hop). The second layer aggregates the
neighbors’ neighbors (2-hop). Similarly, the k-th layer aggregates
the k-hop neighbors’ information. By concatenating the features
extracted from each layer, different levels of structural informa-
tion could be retained, forming a richer and more discriminative

feature representation:

hv = Concat
(
h(0)

v , h(1)
v , . . . , h(k)

v

)
(5)

where h(k)
v represents the feature representation of node v at the

k-th layer, and Concat denotes concatenation along the feature
dimension. The final feature representation hv of node v contains
all the information from layer 0 to layer k.

Node feature assignment
Each layer of GIN convolution extracts different levels of graph
structural information, and the node features hv computed by GIN
are assigned to the original graph’s node data hN:

H = {
h1, h2, h3, . . . , hN

}
(6)

Graph-level feature aggregation
We use a global aggregation operation (such as summation) to
aggregate all node features into graph-level features hG:

hG =
∑N

i=1
hi (7)

Classification module
The classification module aims to translate the graph-level fea-
ture representation into the final toxicity prediction outcome.
This crucial step employs primarily fully connected layers and
a Sigmoid activation function. Initially, the aggregated graph-level
feature hG is inputted into multiple fully connected layers with
LeakyReLu activation. Dropout techniques are then applied after
each fully connected layer to prevent overfitting. Following this,
classification is performed using a Sigmoid layer, defined as:

z = LeakyRelu
(
whG + b

)
(8)

ŷ = sigmoid(z) = 1
1 + e−z

(9)

where w represents the weights of the fully connected layer,
and b represents the corresponding biases. The output value is
a probability between 0 and 1. If the probability value is >0.5, the
sequence is classified as the toxic peptide class, and vice versa.

Evaluation metrics
To comprehensively evaluate the performance of our proposed
model, we employed several key metrics, including Sensitivity
(SE), AUROC, AUPRC, F1 Score, and Matthews Correlation Coeffi-
cient (MCC). The definitions of these metrics are as follows:

SE = TP
TP + FN

(10)

F1 = 2 × PPV × SE
PPV + SE

= 2 × TP
2 × TP + FP + FN

(11)

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(12)

Among these metrics, TP (True Positive) and TN (True Negative)
represent the number of correctly predicted positive and negative
cases, respectively. FP (False Positive) and FN (False Negative) rep-
resent the number of incorrectly predicted positive and negative
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cases, respectively. SE measure the classifier’s ability to predict
positive cases, while MCC and F1 evaluate the overall predictive
performance of the classifier. AUROC provides an aggregate mea-
sure of performance by calculating the area under the curve.
AUPRC focuses on the trade-off between precision and recall,
providing insights into the model’s performance with respect to
positive class predictions.

Model effectiveness evaluation
To evaluate the effectiveness of ESM2 and AAindex for extracting
sequence features, we compared them with four typical hand-
crafted features: Amino Acid Composition (AAC), Adaptive Skip
Dipeptide Composition (ASDC), Pseudo-amino Acid Composition
(Pse-AAC) [40], and Amphiphilic Pseudo Amino Acid Composition
(APAAC) [41]. We employed six classifiers: Random Forest (RF),
Support Vector Machine with Radial Basis Function kernel (SVM-
RBF), Gaussian Naive Bayes (GNB), LightGBM [20], Logistic Regres-
sion (LR), and K-Nearest Neighbors (KNN). We conducted exper-
iments using ten-fold cross-validation on the training dataset
and evaluated them on the test set. To visually demonstrate the
discriminative power of features extracted by ToxGIN compared
to hand-crafted features, we used t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [42]. Additionally, we performed ablation
studies to understand the contribution of each component of the
ToxGIN model to its overall performance. This involved systemat-
ically removing one component at a time and observing its impact
on the model’s performance. Furthermore, we investigated the
impact of replacing the GIN component with other Graph Neural
Network (GNN) [43] architectures, including Graph Convolutional
Network (GCN) [44], Graph Attention Network (GAT) [45], Topology
Adaptive Graph Convolutional Network (TAG) [46], Approximate
Personalized Propagation of Neural Predictions (APPNP) [47], and
GraphSAGE [48], under the same experimental conditions.

Comparison with other models
To evaluate the effectiveness of our proposed model, we compared
it with other peptide toxicity prediction models, including ATSE
[22], ToxIBTL [25], CAPTP [28], tAMPer [49], and an optimized
version of ToxIBTL, referred to as Toxicity-vib [50].

1) ATSE. ATSE converts peptide sequences into molecular and
evolutionary graphs, learning distinguishing features from
both graph structural information and evolutionary infor-
mation. It employs an optimized attention mechanism to
determine whether a peptide is toxic or non-toxic.

2) ToxIBTL. ToxIBTL learns features from evolutionary, graphi-
cal and statistical information. It combines the information
bottleneck principle with transfer learning technique, ini-
tially pre-training the model on a protein dataset and then
fine-tuning it on a short peptide dataset, transferring the
knowledge acquired from proteins to peptides.

3) CAPTP. CAPTP is an end-to-end model that integrates a
novel encoder combining convolutional modulation and
self-attention. This design allows it to automatically learn
representations of peptide sequences using only the amino
acid sequence as input, facilitating the prediction of peptide
toxicity.

4) tAMPer. tAMPer utilizes Bi-directional Gated Recurrent Units
(Bi-GRUs) to capture sequence features and Geometric Vec-
tor Perceptron (GVP) [51] to handle geometric and vector
features. It enhances its expressive power and predictive
performance by integrating these features using a multi-
head attention mechanism.

5) Toxicity-vib. The model fine-tunes ToxIBTL by integrating
an attention mechanism into its original architecture. This
addition aims to enhance feature extraction capabilities
while reducing the dimensionality of feature vectors.

Analysis of computational complexity
To comprehensively evaluate ToxGIN, we conducted an experi-
mental analysis of its time and space complexity in comparison
with other peptide toxicity prediction models. The models con-
sidered include ATSE [22], ToxIBTL [25], CAPTP [28], and tAMPer
[49]. We measured metrics such as preprocessing time, training
time per epoch, total training time, memory consumption (CPU
and GPU), model size, and the total number of parameters. All
experiments were conducted using a consistent hardware con-
figuration. For training, we used 3864 sequences with an 80:20
train-validation split, and for testing, we used 564 sequences.
Detailed results of the computational complexity analysis are pro-
vided in the Supplementary Materials (Supplementary Tables S2
and S3).

Results
Comparison of sequence features
To assess the effectiveness of ESM2 and AAindex for extracting
sequence features, we compared the features generated by them
with four typical hand-crafted features.

Figure 2 presents the comparison results of the six classifiers
on four metrics (SE, AUROC, AUPRC, F1, MCC). The results indicate
that the features generated by ESM2 outperform both the AAindex
and the four typical hand-crafted features across most metrics for
all classifiers. The hand-crafted features generally showed lower
performance compared to the ESM2 and AAindex.

To visually illustrate the discriminative power of ESM2 and
AAindex, we employed t-SNE [42] on the training dataset to
reduce all six feature sets to two dimensions for visualization.
Figure 3 shows that compared to the four handcrafted features,
features extracted by ESM2 and AAindex more effectively
cluster positive and negative samples, thereby reducing sample
overlap.

Ablation study of ToxGIN
The exceptional performance of ToxGIN hinges on extracting
comprehensive features from peptide sequences and their
3D structures. Specifically, the model leverages protein lan-
guage models (ESM2) [34] for sequence feature extraction and
incorporates physicochemical properties of amino acids from
AAindex [39]. To assess the impact of each component on overall
performance, we conducted ablation studies by systematically
removing or modifying components of the model. Furthermore,
we investigated how variations in parameters of the protein
language model influence feature extraction and performance.
Table 2 shows the ESM2 with different parameters. In this study,
we used esm2_t36_3B_UR50D. The variants of ToxGIN evaluated
in the ablation study are as follows.

• ToxGIN (ESM2_t36). Incorporates all components, including
3D structural information, ESM2-derived sequence features,
and AAindex physicochemical properties.

• ToxGIN without 3D structures (w/o Structures). Excludes 3D
structural information, utilizing only sequence features.

• ToxGIN without ESM2 (w/o ESM2). Omits features extracted
by the ESM2 language model.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae583#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae583#supplementary-data
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Figure 2. The ten-fold cross validation results of ESM2, AAindex, AAC, ASDC, Pse-AAC and APAAC are based on the six basic classifiers. (A) Results based
on RF. (B) Results based on SVM. (C) Results based on GNB. (D) Results based on LightGBM. (E) Results based on LR. (F) Results based on KNN.

Table 2. The different parameters of protein language models.

Checkpoint name Num layers Num parameters

ESM2_t36_3B_UR50D 36 3B
ESM2_t33_650M_UR50D 33 650 M
ESM2_t30_150M_UR50D 30 150 M
ESM2_t12_35M_UR50D 12 35 M

• ToxGIN without AAindex (w/o AAindex). Excludes physico-
chemical properties from AAindex.

• ToxGIN with different ESM2 models. Employs ESM2 models of
varying sizes (ESM2_t33, ESM2_t30, ESM2_t12) to assess the
effect of model complexity.

As illustrated in Fig. 4, ToxGIN consistently outperforms its
variants across all evaluation metrics. Notably, the removal of 3D
structural information results in a significant decrease in perfor-
mance compared to the full model. Similarly, using smaller ESM2
models leads to reduced effectiveness, indicating the importance
of model capacity in capturing sequence features.

Evaluation of GIN component variants
To evaluate the significance of the GIN [32] module in the ToxGIN
model, we conducted experiments where we replaced GIN with
other GNN [43] architectures, specifically GCN [44], GAT [45],
TAG [46], APPNP [47], and GraphSAGE [48]. All other components
and settings of the model were kept unchanged to isolate the
effect of the GNN architecture on prediction performance. The
performance metrics of these model variants are summarized in
Table 3.

As shown in Table 3, ToxGIN, utilizing the GIN architecture,
achieves the highest SE of 0.8014, AUROC of 0.9172, F1 Score of
0.8354, and MCC of 0.6866 among all the models tested. When
GIN is replaced with other GNN architectures, there is a notice-
able decline in performance. For instance, replacing GIN with
GCN results in a decrease in SE to 0.7577, AUROC to 0.9082, F1
Score to 0.8095, and MCC to 0.6487. Similarly, using GAT leads
to further reduction in SE to 0.7189 and MCC to 0.6132, although
AUPRC slightly increases to 0.8983. TAG, APPNP, and GraphSAGE
also exhibit lower performance compared to ToxGIN, with SE
ranging from 0.7538 to 0.7790 and MCC ranging from 0.6185 to
0.6487. Additionally, we conducted interpretability analysis on the
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Figure 3. Feature visualization of ESM2, AAindex and other four hand-crafted features. (A) Feature visualization of ESM2. (B) Feature visualization of
AAindex. (C) Feature visualization of AAC. (D) Feature visualization of ASDC. (E) Feature visualization of Pse-AAC. (F) Feature visualization of APAAC.

Table 3. Performance comparison of ToxGIN with different GNN architectures.

Model SE AUROC AUPRC F1 MCC

ToxGIN 0.8014 0.9172 0.89 0.8354 0.6866
GCN 0.7577 0.9082 0.8807 0.8095 0.6487
GAT 0.7189 0.9058 0.8983 0.7843 0.6132
TAG 0.7655 0.9011 0.8714 0.7995 0.6185
APPNP 0.779 0.8952 0.8731 0.8048 0.6233
GraphSAGE 0.7538 0.9079 0.8788 0.802 0.6324
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Figure 4. Performance comparison of ToxGIN and its variants across evaluation metrics. The figure displays the effectiveness of the full model (ToxGIN
with ESM2_t36) alongside its variants: Excluding 3D structures (w/o structures), ESM2 features (w/o ESM2), and AAindex properties (w/o AAindex), as
well as results from various ESM2 model sizes (ESM2_t33, ESM2_t30, ESM2_t12).

GIN model’s predictions using GNNExplainer [52], as detailed in
Supplementary Section S9.

Comparison with existing models
To ensure a fair comparison, we utilized the same peptide
sequence training data and test sets. Due to the unavailability of
the online platforms for ATSE [22] and ToxIBTL [25], we replicated
these models using their provided data and code, selecting the
best-performing models to compare with our own. Although
CAPTP [28] and tAMPer [49] offered pre-trained models trained
on different datasets, we reproduced and evaluated these models
using identical training and test datasets for consistency. It is
noteworthy that all models were optimized using the authors’
recommended parameters for peptides of identical lengths and
significant dataset overlap. For Toxicity-vib, which provided a
pre-trained model trained on identical data, we directly utilized
this model. Further details are available in the Supplementary
Materials (Supplementary Tables S4, S5, S6, S7, and S8).

According to the data in Table 4, ToxGIN demonstrates out-
standing performance across multiple evaluation metrics. Specif-
ically, ToxGIN achieves an AUROC of 0.9172 and an AUPRC of
0.8900, indicating superior model performance over the entire
range of classification thresholds. Compared to ToxIBTL, ToxGIN
shows improvements of 5.56% in AUROC and 3.50% in AUPRC.
When compared to tAMPer, ToxGIN improves AUROC by 4.30%
and achieves comparable AUPRC. In threshold-dependent met-
rics, ToxGIN outperforms other models in SE, F1 Score, and MCC.
Specifically, ToxGIN achieves an SE of 0.8014, F1 Score of 0.8354,
and MCC of 0.6866, showing improvements of 10.23%, 4.61%, and
13.36%, respectively, compared to ToxIBTL. Compared to tAMPer,
ToxGIN shows improvements of 12.04% in SE, 6.41% in F1 Score,
and 10.94% in MCC.

Discussion
In this study, we proposed ToxGIN, a prediction model for peptide
toxicity. Unlike existing models that solely extracted features from
peptide sequences, ToxGIN advanced peptide toxicity prediction

by integrating 3D structural information. This approach trans-
formed peptide structures into graph representations, incorpo-
rating GIN to integrate structural insights with sequence data,
thereby improving predictive accuracy and robustness. Addition-
ally, the model employed ESM2 [34] to extract deep biological
features from peptide sequences and incorporated the physico-
chemical properties of amino acids, enhancing the understanding
of peptide sequences and their toxic properties.

To validate the innovation of ToxGIN, we conducted both
horizontal (against similar deep learning models) and vertical
(against traditional methods) comparisons. In horizontal com-
parisons with models like ATSE [22], ToxIBTL [25], and CAPTP
[28], which only extracted features from protein sequences,
ToxGIN demonstrated superior performance. Using GIN, the
model aggregated information from both local (node-level) and
global (graph-level) perspectives, ensuring comprehensive feature
extraction. This multi-layered approach enhanced the model’s
ability to distinguish subtle differences between toxic and non-
toxic peptides, surpassing the predictive accuracy of previous
benchmarks.

In comparisons against traditional methods, ESM2 outper-
formed better than the AAindex and the four hand-crafted fea-
tures. Despite the AAindex exhibiting only moderate performance
when used alone, we still included them as node features in our
model. Because AAindex provides a comprehensive set of physic-
ochemical properties that are essential for understanding peptide
behavior and interactions. These properties offer complementary
information to the sequence features captured by ESM2, enabling
the model to consider both the structural and biochemical aspects
of peptides.

Our ablation studies further demonstrated the impact of
3D structural information on model performance. The results
revealed that the inclusion of 3D structural data substantially
improved predictive accuracy, highlighting the importance of
integrating multi-view information for accurate peptide toxicity
prediction. Moreover, we investigated the importance of the GIN
module within ToxGIN by conducting experiments where GIN was
replaced with GCN, GAT, TAG, APPNP, and GraphSAGE. To further
elucidate why GIN outperforms other GNN algorithms in handling

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae583#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae583#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae583#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae583#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae583#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae583#supplementary-data
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Table 4. Comparison of the proposed ToxGIN with existing models.

Models SE AUROC AUPRC F1 MCC

ATSE 0.4716 0.4734 0.4898 0.4787 0.0536
ToxIBTL 0.727 0.8617 0.86 0.7986 0.6057
CAPTP 0.6348 0.7592 0.7721 0.7178 0.4462
tAMPer 0.7153 0.8742 0.8919 0.7851 0.6189
Toxicity-vib 0.6809 0.8125 0.8025 0.7505 0.5087
ToxGIN 0.8014 0.9172 0.89 0.8354 0.6866

Note: To account for variability during deep learning model training, reported results represent the best outcomes from 20 independent runs.

peptide structural information, we employed GNNExplainer [52]
for interpretability analysis, as detailed in Supplementary Section
S9. Our analysis, illustrated through Figs. S1 to S5, revealed
that GIN identified key amino acid residues critical for peptide
bioactivity with higher importance weights compared to GAT and
GCN. This demonstrates GIN not only achieves higher predictive
accuracy but also provides a more interpretable framework for
understanding the molecular determinants of peptide toxicity.
Finally, the computational complexity analysis demonstrated that
while ToxGIN requires more preprocessing time and has a larger
model size than some existing methods, including tAMPer, the
increased computational resources are justified by its enhanced
predictive accuracy.

We have noted similarities between tAMPer [49] and our
approach in integrating peptide amino acid sequences and 3D
structures for toxicity prediction. tAMPer utilizes GRUs (Gated
Recurrent Units) to process sequence information extracted
by ESM2 and employs the GVP [51] to handle the 3D struc-
tures of peptides, capturing geometric and vector features. By
integrating sequence and structural features through a multi-
head attention mechanism, tAMPer generates predictions of
peptide toxicity. Despite tAMPer’s simpler model architecture
and lower computational complexity, ToxGIN outperforms it
on the same training and testing datasets. This suggests that
ToxGIN’s approach of utilizing GIN for graph representations
more effectively captures structural information, leading to
improved predictive performance.

Conclusions
Accurate prediction of peptide toxicity is crucial for discovery and
development of peptide-based drugs. Traditional toxicity predic-
tion methods often rely on time-consuming and expensive experi-
mental validation. With the advancements in computational biol-
ogy and machine learning, computational methods have emerged
as a powerful tool. However, existing peptide toxicity prediction
models are primarily based on sequence information and do not
consider the 3D structure of peptides. In this study, we introduced
a novel peptide toxicity prediction model, ToxGIN, based on GIN.
We represented the 3D structures of peptides as graphs, utilizing
protein language models to extract deep biological features from
peptide sequences, and integrated the physicochemical properties
of amino acids to further enrich the feature representation of
each amino acid node. ToxGIN uses GIN to aggregate informa-
tion from node neighbors to extract local and global features
and performs nonlinear transformation through MLPs, outputting
toxicity prediction probabilities. Experimental results on the same
training and test sets show that ToxGIN performs exceptionally
well on multiple key performance indicators, surpassing existing
advanced peptide toxicity prediction models. The performance
of our model validates the effectiveness of combining protein

structural predict model with language model and highlights
the importance of integrating 3D structural information in tox-
icity prediction. We hope that ToxGIN can offer an alternative
method for addressing other biological challenges and contribute
to advancements in computational peptide toxicity prediction.

Key Points

• In this study, we proposed a deep learning-based method
called ToxGIN to improve the prediction of peptide toxi-
city.

• Unlike existing peptide toxicity prediction models, Tox-
GIN, as proposed, extracts information from the 3D
structures of peptides, not solely from their sequences.

• Comparative studies on the same datasets demon-
strated that the proposed ToxGIN outperformed existing
models in prediction of peptide toxicity.
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