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Abstract: Diverse cell types in the central nervous system (CNS) are generated by a relatively
small pool of neural stem cells during early development. Spatial and temporal regulation of stem
cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include
hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is
known about downstream RNA-dependent mechanisms including posttranscriptional regulation,
nuclear export, alternative splicing, and transcript stability. These important functions are carried out
by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem
cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation,
and turnover of target transcripts. Additional layers of complexity are provided by the different
target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs
themselves that alter function. Altogether, these functions allow RBPs to influence various aspects
of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA
biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
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1. Introduction

The complex question of how a nervous system is built is a fundamental topic in
developmental biology. Neurogenesis is one of the earliest events in development that
occurs during embryogenesis. During this process, existing cells give rise to new cells that
acquire specific identities and move to different locations to begin building precursory
tissues within the nervous system (i.e., brain, spinal cord, nerves). This is conducted in
a remarkably organized manner to ensure that resulting tissues are of the correct size
and have the structure necessary for function. Each cell type that makes up the diverse
brain regions has unique transcript profiles, which influences cell identity, proliferation,
apoptosis, and differentiation [1–4]. This helps create the correct number and size of
cells with the desired properties and functionalities. The mechanisms by which these
unique profiles are established are not clearly understood. In recent years, elegant studies
have identified new components and mechanisms that regulate formation of the central
nervous system (CNS) [5,6]. Still, several questions surrounding both normal and aberrant
development of the CNS remain. One reason for these persistent unknowns is that there
are various ways in which a cell can regulate its genetic profile, including transcriptional,
hormonal, and metabolic regulation. This raises an important question: if cells in a living
organism contain the same genetic material, then how does a cell know when and how
to express or repress certain genes? Mechanisms of doing so differ across cell types and
each cell must make efficient use of available energy to drive certain pathways. Among
them, RNA-binding proteins (RBPs) provide an efficient and timely method to regulate
gene expression profiles at the posttranscriptional level. This is performed through direct
RNA binding, along with various interactions between RBPs and other gene expression
regulators. RBP–RNA interactions can be transient, they can bind early and remain bound
until degradation, or they can bind to influence downstream processing such as splicing
or transport [7–9]. Together with the large number of RBPs estimated in the genome

J. Dev. Biol. 2022, 10, 23. https://doi.org/10.3390/jdb10020023 https://www.mdpi.com/journal/jdb

https://doi.org/10.3390/jdb10020023
https://doi.org/10.3390/jdb10020023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jdb
https://www.mdpi.com
https://doi.org/10.3390/jdb10020023
https://www.mdpi.com/journal/jdb
https://www.mdpi.com/article/10.3390/jdb10020023?type=check_update&version=2


J. Dev. Biol. 2022, 10, 23 2 of 26

(~1500, [10]), these molecular properties yield an impressive degree of regulation on cell
function. Not surprisingly, RBPs have emerged as critical regulators of development.

Here we describe recent advances in developmental neurobiology that contribute to
our understanding of the multifaceted processes involved in brain development, focusing
on the roles played by RBPs in neural stem cell function and maintenance. This family
of proteins is involved in a plethora of cellular processes including localization, splicing,
and translation of target RNAs. The wide array of RBP targets, including mRNA, miRNA,
and lncRNA, allows amplified regulation of many cellular processes by RBPs, especially in
stem cells [11,12]. Additionally, they allow for compartmentalized and temporal regulation
of target metabolism. Learning about these processes will aid in understanding how the
complex regions of the brain are formed from a relatively small pool of progenitor cells
and how they function. To aid in this task, developmental biologists have turned to simple
and easy-to-genetically-manipulate organisms such as Drosophila and C. elegans. Studies in
these organisms can easily be reiterated in mammalian systems due to the highly conserved
nature of many genes and pathways.

2. Neural Stem Cell Development

Early neurogenesis includes the formation of neural cells from ectodermal cells that,
in turn, give rise to structures that become the brain, spinal cord, and peripheral nerves.
The brain develops from a small pool of stem cells that are programmed to self-renew or
differentiate to form an integrated and functional nervous system. Despite their relative
low abundance, a high proliferative capacity allows these neural stem cells to continuously
self-renew while also generating differentiated progeny throughout development. Should
these properties go awry, proper development of an organism can be interrupted. For
example, mutations in certain stem cell regulatory pathways have been shown to promote
hyperplastic growth, whereas others lead to a decrease in the stem cell pool [13–15]. These
events may lead to problems later in development and could contribute to several diseases
including cancer. The stem cell populations in the brain have become of particular interest
because of their potential to treat nervous system disorders as well. This, however, is
hindered by the limited knowledge of how neural stem cells are regulated throughout
development. In subsequent paragraphs we give a brief overview of neural stem cell
development followed by specific studies highlighting the role of RBPs in CNS form
and function.

Neural stem cells arise during gastrulation of early embryonic development. These
cells will go on to produce all the specialized cell types found in the brain and nervous
system. In vertebrates, migratory stem cells, called neural crest cells (NCC), are involved
in formation of cephalic structures including ganglia and skeletal structures [16,17]. This
process requires accurate and intricate signaling between tissue environments, cells, and
proteins [18]. The neural tube is the first structure generated by a series of complex
molecular processes and gives rise to the brain and spinal cord [19]. Additional segments
and specialized regions arise from the neural tube later in development, and these also
rely on various molecular mechanisms. RBPs are important during development of these
embryonic and fetal neural structures due to the rapid and simultaneous changes. Cells
must express the correct genetic profile and molecular machinery to produce the necessary
factors to differentiate or self-renew. These processes, amongst others highlighted in this
review, are regulated by RBPs and discussed in detail in subsequent sections.

Drosophila melanogaster (D. melanogaster), the common fruit fly, is a frequently used
and established genetic model organism in developmental biology. The various stem cell
populations in the fly can be studied across developmental time, and many developmental
processes in humans can be easily recapitulated in flies. This has made the fruit fly an
attractive model to study stem cells in disease and dysfunction. More specifically, neural
stem cell (NSC) biology is often studied in Drosophila because the fruit fly brain contains
a fixed population of neural stem cells (neuroblasts) that can be tracked throughout de-
velopment. Moreover, development of some neuroblasts closely resembles that of neural
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stem cells, called radial glial cells (RGCs), in the ventricular zone (VZ) and subventricular
zone (SVZ) of the mammalian brain where they generate neurons, oligodendrocytes, and
astrocytes [20–26]. Like the neural stem cells in the mammalian brain, Drosophila neurob-
lasts undergo ACD to produce molecularly and physically distinct progeny [22,27,28]. By
this mechanism, a small pool of neuroblasts can give rise to a large population of distinct,
specialized cell types that comprise the complex adult brain while maintaining their own
population through self-renewal. Neuroblast development relies on temporal and spatial
expression of factors assigned at birth that dictate production of a specific subset of neu-
rons/glia [29]. In the subsequent sections we will discuss these factors and how RBPs can
regulate their activity.

3. Regulation of Spatial Gene Expression

Compartmentalization makes cellular processes and tissue functions more efficient.
Throughout development, individual cells and tissues require spatial regulation of spe-
cific processes, notably gene expression, RNA processing, and translation, for example.
Spatial regulation of gene expression is particularly important during tissue development.
As cell identity is controlled by differential gene expression, stem cells rely on spatial
regulation to correctly balance self-renewal and differentiation of their mitotic progeny.
An important mode of regulation extends from localization of cognate mRNA to discrete
areas within the cell that allow for differential inheritance during cell division. The precise
mechanisms of RNA transport are still being elucidated, but several interesting details
have been revealed [30–32], and we will only mention some commonalities here. Trans-
port signals can be found at the 3′ UTR of mRNA [33], or they can be cis-acting motifs
called zipcodes [34] that facilitate formation of a transport complex consisting of molec-
ular motors and RBPs [35,36]. Binding of RBPs to the 3′ UTR is a common regulatory
mechanism observed in development. For example, CUGBP ELAV-like family member-2
(CELF2) is an RBP that transports target mRNA between the cytoplasm and the nucleus.
This ultimately serves as a mechanism to promote neural progenitor cell self-renewal or
differentiation in the murine cerebral cortex [37]. Nuclear-cytoplasmic translocation can
occur through formation of complexes that contain molecular motors. The zipcode-binding
protein (ZBP1) interacts with a kinesin-I motor complex (Figure 1) in neurons to transport
mRNA during murine postnatal development [38]. ZBP1 is closely related to insulin-like
growth factor 2 mRNA-binding protein 1 (IGF2BP1) in mammals (Imp; Drosophila) (Table 1).
IGF2BP1/Imp is involved in RNA localization and translation [39,40]. In Drosophila Imp,
the prion-like domains (PLD) regulate formation and homeostasis of neuronal ribonucleo-
protein (RNP) granules in axons [41]. Furthermore, Imp regulates Drosophila egg chamber
development by regulating Notch activation. More specifically, Imp directs localization
of the metalloprotease Kuzbanian to the apical domain to cleave Notch, likely through 3′

UTR-binding [42].

Table 1. Conserved RNA-binding proteins. Table showing RBPs conserved in Drosophila melanogaster
(Dmel), humans (Hs), Caenorhabditis elegans (Ce), and Dario rerio (ZF). Resident tissue, function,
binding domains, and associated references for each RBP are also listed.

Protein Name Tissue/Function Binding Domain Ref.

Dmel: IGF-II mRNA-binding protein
(Imp)

Hs: insulin-like growth factor 1/2/3
mRNA-binding protein

(IGF2BP1/2/3)
Ce: zipcode-binding protein 1

(ZBP1)
ZF: insulin-like growth factor 2

mRNA-binding protein (IGF2BP3)

regulates stability, translation, transport of
targets, axonal transport

represses translation (IGF2BP2/3), 5′

UTR-binding (IGF2BP2), regulates cellular
metabolism, interaction with miRNA, mRNA,

lncRNA, germ cell maintenance
translational repressor, 3′ UTR-binding
embryonic and germline development,

primordial germ cell migration, maternal
mRNA stability

(4) KH domains, prion-like domain
(PLD)

KH domain, (2) N-terminal RRMs
(4) C-terminal human heterogenous
nuclear ribonucleoprotein (hnRNPs)
(2) RNA-recognition motifs (RRM),

(4) KH domains
(2) RRMs, (4) KH domains

[41]

[43–47]

[48,49]

[50,51]
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Table 1. Cont.

Protein Name Tissue/Function Binding Domain Ref.

Dmel: Syncrip (Syp)

Hs: hnRNPQ/Syncrip

Ce: HRP-2

ZF: synaptotagmin, cytoplasmic
RNA-interacting protein (Syncrip)

mRNA regulation in neuromuscular junction,
oocyte structure, neuronal fate in mushroom

body
neuronal RNA transport granules, translation,

miRNA target regulation
nucleic acid binding, embryogenesis, oogenesis,

alternative splicing
mRNA 5′ UTR-binding, synaptosomes,

regulation of RNA translation

(3) RRMs, N-terminal unit for RNA
recognition (NURR),

NURR, arginine-glycine rich region
(RGG), RRMs

(3) RRMs

(3) RRMs

[52,53]

[54,55]

[56–59]

[54,60–62]

Dmel: embryonic lethal abnormal
vision (ELAV)

Hs: ELAV-like protein 4 (ELAVl4)
Ce: EXC-7

ZF: ELAV-like RNA-binding protein 3
(ELAVl3)

alternative splicing, synapse formation, axon
guidance, 3′ UTR extension

binds AU-rich elements, 3′ UTR, translation,
neuronal development, synaptic plasticity
development of excretory canals, synaptic

transmission, splicing, stability
neurons, pan-neural marker, regulates alternative

splicing, neuronal differentiation

(3) RRMs

(3) RRMs

(3) RRMs

(3) RRMs

[63–65]

[66,67]

[68–70]

[71–73]

Dmel: Staufen

Hs: double-stranded RNA-binding
protein Staufen homolog 1 (Stau1/2)

Ce: Stau1

ZF: Stau1/2

enhanced translation, mRNA localization, cell
fate, 3′ UTR-binding, ribonucleoprotein particles
neuronal RNA transport (Stau2), mRNA decay

(Stau1), memory formation, translation, 3′

UTR-binding (Stau1),
double-stranded RNA-binding, germ cell

development, miRNA interaction,
elevated brain expression, primordial germ cells

maintenance

(5) dsRNA binding domains
(dsRBD), (1) proline-rich

domain
dsRBD (3′ UTR), microtubule

binding, (1) proline-rich domain
(1) proline-rich domain, (5)

dsRBDs,
(5) dsRBDs

[74–79]

[80–84]

[85,86]

[87,88]

Dmel: Musashi1 (msi)

Hs: Musashi1/2 (Msi1/2)

Ce: Msi1

ZF: Musashib/Musashi2b
(Msib/Msi2b)

adult external sensory organ development,
asymmetric cell division (ACD), stem cell

identity, translation, 3′ UTR-binding, sensory
organ precursor cell ACD

metabolism, stem cell self-renewal, cell cyle
progression, binds 3′ UTR of mRNA, elevated in

cancer cells (Msi1)
Memory, learning, serotonergic signaling, 3′

UTR-binding, male mating behavior
Expressed in neural tissue and progenitor cells,
regulates cell proliferation and survival (Msi2b)

(2) RRMs

(2) RRMs

(2) RRMs

(2) RRMs

[89–93]

[90,94–98]

[98–101]

[102,103]

Dmel: Rox8

Hs: T-cell intracellular
antigen-1-related protein (TIAR)

Ce: TIAR1/2

ZF: TIA1 cytotoxic granule-associated
RNA-binding protein-like 1

Expression of X-linked genes, alternative
splicing, Yki mRNA decay, 3′ UTR-binding

Translational silencing, primordial germ cell
development

Germ cell apoptosis, fertility, embryonic
development, stress granule protein, inhibition

of axon regeneration (TIAR2),

RNA- and DNA-binding, stress granule
component

(3) RRMs

(3) RRMs

(3) RRMs

(3) RRMs

[104–107]

[108–113]

[114]

[115]

Dmel: LIN28

Hs: LIN28A/B

Ce: LIN28

ZF: LIN28A/B

symmetric stem cell division, cell growth,
oogenesis, muscle formation, differentiation

translational enhancer, inhibit miRNA
expression, stem cell self-renewal

cell proliferation, differentiation, pluripotency
retina regeneration, early development

cold-shock domain, CCHS
zinc-finger domains

cold-shock domain, CCHC
zinc-finger domains
cold-shock domain

cold-shock domain

[116–118]

[119,120]

[121–123]

[124,125]

Regulation of gene expression in NCCs is another important process that relies on spa-
tial regulation by RBPs. Gene function during neural tube formation and differentiation of
NCCs is particularly important as defects in this process can affect overall tissue architecture
and organism development [126,127]. The Wnt/β-catenin signaling pathway is a well-
known regulator of cranial neural crest development, particularly epithelial-mesenchymal
transition (EMT). NCCs undergo EMT during early development and errors in this process
result in various abnormalities. Efforts to identify important components involved in NCC
function revealed that EMT causes elevated levels of posttranscriptional regulators and
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ribosome biogenesis factors in chicken cranial neural crest cells [128]. Both are well known
roles of RBPs, pointing to their importance in neural crest cell development and function.
An example of this is the RBP Vera (Vg1) that is involved in RNA localization and migration
of cells needed to form the neural tube and migration of NCCs in Xenopus oocytes [129].
Embryos lacking Vg1 still generate the appropriate cells, but they fail to migrate to their
final tissue [129]. Similarly, the Hu/ELAV family of RBPs regulates migration of NCCs and
timely expression of genes involved in neural crest specification in avian embryos [130].
Growth and NCC expansion are further regulated by the RBP cellular nucleic-acid binding
protein (CNBP) [131]. Xenopus laevis embryos lacking CNBP had decreased levels of foxD3
and c-myc, two important regulators of NCC growth and specification. Zebrafish forebrain
development also employs a similar mechanism involving CNBP. In zebrafish embryos,
CNBP promotes survival and regulates proliferation of NCCs [132]. Overall, the ability
to transport and localize mRNA at a subcellular level plays an important role in gene
expression during brain development.
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Figure 1. RNA-binding proteins regulate RNA fate. RBPs are involved in all stages of RNA processing
including transcription, translation, splicing, transport, degradation, and silencing. These processes
are depicted in the above diagram. RNA targets are bound by RBPs prior to leaving the nucleus
and remain associated with RBPs until they are degraded. (1) RBPs such as Rbfox1 and Qki serve
as alternative splicing factors to ensure cells have the correct genetic profile. (2) Shuttling of RNA
between the nucleus and cytoplasm is also mediated by RBPs, as observed with CELF2. (3) RNA can
also be transported to subcellular locations, and this is often conducted through a complex consisting
of molecular motors and RBPs, as observed with ZBP1. (4) RBPs also interact with silencing factors
such as miRNA to degrade certain targets. The RBP Pumilio facilitates miRNA binding by exposing
binding sites that would otherwise be inaccessible. (5) RBPs also promote post-transcriptional
processes. For example, Imp binds targets to stabilize mRNA and promote translation. (6) Some
RBPs, such as Stau1, promote degradation of certain RNA targets to promote stem cell identity.
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Brain development further relies on spatial gene expression within various neurogenic
niches. These regions are dedicated to maintaining neural stem cell populations, gliogenesis,
or repair following injury [133,134]. Along with their specific functions, these niches also
express a specific subset of proteins [135]. For example, in the murine CNS, the RBP
Quaking (mammalian: Qki, C. elegans: GLD-1, D. melanogaster: HOW, ZF: zqk) [136]
regulates cell differentiation through regulation of alternative splicing, translation, and
mRNA stability [137]. Qki binds the 3′ UTR of astrocytic mRNA [136] in the murine brain
or it binds targets in a sequence-specific manner (CUAAC) in mammalian cells [138]. Its
various isoforms are expressed in different areas of the CNS and in different cell types [139].
Within these tissues and cell types, Qki can localize to the cytoplasm or to the nucleus,
depending on the isoform. This restricted expression is beneficial for the generation of
astrocytes and oligodendrocytes from NSCs [140]. Qki expression can also be restricted to
cells that co-express other factors. For instance, Qki5 and -6 are specific to neural stem cells
that co-express the neural stem cell transcription factor paired type homeobox 6 (Pax6) [141].
In this way, Qki expression is limited to neural stem cells during early neurogenesis. Qki
has additional functions that make it an important regulator of cell differentiation. Those
additional functions are discussed in the Regulation of Temporal Gene Expression section
below. Spatial regulation by RBPs is a highly conserved mechanism used in various tissues,
and the function of Qki and related RBPs highlight an important role that these proteins
play specifically in spatially distinct niches controlling neural development.

RBPs can also participate in spatial regulation of gene expression by regulating the
location of scaffolding proteins and their cognate mRNA. Drosophila neuroblast develop-
ment involves precise localization of cellular machinery during mitosis to produce progeny
with the correct fate. This is accomplished through establishment of cell polarity and
asymmetric cell division. Both processes have been well studied in Drosophila neuroblasts,
although some important details of underlying mechanisms remain unknown [142,143].
One well known model in Drosophila is localization of the scaffolding protein Miranda
(Mir) to the basal domain of the neuroblast. This event signals for recruitment of important
components required for differentiation. For example, targeting of the RBP Staufen (Stau)
to the basal domain is accomplished by the scaffolding protein Miranda (Mir) [77]. Basal
targeting of Stau and its bound RNAs [144] facilitates their asymmetric segregation during
cell division, and thus, differential expression of cell-fate determining genes [145]. Stau
functions early in Drosophila development to promote localization of bicoid and oskar RNA
in the oocyte [146,147]. Further, Stau is required for basal localization of Prospero (Pros)
RNA in mitotic neuroblasts—an event that is associated with production of differentiated
cells [148,149]. Loss of Stau leads to improper localization of its target mRNAs, and thus,
improper cell fate [145]. Overall, generation of diverse cell types in the embryonic and
larval CNS in the fly is highly dependent on spatial gene expression that can be aided
through assembly of protein scaffolds directed by intrinsic polarity cues.

Targeting of RBPs and RNA to different subcellular regions establishes the apical and
basal domains necessary to guide subsequent divisions. This mechanism is also observed
in development of neural precursor cells and neural stem cells in the mammalian cerebral
cortex. There are two Staufen genes in humans, Staufen1 and Staufen2 (Stau1/2). Stau1
is more ubiquitously expressed, whereas Stau2 is mostly expressed in the brain. Stau1 is
recruited by the zinc-finger protein Kruppel-like factor 4 (Klf4) to the 3′ UTR of mRNAs
involved in cortical neurogenesis. Once bound, Stau1 promotes degradation of these targets
to maintain neural precursor cell (NPC) identity [150]. Apart from this, Staufen1 also
functions in a complex with Barentsz (Btz) to localize mRNA, a function that is conserved
in mammalian hippocampal neurons and Drosophila oocytes [151]. Unlike dStaufen, Stau1
is expendable during NPC development and self-renewal [152]. This is likely due to
redundant roles between Stau1 and Stau2. During asymmetric cell division, Stau2 is
enriched in the intermediate progenitor cell (IPC) where it regulates targets involved in
mitosis, transport, and centrosome assembly [153]. Thus, conserved RBPs appear to play
similar roles in neurodevelopment.
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Spatial expression of RBPs is an efficient way to regulate the gene expression profile of
cells and specialized tissues. This method allows for efficient reprogramming to establish
cell identity—often observed during the progenitor to differentiated cell transition. These
processes are important for tissue establishment during early development. Beyond this,
maintenance of cellular identity and tissue homeostasis relies on proper functioning of
these RBPs. For some RBPs, this means expression throughout several developmental
stages, whereas other RBPs are expressed only during specific developmental windows.

4. Regulation of Temporal Gene Expression

RBPs can influence target metabolism through regulation of RNA splicing, transla-
tion, turnover, transcription, and modification. These functions can impact temporal gene
expression, which refers to the expression of genes or genetic profiles during specific devel-
opmental windows. This property is conserved in many organisms including flies, worms,
and zebrafish and assists in specification of cell identity. Temporal gene expression patterns
in Drosophila govern the timing of transcriptional reprogramming and this mechanism is
also conserved in Caenorhabditis elegans (C. elegans) and Danio rerio (zebrafish) [154,155].
Temporal gene expression in C. elegans regulates memory processing, including storage and
retrieval [156]. Transient expression of certain transcription factors in C. elegans regulates
gene activation in preparation for neuronal specification [157]. This mechanism is further
conserved in mammalian neural stem cells in which the differentiation program is tempo-
rally regulated by lncRNAs and other components [158,159]. Translocated in liposarcoma
(TLS) is an RBP that inhibits transcription in response to ncRNA signals. Cyclin D1 (CCD1)
is a gene involved in cell cycle progression and neural stem cell proliferation [160]. In
human cell lines, ncRNAs bind the 5′ region of CCD1 to promote TLS-mediated repres-
sion [161]. Similar mechanisms are also in play in the mammalian spinal cord where
temporal regulation aids in establishment of neuronal lineages [162]. Not only is the mecha-
nism of temporal gene expression conserved across different species, but certain families of
RBPs are also conserved. Mechanisms of temporal gene expression can occur by temporal
target regulation by the RBP or via temporal expression of the RBP itself, and notable
examples of such regulation are spotlighted in the following paragraphs.

The RBP family of ELAV/Hu embryonic lethal abnormal vision (ELAV) proteins is
a widely studied example of temporal gene expression. ELAV/Hu proteins have roles
in synaptic plasticity, mRNA stability, differentiation, and nuclear functions [163]. These
highly conserved proteins (Humans: HuB, HuC, HuD, HuR, Flies: ELAV, fne, RBP9, C.elegans:
exc-7, ZF: ELAVL1a) are necessary for development of neurons that will populate the CNS
(Table 1). As such, ELAV is expressed during neuron formation [164]. They have important
roles in pre-mRNA splicing of nervous-system-specific isoforms, establishment of brain
vasculature during early development, and gene expression in cholinergic motor neu-
rons [63,69,165]. Regulation by ELAV/Hu occurs primarily through modification of target
localization and expression levels [166]. For instance, HuD binds targets associated with
plasticity and interacts with the survival motor neuron (SMN) protein to transport mRNA
within mouse axons [167]. This is accompanied by changes in chromatin architecture to
establish a gene expression profile consistent with a differentiated cell [168], which are
particularly important during neural stem cell to neuron transition. Many of the specific
roles of the ELAV family of proteins have been described [169–172], so we will not discuss
them further here.

Expression of certain RBPs with opposing functions is another common mode of tem-
poral gene expression. An example of this is the expression pattern of IGF-II mRNA-binding
(Imp/IGF2BP2) and Syncrip (Syp) in Drosophila where they regulate neuroblast growth
and termination [5]. Imp/IGF2BP2 and Syp have opposing expression levels throughout
development. Both RBPs regulate target localization, stability, and translation [55,173].
Specifically, developmentally timed expression of Imp and Syp in Drosophila NSCs regulates
cell fate and promotes neuronal diversity [5,174,175]. Imp is highly expressed during early
development and suppresses expression of Syp. Imp regulates the mushroom body (MB)
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lineage in Drosophila by regulating expression of Chinmo mRNA. Chinmo is responsible for
limiting neuroblast self-renewal [176], and thus, is an important regulator of cell specifica-
tion. Imp is also a key regulator of neuroblast size and growth rate through interaction with
Myc mRNA [175]. The Imp–Myc mRNA interaction stabilizes the transcript to increase
Myc protein levels and promote neuroblast growth [175]. Apart from being important in
early development of the brain, Imp and Syp are also important in halting brain growth
by preventing future neuroblast divisions through initiation of timely decommissioning
and differentiation. In contrast to Imp, Syp exhibits minimal expression during early
development. Levels of Syp gradually increase and reach significant expression levels by
later larval stages. This shift in Syp expression serves to inhibit Imp expression during
later developmental stages [5]. This event marks the end of neurogenesis, and thus, is an
important step in forming tissues of the proper size (see RBPs in disease and dysfunction,
below). Additionally, Syp regulates late developmental stages through interaction with
miRNAs. Recently, it was shown that Syp also interacts with the miRNA pri-let-7a to regu-
late the larvae–adult transition in flies and worms and to suppress tumors in mammalian
cells (let-7) [177,178]. Syp is also involved in neuroblast differentiation through regulation
of Pros mRNA with a long 3′ UTR. Binding of Syp to the extended 3′ UTR of Pros mRNA
stabilizes the transcript to promote increased Pros protein production [179]. This isoform
of Pros is not expressed earlier in development [180] but is necessary for production of
larval neurons [179]. Similar mechanisms of mRNA regulation are observed in mammalian
neurons where Syncrip regulates plasticity, neuronal development, and differentiation
through 3′ UTR-mediated repression or stabilization of target mRNAs [181]. Thus, gene
regulatory networks involving multiple RBPs and their respective targets can participate
in temporal gene expression patterns that facilitate proper developmental transitions in
neural stem cells.

Finally, alternative splicing offers yet another form of RBP-mediated temporal gene
expression. RBPs are important mediators of alternative splicing in neural tissue during
early and late development [182,183] (Figure 1). Protein variants and transcripts found in
different neural cell types are often generated through alternative splicing [184]. For exam-
ple, RNA-binding Fox-1 homolog 1 (Rbfox1) is itself alternatively spliced, and transcript
isoforms containing specific exons are expressed in specific regions of the brain [185]. Dur-
ing the neural progenitor cell-to-neuron transition, Rbfox1 in turn ensures correct inclusion
of neuronal exons during alternative splicing in the cerebral cortex [186]. Another example
is the previously mentioned RBP Qki. Its roles in alternative splicing are important for
NPC differentiation and, like Rbfox1, Qki isoforms are present in specific tissues and devel-
opmental stages [187]. Remarkably, Qki in oligodendrocytes autoregulates its own splicing
events [188]. Qki5 has been shown to regulate targets in early embryonic neural stem cells.
Axon development and microtubule dynamics were shown to be two processes dependent
on Qki5 function [189]. Isoform specificity further extends to differentiated cell types such
as neurons and oligodendrocytes [188]. For example, Qki promotes a GABAergic neuron
profile, and loss of Qki alters the gene expression to promote a glutamatergic neuron
profile [189]. A comprehensive review of the role of RBPs in neuronal differentiation can be
found in [190]. In oligodendrocytes, mRNAs associated with myelination are significantly
downregulated [188]. Interestingly, expression and function of the RBPs themselves are also
regulated, with many RBPs being essential in certain tissues and stages of development. For
instance, the RBP Hu antigen R (HuR) is dispensable during embryonic development but
essential during adult neurogenesis [191]. Further, HuR regulates a group of lncRNAs in-
volved in differentiation. More directly, HuR expression is necessary to maintain stemness
and prevent aberrant increases in cells expressing neuronal markers [192]. Together, these
examples point to the importance of regulating gene expression profiles to obtain cells with
the desired properties. Still, not all temporal regulation occurs at the transcriptional level.
Many mechanisms are in effect following transcription and these events are described in
the next sections.
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5. Posttranscriptional Regulation by RNA-Binding Proteins

Posttranscriptional regulation is an emerging means of maintaining stem cell home-
ostasis. This mechanism aids in the response to cellular and environmental cues throughout
development. During early development, stem cells must undergo transcriptional remodel-
ing to become differentiated cell types. This includes expression of the important protein
factors, such as differentiated cell markers, and repression of stemness genes including
growth promoting factors. The expansive repertoire of RBPs can aid in regulating this
process through control of protein translation, a process particularly important in stem
cells [193–195]. Apart from directly influencing target metabolism (splicing, localization,
degradation, etc.), RBPs can also regulate targets indirectly. One such mechanism is
regulation of microRNA function and biogenesis. This mechanism is common in brain
development and recent work has highlighted the important role of miRNAs in regulation
of growth and proliferation [196,197]. Moreover, the complexity of cell types in the brain
has been attributed to wide expression of miRNAs [198]. Until recently, few RBPs were
thought to regulate miRNA structure and function, with only a handful of RBPs being able
to bind miRNAs. Further studies have showed that RBPs facilitate the miRNA–mRNA
interaction. They do so by exposing binding sites that would otherwise be inaccessible
by the miRNA (Figure 1). Pumilio does this by binding the 3′ UTR of CDKN1B to allow
binding by its regulatory miRNA [199]. Conversely, RBPs can also inhibit binding site
access, including the mammalian RNA-binding motif protein 38 (RBM38) and insulin-like
growth factor 2 mRNA-binding protein 2 (Imp2) [200,201]. Apart from influencing the
interaction between miRNA and its targets, RBPs can regulate miRNA processing.

RBPs can also regulate targets by interacting with miRNAs or with targets that resem-
ble the miRNA structure. One example of this is the RBP DiGeorge syndrome critical region
8 (DGCR8). This RBP is part of an important miRNA biogenesis component known as the
microprocessor complex. DGCR8 and accompanying factors function to produce primary
miRNAs (pri-miRNA), including some involved in neural stem cell growth [202–204]. For
instance, this complex is responsible for processing of the pri-miRNA-bantam. This miRNA
is part of a feedback loop with Numb and Notch to impart neural stem cell growth in the
Drosophila brain [205]. The Drosha-DGCR8 complex is a well-known mechanism of miRNA
processing. Details of this mechanism have been reviewed elsewhere [206]; thus, we will
highlight the role of RBPs in miRNA processing and some of the miRNAs involved. RBPs
have been shown to regulate gene expression through processing of miRNAs that act in
a tissue-specific manner [202]. In addition to their roles in miRNA processing, DGCR8
and Drosha function to regulate expression of key transcription factors involved in murine
embryonic neurogenesis. One of these factors is the transcription factor Neurogenin 2
(Neurog2). The Drosha–DGCR8 complex promotes degradation of Neurog2 mRNA to
prevent differentiation [207]. Interestingly, this inhibition is independent of the canonical
Microprocessor functions. Rather, it is facilitated by the structure of Neurog2 mRNA that
resembles pri-miRNA [207]. Further, DGCR8 also functions in neural progenitor stem
cell maintenance and cortical development [208]. Several of the miRNA targets regulate
differentiation potential and proliferation of neural stem cells [209]. For instance, the 3′ UTR
of p53 undergoes regulation by the miRNA miR-302. Consistent with this, cells depleted
of miR-302 exhibit increased p53 activation that prevents cell differentiation [210]. Similar
defects are observed when the RBP components of the miRNA processing machinery are
misexpressed. Overexpression of DGCR8 in the murine cortex promotes an expansion of
the neural progenitor cell pool, whereas loss of DGCR8 leads to apoptosis and defective
corticogenesis [208,211]. Similarly, the RBP LIN28A/B, which is highly expressed in un-
differentiated cells, prevents miRNA-dependent differentiation, and influences growth
of neuroblasts (neuroblast: in fruit flies, these are the neural stem cells that produce glia
and neurons) and neural progenitor cells (neural progenitor cell: cells with limited dif-
ferentiation potential that produce specific neuron and glial subtypes) in mice [212]. As
described, miRNAs have important roles in cell growth and differentiation. They provide
additional means to maintain tissue homeostasis through their various functions across
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different tissues. RBPs regulate these various functions through miRNA processing and
binding of miRNA to their targets. Thus, RBPs ensure that miRNA functions are carried
out when it is developmentally relevant.

Target metabolism is also regulated by RBPs through interference with translational
machinery. For example, the fragile X mental retardation protein (FMRP) regulates protein
translation through ribosome stalling [213]. In this way, translation of certain mRNAs is
reduced, and this is central to the cellular response to signals or to adapting to a changing
environment. Similarly, cells rely on ribosome stalling during cellular differentiation,
namely, neuronal differentiation, where transcripts are regulated posttranscriptionally
through 3′ UTRs rather than through mRNA levels [214,215]. Similar mechanisms are
used during early murine forebrain development where the protein synthesis machinery
is downregulated at later stages of forebrain establishment [216]. Translation can also be
inhibited before the ribosomes are loaded onto the mRNA by acting directly on the target.
Binding of the RBP to the transcript prevents ribosome loading, and thus, protein synthesis.
Conversely, RBPs may enhance protein synthesis by promoting recruitment of the necessary
machinery or by creating a favorable RNA structure, such as with LIN28-mediated effects
on neural stem cell maintenance [217].

The RBP cold-shock domain-containing E1 (CSDE1) regulates targets at the posttran-
scriptional level to temper their stability and translation. Interestingly, CSDE1 can function
at different levels of translation and can tailor its target metabolism according to the tissue
or cell type [218,219]. More specifically, CSDE1 promotes a stem cell profile in human
embryonic stem cells (hESC) to prevent neural differentiation. This is performed through
negative regulation of targets involved in radial glial cell formation (RGC). Consistent with
this, loss of CSDE1 results in precocious neurogenesis, whereas overexpression leads to
impaired neurogenesis [220]. Similarly, the RBP CUGBP ELAV1 family member 1 (CELF1)
has an important role in murine neocortical development by regulating production of
glutamatergic neurons. This is accomplished through translational repression of ELAV4
through a mechanism involving the 5′ UTR-binding. Unlike previously discussed RBPs,
CELF1 is involved in temporal regulation of different isoforms of target RNAs, namely,
ELAVl4. That is, isoforms are differentially regulated in early and late corticogenesis, and
this is determined by the 5′ UTR of the target mRNA [221]. The RBP Pumilio2 (Pum2)
also acts posttranscriptionally to regulate mammalian neuronal differentiation. Pum2 does
this by initiating translation of elF4E to ultimately promote neuronal growth [222]. This
mechanism adds an additional level of complexity to RBP-mediated regulation of gene
expression.

Posttranscriptional regulation is an efficient mechanism that can be used for rapid
changes in gene expression. Transitions from stem cells to more differentiated cell types
must be accurate and rapid to keep up with a developing organism. More importantly,
posttranscriptional regulation is a mechanism often observed during early development.
For example, the Drosophila embryo relies exclusively on maternally inherited mRNA and
proteins for the first three hours following fertilization. During this time, posttranscrip-
tional regulation of these maternal genes and proteins guide developmental stages until
transcription is turned on later in development [223–225]. Maternal-zygotic transition in
Xenopus also depends on posttranscriptional regulation to degrade maternal transcripts
during cell-fate determination [226]. Together with temporal and spatial gene expression,
posttranscriptional mechanisms provide multiple layers of regulation. The benefits and
malfunctions of these complexities will be discussed in the following sections.

6. RBPs and Phase Separation

Cells contain microenvironments that facilitate biological processes including tran-
scription, degradation, and translation. To separate the various processes happening
concurrently and ensure fidelity, cells contain canonical membrane-bound organelles along
with more recently appreciated membraneless structures. Formation of membrane-bound
organelles ensures that components can be restricted to discrete locales, whereas mem-
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braneless condensates allow for more dynamic movement of relevant molecules, as well
as asymmetric subcellular localization in some cases. Still, these membraneless structures
must also be regulated to maintain cellular homeostasis. Membraneless condensates are in-
creasingly understood to be formed and regulated through liquid–liquid phase separation
(LLPS) [227]. This process results in compartments that resemble an emulsion of oil droplets
and water [228]. The transient and less restricted nature of the resulting membraneless
structures, termed biomolecular condensates, makes them useful for rapid changes, such as
cell specialization. Biomolecular condensates provide an efficient environment to carry out
biochemical reactions and compartmentalize certain activities. These dynamic structures
can be made up of different proteins and molecules, depending on the cell type, including
a growing list of RBPs and bound RNA. Further, they can be formed in different parts
of the cell, including the nucleus, and their formation can result from various conditions
including stress and cell growth [229]. Structural specifications, such as intrinsic disorder,
drive LLPS. More information about protein structure and the propensity to undergo LLPS
can be found in excellent reviews [9,230–233].

Subcellular compartments such as P-granules (C. elegans), stress granules, and ri-
bonucleoprotein (RNP) granules play important roles in posttranscriptional regulation.
As such, these granules contain RBPs that are responsible for recruiting and regulating
targets [234], as well as many of the other functions mentioned thus far. Further, struc-
tural properties such as intrinsically disordered regions (IDRs) (Figure 2) of many RBPs
favor LLPS, and thus, creation of these subcellular structures (Figure 2) [235]. RBPs in
biomolecular condensates have recently been shown to regulate stem cell homeostasis. The
RBP fused in sarcoma (FUS) is involved in RNA localization, transcription, splicing, and
DNA repair [236]. It has a role in maintenance of neural stem progenitor cells (NSPC),
specifically through cell cycle regulation [237] and progression (S, G2/M) [238,239]. FUS
acts in transcriptional condensates formed via LLPS to influence gene expression through
recruitment of transcriptional machinery [240]. Interestingly, downstream functions of FUS
are phase separation dependent. Namely, FUS that does not undergo LLPS interacts with
RNA, whereas FUS that phase separates is involved in DNA damage repair and chromatin
remodeling [241]. Moreover, it is responsible for regulating early differentiation. FUS con-
tains an N-terminal prion-like domain (PLD) that facilitates reversible LLPS. This process
is required for FUS functions including DNA repair [242], and this is important during
stem cell divisions to ensure genome integrity is preserved. Stem cells are further regu-
lated by RNP granules that promote translation of select targets. These highly conserved
structures sequester mRNA and are formed through LLPS. Imp/ZBP1 is one RBP found
in RNP granules in the Drosophila brain where it resides inside RNP granules along with
translationally repressed mRNAs. Release of Imp and mRNAs from the granule results in
translational activation [243]. Conversely, binding of RNA to RBPs can also promote forma-
tion of biomolecular condensates. Binding of RNA to hnRNPA1, an RBP enriched in the
murine CNS [244], promotes phase separation and incorporation into stress granules [245].
Stress granules house stalled mRNA and RBPs and are frequently observed during stem
cell differentiation. Like other biomolecular condensates, stress granules are not static.
They disassemble once stressful conditions have been resolved and mRNA translation is
reinstated [246]. Together with other resident proteins and nucleic acids, RBPs found in
biomolecular condensates regulate cell fate spatially and temporally. Although much work
remains to fully unravel the diverse roles that LLPS likely plays in neurodevelopment, it is
clear this process represents yet another dynamic mode of RBP-dependent regulation to
neural stem cell function.
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Figure 2. Structural Properties of RNA-binding proteins. Illustration depicts common RBP domains.
(A) Most RBPs contain common RNA-binding domains, such as RRMs, GRs, and QGSY regions.
Nuclear localization signals and acidic domains [247] (splicing factors) are also found in various RBPs.
(B) Some RBPs contain noncanonical domains that can bind RNA/DNA [184], such as Zn-finger
motifs, WHEP-TRS domains [248], and PDZ domains. (C) Other RBPs contain important regions
involved in liquid–liquid phase separation that promote formation of biological condensates impor-
tant for RBP function, such as stress granule formation and transcription. (D) List of RBP domains
associated with disease and dysfunction. Common diseases and abnormalities are included [249–254].

7. RBPs Aid in Maintaining Tissue Homeostasis

The previous sections highlighted the importance of regulating cell growth and pro-
liferation to ensure proper tissue establishment. However, RBPs also play an important
regulatory role to maintain tissue function and prevent disease. For instance, an important
feature of stem cells that must be controlled throughout development is their ability to
self-renew and differentiate. This fundamental feature helps determine the number and
size of cells that comprise a tissue, with aberrant regulation of these often leading to several
developmental diseases. For example, the YAP/TAZ (Drosophila; Hippo signaling) pathway
has been implicated in regulation of tissue size and cell number through functioning of
its effector YAP (Yorkie in Drosophila). In the Drosophila brain, neuroblast proliferation,
quiescence, and overall brain size is modulated by the Hippo pathway [255,256]. In mam-
malian systems, YAP/TAZ/Yorkie dysfunction has been linked to aberrant tissue growth
in both stem cells and epithelial tissue [256–259]. Thus, the Hippo pathway is an important



J. Dev. Biol. 2022, 10, 23 13 of 26

regulator of tissue homeostasis, although the mechanisms that regulate the pathway itself
remain unclear. Recently, regulation of the Hippo pathway has been attributed to posttran-
scriptional regulation and RBPs. Recent work showed that the ribonucleoprotein Hrb27C
modulates the phosphorylation state of the effector proteins YAP/TAZ/Yorkie to promote
growth [260]. Consistent with known roles of the Hippo pathway in growth and cell
differentiation, loss of Hrb27C also results in decreased proliferation and aberrant structure
of differentiated cells [260]. Loss of Hrb27C influences Yorkie-target gene expression; how-
ever, a molecular mechanism remains undefined. Regulation of Hippo also occurs through
posttranscriptional control of Yki RNA. The RBP Rox8 prevents anomalous Yki signaling
by promoting degradation of Yki RNA via two mechanisms. Rox8 binds the 3′ UTR of Yki
mRNA (see [261,262]) to promote Yki mRNA decay. Rox8 also interacts with the microRNA
miR-8 to recruit RISC to degrade Yki mRNA. A similar mechanism is observed when
Drosophila cells are transfected with mammalian Rox8, TIAR [105]. In mouse embryonic
stem cells, loss of TIAR promotes self-renewal [263]. Collectively, these studies illustrate
the important role of RBPs in the regulation of an essential and evolutionarily-conserved
cell growth pathway that mediates homeostatic control of tissue and organ size.

8. RNA-Binding Proteins in Dysfunction and Disease

The widespread role of RBPs in development also makes their dysfunction a common
source of disease. Notably, RBP dysfunction in the CNS often presents as neurodegen-
eration or morphological defects [264,265]. Mutations resulting in altered function and
RBP localization have been shown to lead to disease (Figure 2). Many neurodegenerative
diseases are caused by protein aggression or mutations in genes that regulate autophagy.
Protein aggregates result from errors in protein folding, denaturation, stress conditions, or
due to age [266,267]. They contain a mixture of components including elevated amounts
of RNA and are observed in numerous motor neuron disorders [268,269]. The RBPs FUS,
TDP-43, hnRNPA1, and MATR3 have all been shown to aggregate and cause disease [270].
Recent work on the RBP Musashi (Msi) highlighted its role in Tau protein aggregation, com-
monly seen in Alzheimer’s disease. Interaction between Msi and Tau results in formation
of aggregates and a similar response is observed when Tau interacts with TIA1 [271]. TIA1
promotes Tau phase separation and generation of toxic, oligomerized Tau [272]. Decreased
TIA1 levels in an aberrant Tau background results in increased neuroinflammation [273].
Similarly, disease can also arise from dysfunction in regulatory pathways. Returning to the
example of the Hippo, this pathway is also regulated by RBPs in several diseases including
brain, liver, and pancreatic cancer pathogenesis [274–276]. In glioblastoma, levels of the
RBP cytotoxic granule-associated RNA-binding protein (TIA1) (Drosophila: Rox8) (Table 1)
increase following YAP knockdown to prevent cell invasion in U87 glioblastoma cells [276].

As another important example, Staufen, the RBP essential for neural stem cell devel-
opment both in the fruit fly and in mammals, has been associated with diseased states
including amyotrophic lateral sclerosis (ALS) and certain types of dementia. In one study,
spinal cord samples from patients with ALS showed significantly elevated levels of Stau1
along with increased mTOR signaling [277]. Stau1 has been shown to inhibit autophagy
through activation of mTOR [278]. In ALS, mTOR activation leads to stimulation of certain
astrocytes that results in motor neuron toxicity and death. Many homeostatic mechanisms
rely on autophagy to clear the cell of debris and toxic compounds. Thus, a disruption in
the autophagy process contributes to neurodegeneration. Other sources of disease include
incomplete development of tissue or tissue of the wrong size. Microcephaly and neural
tube defects are two conditions caused by improper regulation of cell growth and prolif-
eration. Loss of the RBP LIN28A leads to microcephaly in mice and a double deletion of
LIN28A/B leads to neural tube defects. The underlying cause for these phenotypes is re-
duced protein synthesis resulting from defective ribosome biogenesis and translation [217].
Protein synthesis is an important process necessary to maintain cellular functions. As
such, deviations from translational homeostasis lead to cognitive defects. Fragile X mental
retardation protein (FMRP) is an RBP that is expressed in the brain where it regulates
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translation. Not surprisingly, loss of FMRP in adult neural stem cells results in decreased
production of neurons and defective hippocampal processes [279,280]. Diseases resulting
from defective FMRP signaling or absence include autism, intellectual disabilities, and a
role in addiction [281–283]. Much of the disease is caused by over proliferation of adult
neural stem cells at the expense of neurons [284].

9. Conclusions

Stem cells have the potential to generate diverse progeny from a small population
of cells. Diversity of the progeny is attributed to several mechanisms including hormone
signaling, transcription factor activity, and changes in cellular metabolism [285–287]. It
is important to note that some metabolic enzymes have RNA-binding activity, and some
metabolic processes can result in posttranslational modifications that in turn influence
enzyme interactions with RNA [288]. This is an interesting avenue that will require further
investigation. Complexity among distinct cell progeny is further increased by the varying
proteome of each cell type. Stem cell regulation at the transcriptional level has been widely
studied; however, posttranscriptional and translational regulation are more contemporary
fields that warrant further studying. Notable among the outstanding research topics are
the functions of RBPs in both normal and disease processes in brain development. Some
RBP functions are associated with healthy tissues, whereas others, such as LLPS, have
primarily been associated with disease. As discussed in this review, LLPS of TDP-43
causes disease, whereas that of FUS is critical for DNA repair. Characteristics governing
disease-associated LLPS have been elucidated for a limited number of RBPs; however,
details remain unknown for several others. For instance, LLPS of TDP-43 results in disease;
however, aggresome formation also leads to disease [289]. Additional pathways that lead
to generation of aggresomes have not been determined for other proteins known to be
involved in brain diseases, including hnRNPA1 and FUS [290]. Furthermore, molecular
characteristics such as disordered regions, phosphorylation, and amino acid composition
and their role in spatial and temporal regulation of aggresome formation and LLPS remain
to be explored [291,292]. From a pharmacological standpoint, these details could further
efforts to identify drug targets beyond the conventional single protein strategies [293,294].

More well-known, but equally important, contributors to disease are errors in RNA
processing. Brain diseases can also arise from errors in RNA splicing, localization, and
translation. These include errors in processing of target RNA or expression/processing
of the RBP transcript itself, as observed with FMRP in fragile X syndrome (FXS) [295].
The initial need here is to identify potential regulators of RBP expression. These may
be tissue specific or ubiquitous, depending on the RBP. That is, expression of RBPs that
are tissue-specific must be induced by upstream activators and these may be different,
depending on the tissue. Large-scale identification and analysis of RBP targets will also
aid in understanding the role of RBPs in disease. Recent advances in technology have
made this possible [296]; however, these studies would be well complemented by follow
up studies in tissues of interest.

Stem cells and their progeny have different molecular components and express vary-
ing transcriptional and translational regulatory proteins, including RBPs [297–299]. These
genetic profiles differ according to cell function and resident tissue. Thus, it is important
that cells have the appropriate gene expression pattern to ensure correct development. The
previous sections outlined the important roles of RBPs in establishing cell identity and
maintaining tissue homeostasis. The diverse roles of RBPs allow them to be involved in
many cellular processes including translation, miRNA processing, transport, splicing, and
others mentioned here. Additionally, numerous RBPs function in a complex to exert differ-
ent effects on targets (i.e., localization). Further, RBPs can alter when and where targets are
expressed. Spatial and temporal regulation of targets can be particularly important during
early and late developmental stages (see the Regulation of Temporal Gene Expression
section). These various functions, coupled with the numerous RBPs identified to date,
make them important regulators of neurodevelopment. This review discussed some of the
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important mechanisms in neurodevelopment that involve RBPs, which have only recently
been identified as important regulators of cell fate. Many questions remain open for future
exploration, including identification of additional RBPs and their key RNA targets across
model organisms. Moreover, unraveling additional gene regulatory networks that rely on
RBPs for proper regulation of gene expression is needed.
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