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Abstract: The assumption that there was a “water problem” at the emergence of life—that the Hadean
Ocean was simply too wet and salty for life to have emerged in it—is here subjected to geological
and experimental reality checks. The “warm little pond” that would take the place of the submarine
alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of ge-
ological, microbiological and evolutionary research and reasoning. To the present author, the evidence
refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a
water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative
“Icelands” or “Hawaiis”, nor even an “Ontong Java” then because (iv) the solidifying magma ocean
beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the
supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine
alkaline vent as life’s womb: in place of lipid membranes, we suggest peptides; we replace poisonous
cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate
life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life’s
emergence from the simplest of geochemically available molecules and ions focused at a submarine
alkaline vent in the Hadean—specifically within the nano-confined flexible and redox active interlayer
walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much
of that mound.

Keywords: peptide membrane; fougerite/green rust; Hadean Ocean; hydrazine; mushy mantle;
submarine alkaline vents; emergence of life

Central to understanding “living mater” is appreciating its sheer improbability. [1].

It is through functional properties, not structure, that the organization of a purposive
system is expressed. [2].

1. Introduction

The recently revived case for a prebiotic soup in a wet-dry “warm little pond” as
life’s womb is—according to a recent article in Nature [3]—driven by “scepticism about
Russell’s alkaline-vent hypothesis” as it supposedly “lacks experimental support” and
moreover, that the “evidence doesn’t exist” [3]. “By contrast, chemical experiments that
simulate surface conditions have made the building blocks of nucleic acids, proteins and
lipids” [3]. Further, the warm little pond “offers a solution to a long-recognized paradox:
that although water is essential for life, it is also destructive to life’s core components” [3].
The further charges variously stated are (1) that prebiotic “molecules wouldn’t survive
long in those (alkaline vent) conditions”, (2) that “the formation of these protopeptides is
not very compatible with hydrothermal vents” [3], and (3) “None of that synthesis exists in
that deep-sea hydrothermal vent hypothesis. It just simply hasn’t been done, and possibly
because it can’t be done,” says Catling [3] and, (4) on top of it all Sutherland opines “You
can say with some degree of confidence we need to be on the surface, we can’t be deep in
the ocean or 10 kilometres down in the crust” . . . “Then we need phosphate, we need iron.
A lot of those things are very easily delivered by iron–nickel meteorites” and “once RNA,
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proteins and so forth had formed, evolution would have taken over and enabled proto-
organisms to find new ways to make these molecules and thus sustain themselves” [4].

In 2017, Sutherland officiated at the submarine AVT requiem in a Nature Reviews,
Chemistry paper declaring; “A requirement for ultraviolet irradiation to generate hydrated
electrons would rule out deep sea environments. This, along with strong bioenergetic and
structural arguments, suggests that the idea that life originated at vents should, like the
vents themselves, remain ‘In the deep bosom of the ocean buried’” [4]. It appears that to
make room in the trend-setting journals for what was assumed by many to be a dead duck,
required the peremptory demise of AVT. For example, from these imputations we read
“experimental support is growing for the idea that life started in small bodies of water
on land” [3]. Furthermore, the case for the “pond” has even earned Catling’s blessing:
“There’s a lot of work that’s been done in the last 15 years which would support . . . ‘surface
lakes and puddles’ . . . which are highly promising . . . ” [3].

Are they? Here we first argue that the boot is on the other foot; that an ultravio-
let UV-energized, wet-dry cycling pond—the alternative Hadean open-womb proposed
for life’s “origin”—is a reductionist fantasy dreamt up in the absence of geological and
thermodynamic consideration. Hence, as this self-referencing pond argument makes its
parochial rounds it never finds a home in the biological literature. We will call a variety
of witnesses to speak against this “origin of life” pretender and further caution the little
pondists of the statistical understanding of thermodynamics, the second law included,
known since Boltzmann revealed it to us all back in the eighteen seventies, is fundamental
to all dissipative structures in the Universe, and that ignorance of this law is no excuse
for endlessly propounding ‘origins scenarios that flatly violate it’ [5]. We then expose this
“false requiem” being played for the submarine alkaline vent theory for life’s emergence
for what it is, before playing our own overture to emergent life.

2. Evaporating Pond Theory of Life’s “Origin”

David Deamer has long championed subaerial volcanic hot springs exhaling into
shallow ponds subject to evaporation as the birthplace of life. “These wet-dry cycles are
everywhere,” says Deamer . . . “It’s as simple as rainwater evaporating on wet rocks” [3].
“Deamer has conducted several experiments in modern volcanic hot springs to test his ideas.
In 2018, his team showed that vesicles could form in hot spring water and even enclose
nucleic acids, which Marshall reports “would not form in seawater” [3,6]. “Previously,
Deamer and his team in 2008 [7] had mixed nucleotides and lipids with water, then put
them through wet-dry cycles. When the lipids formed layers, the nucleotides linked up
into RNA-like chains—a reaction that would not happen in water unaided. A follow-up
study found that when the resulting vesicles were dried, nucleotides linked up to form
RNA-like strands [8]”. They conclude, “wet-dry cycles on the edges of the pools would
have driven the formation and copying of nucleic acids such as RNA [8]”. An “alternate
chemiosmotic energy” develops in these supposed conditions though, in contrast to AVT
as well as life itself, the gradient is the reverse of the prototypical proton motive force!
The disequilibria in their model is provided by reduced sulfur compounds inside the lipid
vesicles, the electrons from which are then transported through the membrane by the
diffusion of quinone carriers “present in the Murchison meteorite” as they make their way
to the ferricyanide acceptor on the outside [6]. As mentioned, protons are also “released in
the process, producing an acidic interior and substantial gradients over 2 pH units” [9].

Like Deamer, Frenkel-Pinter and collaborators [10] argue that wet–dry cycles were
crucial. “Dry conditions, she says, provided an opportunity for chain molecules such
as proteins and RNA to form. But simply making RNA and other molecules is not life.
A self-sustaining, dynamic system has to form.” Frenkel-Pinter suggests that water’s
destructiveness could have helped to drive such a system. “Just as prey animals evolved
to run faster or secrete toxins to survive predators, the first biological molecules might
have evolved to cope with water’s chemical attacks—and even to harness its reactivity for
good”. Moreover, the open ocean is unviable, says Frenkel-Pinter, because there is no way
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for chemicals to become concentrated. “That’s really a problem,” agrees Bonfio. The idea
is that, with each cycle of wetting, the weaker molecules, or those that could not protect
themselves by binding to others, were destroyed. Bonfio and her team demonstrated this in
a study this year, in which they attempted to convert simple fatty acids into more-complex
lipids resembling those found in modern cell membranes [11]. The researchers created
a mixtures of lipids, and found that the simple ones were destroyed by water, while the
larger, more complex ones accumulated.” “At some point, you would have enough of these
lipids for them to form membranes,” she says. In other words, “there might be a Goldilocks
amount of water: not so much that biological molecules are destroyed too quickly, but not
so little that nothing changes” [3].

Although wet-dry cycling has been around since at least the nineteen seventies as a
proposed prebiotic mechanism for polymerizing amino acids [9,12–14], a similar struggle
but with RNA led to the re-opening of Darwin’s casket for the resurrection of “pond
theory” [15–32]. However, that casket was empty! In a carefully considered footnote to his
Origin of Species of 1872, Darwin wrote ‘’It is no valid objection (to the theory of natural
selection) that science as yet throws no light on the far higher problem of the essence or the
origin of life” [33,34].

Nevertheless the literature favoring wet–dry cycles is burgeoning. One example is
the “polymer fusion model” proposed by Hud and his collaborators [35]. Appealing to
retrodiction from the extant RNA molecule—“the penultimate member of a continuous
series of polymers”—they suggest that its ultimate precursor was made from primeval
prebiotic “hypothetical pre-RNAs”. These “plausible” entities were assumed to exist in
the Hadean and were put together from the organic building blocks of life supplied by
chondritic meteorites or Miller–Urey prebiotic reactions in a “drying pool” or “drying
lagoon”. “My grandfather’s axe” is the pedagogic metaphor called upon to indicate
how the ready-made primeval prebiotic “hypothetical pre-RNAs” assumed to exist in the
Hadean composed of (1) recognition units (bases), (2) trifunctional connectors (ribose) and
(3) an ionized linker (glyoxylate)—the true and pure forebears of RNA and DNA—came to
be [35]. But the metaphor, like the scientific assumption contained in the body of their paper,
falls short in just invoking the immediate past, for our palaeo-grandfather’s axes—unlike
grandad’s—were hand-held and made of flint! In opposition we reiterate that the only way
to produce biotic monomers and polymers is to start with the simplest of molecules or ions
indisputably present on the early Earth, viz., CO2, H2O, CH4, HPO4

3−, N2, NO, NH3, Fe,
Ni, Co, Zn, Mn, Mg, Mo, Na, K and reduced sulfur [36–39].

Top-down attempts to mask or muzzle AVT have now been joined by van Kranen-
donk and colleagues’ [31,32] “bottom up” presentations of geological evidence for AVT’s
supposed ‘passing’. The “water problem” is front and center of their argument—a prej-
udice that harks back to Shapiro’s 1986 isolating assertion: “The enemy is water”! [40].
The van Kranendonk preferred scenario is for a site which has the advantage of “wet–
dry cycling and greater chemical complexity (achieved through additional air/volcanic
gas-rock, and air/volcanic gas-water interactions, and information exchange between the
numerous, chemically variable pools that typify hot spring systems), in addition to the
acidic conditions required to form lipid membranes” [31].

To gather support for their preferred model, van Kranendonk et al. [31] explore “deep-
time” in search of amenable conditions for their “origin of life”. It so happened that a
3.5 billion-year-old, anoxic hot spring setting from the Pilbara Craton (Australia)” revealed
“that its hydrothermal veins and compositionally varied pools and springs concentrated
all of the essential elements required for prebiotic chemistry (including B, Zn, Mn, and K,
in addition to C, H, N, O, P, and S)” [31]. Their argument espouses “temporal variability
(seasonal to decadal), together with the known propensity of hot springs for wet–dry
cycling and information exchange” and suggests that this “would lead to innovation pools
with peaks of fitness for developing molecules” [31]. But this geological scenario falls short
of life’s likely onset by nearly a billion years and is no more relevant than other such sites!
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3. Dirty Chemistry

The struggles to satisfy the RNA world hypothesis in the pond brought about the
concept of “dirty chemistry”. This requires a myriad of organic molecules derived from
the Earth, atmosphere or extra-terrestrially, to self-organize themselves somehow into the
metabolic cycles, thus supposedly explaining how ‘wonderful life’ originated [28,41–44].
Ignored were the earlier entreaties of Schrödinger and Prigogine to understand that,
as history itself painfully teaches us, order can only be derived from order, or fluctuations
therein [45–47]. Nor is this what we might call “a hypothesis of least astonishment”, i.e.,
“neither more, nor more onerous causes are to be assumed than are necessary to account
for the phenomena” ([48], p. 482).

Dirty, or messy chemistry advocates generally call on lipids as the first requirement
to establish a cell. For example, Deamer and Barchfeld studied “how lipids, another class
of long-chain molecule, self-organize to form the membranes that surround cells” [3,49].
Deamer and Barchfeld [49] “first made vesicles: spherical blobs with a watery core sur-
rounded by two lipid layers . . . (T)hen . . . dried the vesicles, and the lipids reorganized
into a multi-layered structure like a stack of pancakes. Strands of DNA, previously floating
in the water, became trapped between the layers. When the researchers added water
again, the vesicles reformed—with DNA inside them. This was a step towards a simple
cell” [3,49]. Interesting physics and chemistry? Maybe, but it again avoids the problem of
DNA’s ultimate source!

Other experiments said to support this heterotrophic origin of life have been made
or argued for by Rajamani et al. [7], Monnard et al. [50], Deamer et al. [51], Mulkidja-
nian [52,53], Deamer and Weber [54], Hazen and Sverjensky [55], Kim et al. [56], De Guz-
man et al. [57], Forsythe et al. [58], Hazen [59] and Pearce et al. [22]. In a similar vein,
Powner and collaborators, [16] argue that at “some stage in the origin of life, an infor-
mational polymer must have arisen by purely chemical means”. Their publication was
particularly impactful, having concluded: “findings suggest that the prebiotic synthesis
of activated pyrimidine nucleotides should be viewed as predisposed” (sic). In order
to demonstrate the verity of this statement, they produced such pyrimidine nucleotides
using what they deemed to be “plausible prebiotic feedstock molecules”, viz., cyanamide,
cyanoacetylene, glycolaldehyde, glyceraldehyde and orthophosphate. These authors
backup the statement with the remark that “the conditions of the synthesis are consistent
with potential early-Earth geochemical models.” From the cyanamide, cyanoacetylene,
glycolaldehyde, glyceraldehyde and orthophosphate they went on to generate arabinose
amino-oxazoline and anhydronucleoside, supposed waystations to the pyrimidine ribonu-
cleotides needed for RNA synthesis! They further remark, “for prebiotic reaction sequences,
our results highlight the importance of working with mixed chemical systems in which
reactants for a particular reaction step can also control other steps. Although inorganic
phosphate is only incorporated into the nucleotides at a late stage of the sequence, its pres-
ence from the start is essential as it controls three reactions in the earlier stages by acting as
a general acid/base catalyst, a nucleophilic catalyst, a pH buffer and a chemical buffer”
on the way to generating “two of the four nucleotides that comprise RNA, starting only
with highly concentrated aqueous solutions of phosphate and four simple carbon-based
chemicals and cyanamide” [16]. Crucial steps required UV radiation. Thus, they conclude
that such reactions could not take place deep in an ocean—only in a small pool or stream
exposed to sunlight, where chemicals could be concentrated” [16].

What reactions could these be we ask? Well, UV radiation is normally brought to bear
as “a photolysis mechanism that favors selection of the most UV-resistant biopolymers:
(e.g., oligonucleotide-like polymers at the expense of the bases) [16] though quite how such
substrates are produced in the necessarily exponentially rising concentrations that would
be required for such an “origin” of life is not considered. UV has also been heralded as an
energy source to free-up an electron from tricyanocuprate Cu(CN)3 though again, exactly
how the latter is produced in sufficient quantities, or at all, is also not demonstrated [60].
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The Earth’s volatisphere was simply too oxidized to support a substantial source of that
poison [61–63].

In spite of this knowledge, Damer and Deamer [9] suggest that gels might make a
good ambient environment for such chemistry requiring, as they do, low water activities.
They further report that Sutherland’s team [64] “has since shown that the same starter
chemicals, if they are treated subtly differently, can also produce precursors to happen
in water unaided. Other studies are pointing to different proteins and lipids”. They also
appeal to cyanide salts—those well-known poisons (pity the poor ferredoxins) where these
reactions might have taken place if water containing these salts was “dried out by the Sun,
leaving a layer of dry, cyanide-related chemicals that was then heated by, say, geothermal
activity”. We wait with bated breath to hear of similar ‘order-from-disorder’ activated
chemistry, perhaps to be revealed by NASA/JPL’s Perseverance on Mars? But to us all this
is wishful thinking dreamed up in an RNA penthouse without solid foundations and no
visible means of support in the moderately oxidized and completely flooded surface of
the Hadean world. Nevertheless, as this speculation has such a grip on the “origin-of-life”
community we give it time of day next.

4. RNA-DNAology

Sutherland’s team, using energy from sunlight, has recently produced the building
blocks of DNA from high concentrations of photoactivated cyanide (HCN), cyanoacetylene
(CH3N) and hydrogen sulfide (H2S), “something previously thought implausible” [3,65].
Again, no geological evidence for such a soup has ever been mustered. Other suggestions
along the same lines call upon prebiotically plausible acrolein and 2-aminooxazol which
furnish ribo-3-5P with excellent ribo-selectivity through a combination of kinetic and
thermodynamic control.

In a commentary (https://chemistrycommunity.nature.com › posts › 3720, accessed on
25 March 2021) on their paper Bonfio and Mansy [66] also inductively conclude that, in the
supposed absence (sic) of a “historical record”, the early Earth’s store of electrons required
for life resided not in the minerals comprising the Earth per se but in a “chemical deposit of
NADH” (nicotinamide adenine dinucleotide, C21H27N7O14P2) (sic)! Bonfio and Mansy [66]
also relieve origin-of-life theory from the requirement of the early production of the rather
complex FMN (flavin mono-nucleotide, C17H21N4O9P), suggesting that it too was present
in the pond or pool. However, they remarked modestly that they could not be “satisfied”
with their model until they had demonstrated that ubiquinone, CoQ10 (C59H90O4)—a
highly hydrophobic molecule—could dissolve in the lipid membrane: which it duly did!
This was exciting for Bonfio and Mansy [66] because in biology too, “the electrons donated
from NADH to iron-sulfur peptides” are “further transferred to ubiquinone, which is
somewhat similar to how electrons pass from NADH to Complex I and then to ubiquinone.”
Moreover, Bonfio and Mansy [66] suggest that the said electrons were drawn to an even
better oxidant than the absent oxygen, viz. hydrogen peroxide (H2O2), which, they say
“makes sense”.

Added to these fortuitous circumstances, according to these same authors, NADH
was not the only nucleotide present at that time, because, as it is “generally accepted that
RNA and nucleotides were crucial for the origins of life”, there must have been a store
of them too! They conclude, “the use of electron carriers that fit within the RNA world
hypothesis (is) attractive”. Bonfio et al. [67] also suggest that UV radiation drives the
synthesis of iron-sulfur clusters which are crucial to many proteins. We are told these
iron-sulfur clusters would break apart if they were exposed to water, but they were found
to be more stable if the clusters were surrounded by simple peptides 3–12 amino acids long.
Furthermore, peptides were also apparently to be had, though their source is less clear.
However, apparently there was an abundance of lipids available, or generated to order—all
of the same length and chirality to provide the first bag for the first cytoplasm! Added
to this Bonfio and Mansy [66] opine; “iron-sulfur peptides either engaged in reactions
that immediately generated a pH gradient or dumped these electrons on intermediate

https://chemistrycommunity.nature.com
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polyaromatic electron carriers (which) would have allowed for a simple proto-metabolism
to form in a way that was open to further development.” This is the “messy chemistry”
idea writ large, and we reiterate our complaint that a plausible prebiotic source of these
so-called activated highly-reduced monomers, some of them extremely complex, has not
been established and, to our minds, never existed on the early Earth. Moreover, the always
present issue of waste disposal—the ‘entropic pull’—is not addressed.

5. AVT Critiques: The False Requiem

Here we counterface all the arguments made in recent papers from the very well-
funded and promoted groups militantly opposed to AVT [3,68]. One of these papers offers
the advice “Don’t try to prove an idea is right. Instead, try to falsify it” [69]. Fully cognizant
of Popper’s “Reason and Refutation” [70], this has long been our own mantra, though
notably unshared across the community. As an example of good faith, Branscomb and
colleagues [71] wrote, “arguably the key virtue of the alkaline hydrothermal vent (AHV)
model as a scientific hypothesis regarding the initial steps in the emergence of life is its
essentially unique vulnerability to disproof. It places all of its chips on the claim that
certain naturally arising, but experimentally reproducible, geochemical circumstances
do produce castles of mineral ‘cells’ in which three key, undeniably life-like chemical
disequilibria are ‘abiotically’ generated and maintained. If it proves not to be possible to
experimentally substantiate these conjectures, then we may expect interest in the theory
to wane.” Furthermore, falsifiable predictions of AVT were listed in Russell [72] that
would, if demonstrated, “reveal embarrassing missing links, or even leave the AVT as
just one more casualty of the general theory of natural rejection.” We look forward to
similar commitment and clarity from the wet-dry polymerizing pond people. However,
we do admit to being impressed over the one prediction made by this group—viz., Dimitar
Sassalov’s promise that Harvard University “will soon have the equivalent of a living thing
in the lab at the chemical level”. We will be particularly interested to hear what bearing
such an artifact might have on the putative ‘first universal ancestor’, its evolving progeny
and the geochemical/geophysical disequilibria responsible for its emergence [68]?

One prejudice held against AVT is owed to the denial of known Hadean conditions
by those who would attempt, as mentioned, the resuscitation of Darwin’s off-the-cuff
remark in a letter to Joseph Hooker, now known in Tabloid speak as “Darwin’s warm little
pond” [73]. In contrast, the AVT is built solidly in acknowledgement of the geological,
geochemical and geophysical conditions on the early Earth as assembled by countless
scientists. The retrodicted mineralogy of the early Earth cannot be dismissed merely by
writing “it is uncertain whether these (minerals) were available on the prebiotic Earth” [74].
To counter this statement, we present in Table 1 all the evidence pertaining to our contention
that the rocky surface of the Earth was always submerged in the roiling Hadean Ocean.
Indeed, we challenge those that would favor the putrid pond idea to counter all these
aspects of the Hadean Earth listed in Table 1—a world so different than today’s that it is
wiser to think of it as a different planet.

Table 1. A Hadean Advisory.

Effects Descriptions References

Solar luminosity post solar wind 72% of present flux [75]
Solar radiation (UV and X-ray) Intense: ~100 + times present [76,77]

Earth–Moon distance; Earth’s
spin and length of day and tides

<10% of present day;
Estimates of length of day
from 2 to 10 h; ~20 m tidal

amplitude

[78–91]
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Table 1. Cont.

Effects Descriptions References

Bombardment and tsunamis

Heavy but not totally
vaporizing (negative feedback
from heightening atmospheric

pressure)

[92–97]

Maximum height of ocean
plateaux above by mantle plumes. ~1000 km [98–107]

Ocean depth 4–6 km [108–117]

Redox state Upper mantle buffered at
quartz-fayalite-magnetite [62,63,118–120]

Atmosphere post solar wind CO2, N2, H2O, > SO2 >> CO,
NOx [121–133]

Ocean chemistry Saline, CO2, NO3
−, NO2

− +
metal ions [134–140]

Magma-driven submarine springs Acidic, ~400 ◦C [141]
Direct contribution of ~400 ◦C

solution to Hadean Ocean
Fe2+, Mg2+, Mn2+, Zn2+, Co2+,

Ni2+, H2S, H2, PO4
−, CH4

[142]

Serpentinization-driven
submarine springs Alkaline, ~120 ◦C [143–147]

Direct contribution of ~120 ◦C
alkaline spring to the
hydrothermal mound

H2, CH4, HS−, HCOO− >
[Fe2S2(MoS4)2]2−/4− [142–149]

Ocean T & pH and chemistry

Strongly carbonic and saline
25 to <85 ◦C? pH 4.5 to 5.5

with minor nitrate, transition
metals in solution fed from

~400 ◦C springs

[129,141,150–155]

The Earth electronic and protonic
~1 volt battery

Eh of H2 v. H2O at delta pH 4
to 5 [136,156–159]

Olivine source of pyrophosphate
delivered to ocean via vulcanism

Hydrolysis of volcanic P4O10
to produce P3O9

3− and
P4O12

4−
[160–162]

Lightning Produces NO from CO2 + N2 [131,163–169]
Wind speed (cf. “Roaring

Forties”) 12 ms–1 estimate [170]

Wave height 10 m estimate [86,170]

Chemical sediments
Banded iron formation,

fougerite, chert, greenalite,
mackinawite

[171–179]

Foremost amongst Damer and Deamer’s [9] various objections to submarine alkaline
hot springs also depends on that so-called “water problem”. For example, they argue that,
“as a general rule, the much higher concentrations of ionic solutes composing seawater
inhibit self-assembly of membranous structures and encapsulation of polymers.” Further-
more that, “the water activity within a submerged mineral cavity . . . will be at equilibrium
with the surrounding ocean bulk.” “This presents a significant thermodynamic hurdle
because in aqueous solutions condensation reactions leading to polymer synthesis would
require chemically activated monomers such as the nucleoside triphosphates that drive
biological metabolism or the imidazole esters of mononucleotides used in the laboratory.”
They continue, “a plausible prebiotic source of activated monomers has not been estab-
lished experimentally.” However, as has long been known, there is no reaction-driving free
energy in a single phosphate-reactant bond! The free energy is in the displacement from
equilibrium of the pyrophosphate/phosphate-ratio. Still Damer and Deamer go on, “due to
the aforementioned water problem, should any catasanolytic polymer, let alone one so com-
plex as a primitive ATP synthase, be formed by chance in a vent environment, without the
constant repair and resynthesis by the enzymes of biology, it would soon be disassembled
by hydrolytic decomposition.” (Given the problem of “constant repair and resynthesis”,
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we wonder how the process of repair would be managed as life was supposedly ‘birthing”
in an evaporating pool?) They add, “cycling of systems of polymers . . . that can drive
molecular evolution along the path to cellular life . . . is not available in a continuously
immersed environment.” Moreover, such “sites are compromised because of the uniform,
dilute nature of the ocean reservoir and its limited capacity to concentrate either the simple
organic compounds or the trace elements required for prebiotic chemistry” [9].

Damer and Deamer’s complaints are echoed, as we have noted, by Frenkel-Pinter
and Bonfio [3], and have also been reiterated by Voosen [180]. Van Kranendonk et al. [31]
take up the same cry, calling upon Mulkidjanian et al. [17], Hud et al. [35] Ross and
Deamer [20] and Deamer et al. [51] for support when they write “Oceans are also considered
unlikely sites for OoL due to their limited capacity for complexity, the high salt and total
divalent cation (e.g., Ca2+ and Mg2+) concentrations that inhibit lipid membrane assembly
and protocell formation, and because organic polymer formation requires condensation
reactions at sites where wet–dry cycling can take place (“The Water Problem”).” However,
this lipid argument has no phylogenetic support nor any bearing on the submarine alkaline
vent theory.

In AVT, the first membranes comprise, for example, multilayered enantiomeric 16-mer
residues such as Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys amyloid beta-sheet peptides [181].
Moreover, Ser-Gly-Ala-Gly-Lys-Thr-alpha sheets that we also favor are so much more
functional, even as information molecules [163,181–185]. These peptides can also act as
alpha-helix P-loops [181,186–192]. Therefore, the Damer–Deamer complaint regarding the
supposed problem of encapsulation does not apply to peptide membranes which are known
to precipitate in such environments [9,191,192]. Surely, the assertion that condensation
reactions (or catalysis in general) cannot take place in water could be read to assume life’s
wet cells are also unviable! The nanochemistry and nanotechnology literature appears to
have passed these complainants by! In AVT’s defense redox catalysis and polymerization
can be promoted within nanometer-sized pores and interlayers such as to be found in
layered double hydroxides, including fougerite (~green rust), silica films, amyloid and
peptide nests [72,193–216]. Moreover, it should be recalled that the AVT is the only theory
which proposes a viable and explicit mechanism for the generation of out-of-equilibrium
pyrophosphates as we will address in the next section.

Damer and Deamer [9] exclaim that “the experimental evidence and thermodynamic
models of the vent hypothesis have recently been challenged and these critiques should
(also) be addressed [9]. This seems particularly egregious; the facts are that the Jackson “crit-
icism” [217,218] had already been thoroughly rebutted by Lane [219]; the explanation for
how life left the vent environment was previously detailed in Russell and Hall [156,159],
and the Ross [220] criticism has been exhaustively excoriated by Branscomb and Rus-
sell [221] without rejoinder. Wächtershäuser’s [222] challenges apply to the pond theories
more than they do to the AVT and we deal with them in their own right in the next section.
But first we can report on their reasonable challenge [9] that “one such test . . . for the vent
scenario is that carbon dioxide can be reduced to simple organic solutes such as formic acid
in a vent environment” [223,224]. Such a test has now been experimentally demonstrated
both in the serpentinizing system and the vent environment [143,225].

A further directive is that “(H)ypotheses for an origin of life must also propose
that a cell-sized compartment is able to maintain sufficient concentrations of reactants
so that metabolic reactions can be initiated.” This challenge has also been met both theo-
retically [226,227], as with recognition that “surface area available for catalytic processes
exceeds that of a solid crystal by orders of magnitude”, and in experiments that show the
product exceeds that to be expected of the mere surface of green rust/fougerite [227–232],
products that include ammonium, amino acids and, perhaps, hydrazine [185].

While it is admitted by Damer and Deamer [9] that the Hadean Earth did not have
continents, they do argue that it was likely to have volcanoes similar to those from the
same era still visible on Mars. Volcanoes yes, tens of thousands of them probably, but given
the mushy state of the mantle [98] and ergo its limited load-bearing capacity, the salience of
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plume-related large igneous provinces and the tumultuous weather of the era, then the idea
of Hadean volcanoes hosting fresh water ponds is, in Wächtershäuser’s terminology, a “pre-
falsified” theory” one “that falls stillborn off the press” [222] (Table 1, Figure 1). Further, the
view that the “concentrating potential” of reactants, e.g., “amphiphilic compounds”, in such
a pond adds significant free energy to a system that can be used to drive condensation
reactions flies in the face of how entropy is reduced in general [47], let alone how these
putative reactants would be produced in the exponentially increasing concentrations
required by life’s procreation and evolution!

Figure 1. Depiction of our Hadean planet. The crust was completely submerged with a ~5 km deep ocean as the magma
ocean was still too mushy to support significant bulges even at the apices of mantle plumes [98–102,106,233–235] EoL:
emergence of life.

It seems to have escaped our critics that the AVT is not an “origin” story but a theory of
“emergence” of a unique dissipative structure [1,226] because “organismic wholes cannot
be built piecemeal from molecular parts, and the “whole provides rules and contexts in
which parts emerge and acquire functional significance” [1]. The RNA world’s opposition
to the AVT is still argued despite (because of?) the several cogent refutations of the RNA
world by and repudiations of soup theory [236–244]. These objections to the wet/dry RNA
pond models have been comprehensively ignored and remain to be answered. It seems
there is more to be had by challenging the counter theory—the AVT—rather than facing up
to the proverbial mote in the eye.

In the Damer–Deamer [9] critique we further read not only that the AVT could not
survive the dilution (of organic molecules) that inevitably would occur in a global salty
ocean, but also that “seawater is too salty” to let lipids come together to form membranes
and threatening the stability of any of those that threaten the stability of lipid membranes.
However, to counter this view, Jordan and his coworkers [245] have demonstrated the
viability of lipids to do just that, though they do not specify a lipid source. Damer and
Deamer [9] carry on with the suggestion that the cycling of systems of polymers through
distinctive dry, wet, and moist phases will drive molecular evolution along the path to
cellular life, “a process that is not available in a continuously immersed environment”.

It is noteworthy here to emphasize that, notwithstanding the text book diagrams
showing lipids to dominate the cell membrane, they barely constitute 20 to 30% of these
structures; that role is mainly taken by the proteins. Their remark is also irrelevant to AVT
anyway as the lipids in archaea and bacteria have opposite chirality and the split is likely
to have been after the last universal common ancestor (LUCA) [246–249]! Nevertheless,
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we read that “submarine hydrothermal vents represent a later adaptation for extremophilic
microbial life that can thrive in conditions vastly different from the clement pools where
life can begin” [9]. This tempts us to ask the same question put by the poet in the biblical
book of Job, “Have you descended to the springs of the sea or walked in the unfathomable
deep . . . Have you comprehended the vast expanse of the world?” ([250], p. 192).

6. Wächtershäuser’s Probe

In contrast to the rather loose criticisms of the little pond people, Wächtershäuser’s
are quite precise [222]. For example, he writes, the “ingenious FeS-membrane theory
(Russell et al. 1989 [36]; Russell and Hall 1997 [157]) postulates an open cell structure
within a precipitated mound of FeS at the bottom of the primitive ocean” but then charges
that the microphotograph used to demonstrate such structure was in reality an artifact
of freeze-drying. This is as maybe, but more recent experiments that also consider green
rust precipitation, belie this charge [232]. A further criticism, that concerning the supposed
instabilities in a hydrothermal mound, is grounded in the assumption that any organic
polymers produced there are unstable. Yes, they would be if it weren’t for the fact that
water activities would be so low in the nanoconfined spaces in fougerite/green rust
and within the subsequent peptide nests as to possibly promote condensation reactions,
while there would still be water enough for necessary hydrolyses to proceed in that same
environment [72,201,251].

With respect to mineral membranes in general [252,253] Wächtershäuser [222] also
doubts that they could hold a pH gradient sufficient to drive, for example, phosphate
condensation in an approximation of the proton motive force as well as a delta Eh sufficient
to drive other protometabolic processes. Our expectation was that orthophosphate driven
into green rust interlayers would, as in pyrophosphatase, condense to pyrophosphate in
the conditions obtaining at the alkaline vent [72,100,123]. To the former challenge Qingpu
Wang and his coworkers [254] have recently demonstrated just such a condensation of
ortho- to pyrophosphate in a microfluidic device driven by a delta pH of 3.6. Nevertheless,
we readily admit that other biology-like condensations await further experimental testing
and demonstration [255]. The remainder of Wächtershäuser’s [222] criticisms make much
of Hadean conditions which are more directed to the RNA world proponents and anyway
are dealt with in some detail below. However, still missing from Wächtershäuser’s [222]
diatribe is a status report on his own “pyrite hypothesis” for the “origin of life” [256].

7. The “Pond” in the Hellish Hadean

Pace, Sleep and collaborators’ [257] and Damer and Deamer’s [9] opinions, there were
no “clement surfaces”, or “clement pools” to be had on the surface of our Hadean planet—
that young water world, impacted as it was by high energy UV, X-rays, meteorites and
asteroids, was no place to conceive and succor life. On the contrary, that young world
was spinning at such a rate—a day likely lasted less than 8 h—and the moon was so
close as to engender perpetual hurricanes, endlessly roaring 10 m high storm waves and
rapid tidal oscillations in an ocean with twice the present volume [108–117]. However,
we read in Damer and Deamer [9] that volcanoes “emerging through a global ocean
would be the original land masses on the Hadean Earth analogous to Hawaii and Iceland”
with “abundant hydrothermal fields with multiple hot spring systems replenished by
precipitation evaporating from the surrounding ocean. The distilled fresh water would
percolate into hot rocks and then circulate back to the surface as springs and geysers.
Hydrothermal fields provide sources of heat and chemical energy to drive polymerization
reactions in films of concentrated organic solutes that form on mineral surfaces during
repeated cycles of wetting and drying.”

Travelling back to when the Universe was only two thirds its present age we would be
observing a very different planet where surface conditions were unrelentingly tumultuous;
the likely depth of the Hadean Ocean was about 5 km; and the mushiness of the upper
mantle could not support notional ‘Icelands’ or ‘Hawaiis’, with their supposed tidal pools,
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ponds or land-locked seas as sites for the origin of life [98–117]. Even so Carrell opines that a
“larger ocean exacerbates the biggest strike against the underwater scenario: that the ocean
itself would have diluted any nascent biomolecules to insignificance.” [180]. No mention is
made of the autogenic emergence of life favored by scholars of early metabolism and as
assumed in the submarine AVT—that is through the generation of organic molecules from
the simplest of carbon-bearing precursors from the bottom up, in the hydrothermal mound
precipitated at the alkaline vent [36,38,39,72,166,185,223–227,239,240,247,248].

That the earth’s atmosphere has been mildly oxidized and oxidizing over the last
4.4 Ga is because the redox state of carbon in the quartz-feldspar-magnetite buffered hot
upper mantle is as carbonate. This seems surprising given that the Earth is largely an
amalgam of metal-bearing chondrites, many of them carbonaceous. The reasoning goes
that as the olivine-rich mantle is subjected to pressures beyond ~21 GPa in the lower
mantle, it tends to metamorphose to perovskite, a mineral that requires a 3+ valence metal,
normally aluminum. However, as the concentrations of Al3+ in the mantle are too low to
meet this entire need, iron in the olivine disproportionates, with Fe3+ deputizing for the
lacking Al3+, while the native iron Fe0 tends to gravitate to the core [61–63,85]. The result
is a relatively oxidized volatisphere comprising CO2 > H2O >> N2 [85,124–139].

8. The Retreat to Mars!

Some of the proponents of the ‘RNA-world hypothesis’ who recognize the geological,
geophysical, isotopic and magmatic evidence for the early Earth being a “water world”,
have retreated to Mars for their favored subaerial intermontane valleys assumed to have
sheltered lakes subjected to wet-dry cycling [18,258–261]. According to this view, such val-
leys would have received high pH run-off from a watershed rich in serpentinizing olivines
and eroding borate minerals in which to cosset and cook their organic soups. As wa-
ter evaporated, “nucleobases, formylated nucleobases, and formylated carbohydrates,
including formylated ribose, can form”(sic). We are then assured that “well-known chem-
istry transforms these structures into nucleosides, nucleotides, and partially formylated
oligomeric RNA” [18]. Life that so emerged there was then distributed through a local
panspermia to the otherwise deserted oceans of the early Earth. To our mind, this is the
one speculative example where water would have been the enemy!

This whole idea of panspermia as an explanation for the “origin” of life on Earth was
first given credence by no less than Hermann von Helmholtz in 1871 [262]—a suggestion
provoking this scolding (in absentia!) from Karl Marx in 1875 [263]: “Helmholtz dissemi-
nated the absurd doctrine that the germs of terrestrial life fall ready-made from the moon,
i.e., that they were brought down here by aerolites. I detest the kind of explanation which
solves a problem by consigning it to some other locality”.

9. Experimental Results Pertinent to the AVT

How is the AVT faring in the face of Sutherland’s [4] assumption that a “requirement
for ultraviolet irradiation to generate hydrated electrons would rule out deep sea envi-
ronments”? He continues “This, along with strong bioenergetic and structural arguments,
suggests that the idea that life originated at vents should, like the vents themselves, remain
‘in the deep bosom of the ocean buried’.” We disposed of this fallacy in Section 2, and sub-
ject it to thermodynamic interrogation in Section 7. In Table 2, we list the experiments that
have been applied to the AVT and their various outcomes since its first airing [36]. The AVT
was not a passing whim to appear fully formed as that “pond” did in one of Darwin’s
unguarded musings in that letter to Hooker. It had its own testing from its accidental
conception, through a 30 year period of gestation beginning with employment in the
chemical industry, although the actual form it took on its delivery in 1989 could not have
been guessed (Table 2) [36,264]. The basis of submarine AVT is that the environment can
support the continuous synthesis of large populations of monomers, encapsulating them
in compartments which permit the formation of polymers of catalytic length. The current
experimental focus of the submarine alkaline hydrothermal vent theory is to utilize free
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energy gradients for the synthesis and metabolic engagement of small organic molecules
and monomers, which are precursors to biochemical processes. Further, the necessary
disposal of waste is taken care of by direct hydrothermal expulsion in the ocean [5,47,72].

So, what are the AVT’s successes? To reiterate Russell [72]: the AHV theory did
effectively predict the presence of off-ridge alkaline vents in the present oceans, a prog-
nosis met by the discovery of the Lost City submarine alkaline vents in 2000 [36,146,265].
It also explains, for example, why early life did not have to invent such a counterintuitive
mechanism as that entailed in Mitchell’s proton motive force to drive phosphate conden-
sation (the only theory so to do) [142,266], how it was supplied with the necessary low
entropy C1 feed [36,162,267], how biosynthesis could proceed in a highly radiated and
mildly oxidized atmosphere [119], and why it was not destroyed by surface catastrophes
in the Hadean” [95]. Since then, a microfluidics experiment by Hudson et al. [225] has
demonstrated the reduction of CO2 to formate in a pH gradient, a key prediction of AVT.
However, a natural proton motive force does not appear to have been the driver, and such
a demonstration remains to be realized. We summarize other experimental results to be
expected of the AVT in Table 2.

Table 2. An AVT status report.

Prediction/Expectation References Tests References

Hydrothermal circulation
during rift tectonics

generates metal sulfide
mineral deposits.

[268]

Successful field test,
discovery of giant base
metal deposit, Navan,

Ireland

[269,270]

Seawater-derived
Downward hydrothermal

convection driven by
crustal heat and

exothermic reactions

[271–274]

Stratigraphic, structural,
tectonic and lithochemical
field work; Lead isotope

analyses

[275–277]

Some hydrothermal
minerals precipitate on

sea-floor
[269–273]

Delineation of extensive
Mn aureole centered on

Irish ore deposit led to the
first discovery of fossil

hydrothermal chimneys
formed through mixing

with seawater

[277–282]

Some sulfur derived from
crustal sources [157,273,283]

Isotopic analysis reveals
crustal source as do

hydrothermal experiments
[196,197,276]

Sulfide dissolves in
alkaline hydrothermal

solution
[157] Lab demonstrations [196,197,225]

Serpentinization reaction
to formate [284–291] Lab demonstration [226]

Serpentinization reaction
produces H2 >>CH4,

although CH4 is entrained
from oceanic crust

[292]

Prompts amendment to
the AVT, viz., to the

denitrifying
methanotrophic

acetogenesis

[267]

Lightning and space
weather radiation

produces NOx that rapidly
dissolve as nitrate/nitrite

in Hadean Ocean

[126]

Theoretic studies
generally support this
hypothesis though not

those of Ranjan et al. 2019
[286]

[131]

Source of ammonia at vent
from nitrate/nitrite

reduction
[126,163]

Eight electron reduction of
nitrate to ammonia with

green rust
[193,194,230]
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Table 2. Cont.

Prediction/Expectation References Tests References

Further reduction of NOx
to hydrazine N2H4

[80] Awaiting test

Off-ridge submarine vents
will be moderate

temperature, H2-bearing,
alkaline and long-lived
(≥105 years) and would

have been the site of life’s
emergence

[36,136,157,264,
293]

Discovery of Lost City
moderate temperature

alkaline
hydrothermal vent in
North Atlantic Ocean

[146,265]

Green rust,
mackinawite/greigite,

amorphous silica
barrier/ membrane

[36,39,72,294] Successful lab
demonstration

[36,159,197,232,
251,295]

Eh and pH gradients
~700 mV and 4–5 units pH

(~300 mV) to meet
electronic and protonic

requirements ~1 V

[157]
FeS barriers hold a 700 mV

and a 5 unit pH
disequilibrium in lab test

[199,231,254]

CO2 reduction forced by
H2 and delta pH 4 units [157] Chemical disequilibria as

per Nernst equation [226]

The immateriality of the
“water problem” in
nano-confinement

[72,296–305] Lab and molecular
dynamic simulations [201,202]

Aminations of carboxylic
acids [72]

Lab demonstrations.
Amination of pyruvate to

alanine
[231]

Green rust as proto-
pyrophosphatase [228]

Pi + Pi→ PPi to
equilibrium in

microfluidic reactor
[254]

∆pH as pmf [63,156,157] Undemonstrated
Oxidation of methane in

green rust [72,267,306] Undemonstrated, pending Cf. [307]

Theoretical
polymerization of amino
acids in nano-confined

water to produce peptide
membranes necessarily

pre-LUCA

[72] Undemonstrated, waiting
experiment

Expansion from the vent
via ocean floor to produce

the first deep biosphere
[156] Hypothesis

10. How Might the Nucleotide Penthouse be Accessed from the Submarine
Alkaline Vent

In a masterly critique of an article by Avshalom Elitzur [308], Yockey [34] muses on
why the “primordial soup” hasn’t yielded the RNA world. This search, he suggests “seems
to have been left for later in the manner of an ingenious architect in the Grand Academy
of Lagado, as reported by Captain Lemuel Gulliver in Jonathan Swift’s Gulliver’s Travels.
This architect contrived a new method for building houses by starting at the roof and
working down and establishing the foundation at the end of the project. The architect
pointed out that among the obvious advantages of this method is that once the roof was in
place the workers could toil in the shade of the hot sun and at other times be protected from
rain and snow. Thus, the progress of the construction would not be delayed by inclement
weather. Although this idea had been approved by peer review, it was still in the research
stage and he had not yet put in into practice at the time of Captain Gulliver’s visit.” Yockey
continues; “following the reasoning of the architect in the Grand Academy of Lagado, cites
the existence of life as a justification and a proof that a primeval soup must have existed.”
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Further, “the model proposed (of the origin of life) here is based on a simple assumption,
namely, that life began with the accidental assembly of a self-replicating molecule (in a
primeval soup). From this assumption the emergence of life naturally follows, enabling a
new understanding of evolution as a whole. Thus, Elitzur and others are not deterred in
their beliefs by the fact that the absence of evidence is indeed evidence of absence” [34].

All the geological and geochemical evidence demonstrates that the RNA world’s re-
quired ingredients for the Damer–Deamer soup; lipids, HCN, CH3N, H2S, H2O2, quinones,
ferricyanide soup [9] simply weren’t available, and those sought by Bonfio and Mansy [66]
such as acrolein, 2-aminooxazol, RNA, DNA, NADH and FMN, were even more outlandish.
However, could the “submarine geyser help”? Duval and collaborators [185] point out that
condensation of two amino or azanyl radicals will produce hydrazine in the interlayers of
a hydrotalcite such as green rust. Hydrazine is an excellent feedstock for production of
pyrazoles and imidazoles and other heterocyclic compounds—staging molecules for the
nucleobases and the organic enzymes [185].

With this in mind, we compare and contrast the pond theory with the AVT in terms of
putatively available “free energies” in Table 3.

Table 3. Pond and AVT chemistry and “free energies” compared.

Surface Pond References Submarine Alkaline
Vent References

“Free energy” UV, reverse 2 pH
unit pmf [7,16,59,60,68]

Electrochemical
gradients, natural 4 pH

unit pmf

[156,157,199,219,
226,231,254,291]

Electron
donors

UV radiation,
reduced sulfur &

organic
compounds, Fe2+

[3,10,30,65] Fe2+, H2, ē, CH4, HCOO-

[5,36,39,63,72,156,
157,247,248,267,
284,291,306,309,

310]
Electron

acceptors
Ferricyanide
insidevesicle [9] Ambient Fe3+, NO,

NO2
−, NO3

− (CO2)
[39,131,157,166,

291]
Initial

boundary Lipids [7,49,51,64] Green rust, FeS, silica [36–39,72,157,291]

Organic
takeover Lipids [7,9] Peptides

[181,184,185,190–
192,215,216,237,

311]

Primary
ingredients

Lipids HCN,
CH3N, H2S, H2O2,

quinones,
ferricyanide

[9]

CO2, H2, CH4, H2O,
NO3, NO, NH2, NH3,
HPO4

3−, HS−, Fe2+,
Ni2+, Co2+, Mo4+/6+

[116,129–
138,143,196,197,

225,291,312]

Other
suggestions

orderivatives

Acrolein,
2-aminooxazol,

quinones,
ferricyanide, RNA,

DNA, NADH,
FMN

[11,16,30,60,64–
67]

NH3 + carboxylic acids
→ amino acids, N2H4 →

heterocycles, e.g.,
pyrazoles, imides,
NAD(P), flavins,

quinones

[185,193,194,230,
310]

Disequilibria
conversion

mechanisms

Wet/dry cycling
aggregation [7]

Visco-elastic allosteric
conformational

changes/binding change
mecha-

nism/pumping/gating/
electrostatic effects

[5,47,71,72,181–
192,221,228,310,

313–324]

Condensations Wet/dry cycling [9,20,21,24,57]
Nanoconfined water in
green rust interlayers,

silica, mackinawite

[72,80,88–
90,96,97,100–

104,123,125,302]

Reproduction RNA world [9,17,22,51,64] Amyloid peptide [72,211–
216,325,326]

Waste disposal None considered — In alkaline spring
effluent [36,47,72]

11. The “Origin of Life” Community

One of the inhibiting factors for the “origin of life” community is a general reluctance
to accept that the emergence of life is a transdisciplinary, hard problem. Thereby, there is
a tendency to ignore research disciplines outside of the main interests of the researchers
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themselves. Two significant disciplines that most researchers have an aversion to are those
of geology and statistical thermodynamics. In this contribution, we have attempted to
explain the geologic conditions at, and for, life’s emergence. For Boltzmannian thermody-
namics as it applies to the AVT, and how pond theorists have failed to come to terms with
it, the reader is referred to references [5,47,71,221,228].

12. What’s Next for the AVT?

None of the above criticisms of pond theory in this polemic should be taken to im-
ply that the AVT has no serious issues or research challenges of its own. First amongst
these is whether partially sulfurized green rust/fougerite was literally the first seed of
life—exploited by the local disequilibria as a ‘makeshift’ protocell to enable their dissi-
pation [72]—or was it merely coopted by peptides generated in the same environment
along with iron sulfide—synthesized on site to be exploited as the first multi-tasking
proto-enzyme, (or, of course, was it involved at all) [185]? Either way, many of the research
challenges for the hypothesized role(s) of fougerite—dosed with various trace elements
and anions—are similar. Such research addressing the submarine acid v. alkaline milieu
calls for the further employment of tried-and-tested microfluidic and nano-crystallographic
techniques [192,201–207,224,254,296–302,310,327–338]. We enumerate some possible de-
velopments from, expectations of, and tests for, the AVT below:

1. Can the fougerite/green rust interlayers—already shown to effect the relatively
rapid eight electron reduction of nitrate to ammonia through-edge inward oxidation—be
recharged from electrons generated at a transition-metal-rich hydrothermal vent (acting as
a hydrogenase) through iron-to-iron hopping along the green rust metal oxide layers; i.e.,
is the green rust battery rechargeable at the vent [72,158,199,324,328,336–339]?

2. While green rust has been shown to be capable of aminating carboxylic to amino
acids [231,340], the next vital and major challenge for the AVT is for a demonstration of
condensations of amino acids to short peptides.

3. Could an NO intermediate, produced from nitrite at Fe sites within the interlayers
of fougerite, oxidize methane to a methyl group [267,306] cf. methane monooxygenase and
the α-Fe/α-O active site in Fe-CHA zeolite [307]?

4. What proportion of the chemical transformations produced within green rust
interlayers is the result of electrostatic forces and what is due to directional stresses and,
anyway, are the two coupled [71,72,314,321–323]?

5. Further, are there analogies to be had, for example, between the electrostatic and
conformational changes during polaron migration within the green rust interlayers to be
expected during continuous reductions of nitrate and nitrite, with the changing dimensions
of the Fe-N site in nitrite reductase [193,194,230,324,338,341]?

6. Do Fe3+ polarons in general act to pump anions nano-peristaltically into and/or
through the green rust interlayers, as well as pump nutrients through, and toxins and
uncooperative molecular waste out of, the system [6,72,315–318,324,338]?

7. In the same vein, can low pH (local acidity) drive the condensation of orthophos-
phate to pyrophosphate to high disequilibria at the edges (binding sites) of fougerite
galleries where the entropic state and water activity are low in the manner to be expected
of the core of bioenergetics [310]? If so, can immediate hydrolyses leverage trapping of
condensation reactions at neighboring (and oscillating) binding sites (cf. certain pyrophos-
phatases), i.e., can ‘macromolecular’ green rust effect alternating independent coupling
as in the binding change mechanisms that are known to operate in enzymes such as the
proton pyrophosphatases [72,228,315–318]?

8. Would a similar process result in the condensation of NH2 radicals to (N2H4)
hydrazine, a step to heterocyclic redox molecules and the nucleotide world [185]?

9. Can the putative escapement mechanisms and information ratchets in the first
green rust/fougerite nanoengines of life referred to above, work to produce the asymmetry
and the irreversibility in a system necessary for life’s emergence—it’s climbing the steps
that’s hard [2,6,72,318–323]?
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10. In AVT, information transfer would have emerged coupled to protometabolism
“in materio” in the green rust/fougerite interlayers: a fertile research area that begins to
converge with research in emergence of intrinsic computing, nanoscience and nanotechnol-
ogy [1,34,215,216,311,334,342–360].
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