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Purpose: Early diagnosis and treatment of retinoblastoma are of paramount importance for a positive clinical
outcome. The most common sign of retinoblastoma is leukocoria, or white pupil. Effective, easy-to-perform,
community-based screening is needed to improve outcomes in lower-income regions. The EyeScreen (devel-
oped by Joshua Meyer from the University of Michigan) Android (Google LLC) smartphone application is an
important step toward addressing this need. The purpose of this study was to examine the potential of the novel
use of low-cost technologiesda cell phone application and machine learningdto identify leukocoria.

Design: A cell phone application was developed and refined with the feedback from on-site, single-popu-
lation use in Ethiopia. Application performance was evaluated in this technology validation study.

Participants: One thousand four hundred fifty-seven participants were recruited from ophthalmology and
pediatric clinics in Addis Ababa, Ethiopia.

Methods: Photographs obtained with inexpensive Android smartphones running the EyeScreen Application
were used to train an ImageNet (ResNet) machine learning model and to measure the performance of the app.
Eighty percent of the images were used in training the model, and 20% were reserved for testing.

Main Outcome Measures: Performance of the model was measured in terms of sensitivity, specificity,
receiver operating characteristic (ROC) curve, and precision-recall curve.

Results: Analyses of the participant images resulted in the following at the participant level: sensitivity, 87%;
specificity, 73%; area under the ROC curve, 0.93; and area under the precision-recall curve, 0.77.

Conclusions: EyeScreen has the potential to serve as an effective screening tool in the areas of the world
most affected by delayed retinoblastoma diagnosis. The relatively high initial performance of the machine learning
model with small training datasets in this early-phase study can serve as a proof of concept for future use of
machine learning and artificial intelligence in ophthalmic applications. Ophthalmology
Science 2022;2:100158 ª 2022 by the American Academy of Ophthalmology. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Retinoblastoma is the most common intraocular cancer in
children, with an annual incidence of approximately 9000
new cases globally.1 Mortality rates are highly disparate in
different parts of the globe, and areas with the highest
prevalence also show the highest mortality rates. In Africa
and Asia, 40% to 70% of children with retinoblastoma
die, compared with 3% to 5% of children in Europe and
North America.2,3 Early detection and treatment are
essential for effective treatment of retinoblastoma before
the tumor spreads beyond the eye and the chances of
survival decrease.4 Leukocoria, or white pupil, is the most
common presenting sign of retinoblastoma, and this is the
sign initially detected by family or friends in 80% of
patients.5 The interval from family finding of leukocoria
to the pediatrician examination ranged from 1 to 42
months, with a mean of 2 months, and the interval from
pediatrician examination to ocular oncology examination
was from 1 to 29 months, with a mean of 2 months.6 This
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delay is longer in Africa and Asia and contributes to
much of the disparity in survival in these regions.7 Poor
survival rates are correlated directly with delay in
diagnosis and treatment abandonment. Although treatment
abandonment is associated with numerous socioeconomic,
cultural, and educational factors, evidence exists that
diagnostic delay can be mitigated with effective screening
programs.3,8,9

Current screening tools have significant drawbacks. Red
reflex testing is the current standard; it relies on the skill of
the screening personnel and has variable sensitivity, ranging
from 85% to <5%, depending on the location of pathologic
features and training of the providers.10,11 Newer,
technology-based tools have a need for ophthalmologists
or trained technicians and are limited in their widespread
application.8 These tools include a miniature direct
ophthalmoscope, a portable fundus camera, and a clip-on
fundus camera. In addition to the need for trained
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providers, these tools suffer from lack of wide accessibility
and cost factors.8 Currently, 2 applications exist that are
designed to screen for leukocoria, but they rely on
subjective assessments or have low sensitivity and
specificity and additionally are designed for use by parents
and not for real-time screening.12

A need exists for simple, inexpensive, and widely
available screening technologies to improve outcomes in
this needlessly deadly disease. Smartphone applications are
a logical choice for this screening method because of their
widespread availability and ease of use. Few data have been
published regarding the reliability of identifying leukocoria
with smartphone cameras, and no data are available
regarding the use of an application designed to detect leu-
kocoria by combining data from multiple directions of gaze.
The literature also shows that evaluation of the red reflex in
multiple gazes, in addition to primary gaze, increases the
detection of leukocoria.13 Building on existing tools for
screening for retinoblastoma and the anecdotal evidence
suggesting that flash photography has enabled early
detection, we developed a novel smartphone application
for use in screening populations for retinoblastoma in
multiple directions of gaze.14 This application is called
EyeScreen (developed by Joshua Meyer from the
University of Michigan) and was tested in Addis Ababa,
Ethiopia, for accuracy and feasibility. The objective of this
study was to determine the performance of the model in
identifying leukocoria, measured in terms of sensitivity,
specificity, receiver operating characteristic (ROC) curve,
and precision-recall curve.
Methods

This study was approved by the University of Michigan Institu-
tional Review Board and by the institutional review board of the St.
Paul’s Hospital Millennium Medical College in Addis Ababa,
Ethiopia (identifier: HUM00090656). Informed consent was ob-
tained from all participants, and all research adhered to the tenets of
the Declaration of Helsinki.

The EyeScreen software is a smartphone application designed
for use with Android devices (Google LLC). The EyeScreen
application was installed in Google Pixel 3a phones provided to the
researchers for the duration of this study. Participants were
recruited from St. Paul’s Hospital Millennium Medical College, a
crowded and busy hospital in Addis Ababa, Ethiopia. Researchers
were located in the general ophthalmology clinic, pediatric
ophthalmology clinic, neonatal intensive care unit, emergency
department, and general pediatric clinic. These locations varied in
lighting, crowding, privacy, and other factors. All patients were
eligible to participate if they, or their parent if younger than 18
years, were able to give informed consent.

Consent was obtained from English-speaking participants and
their parents for underage participants. A local translator was used
for patients who spoke Amharic. Patients were seated, and lights
were dimmed as much as possible (sometimes requiring sheets
over the windows). Four different directions of gaze were captured
for each participant: up gaze, left gaze, right gaze, and center gaze.
Small stuffed animals (beanie babies) were used to assist in
directing gaze for younger participants. The initial study size target
was 1200 patients because of recruitment considerations, but the
nature of the machine learning model is such that the more data
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run through the training program, the more sensitive the test is
likely to be.

The development of EyeScreen was highly iterative and tech-
nologically challenging, responding to issues arising in the clinical
setting. For example, current smartphone cameras use a preemptive
flash technique in which bursts of light are sent out before the
photograph is taken. This action constricts pupils to remove the
common red-eye effect; however, in our situation, the preemptive
flash technique is counterproductive because a solid red reflex has a
definite impact on subsequent analysis. To capture the eye in a
maximum naturally dilated (without chemical dilation) state with
the red reflex present, we needed first to find the preflash setting
that was buried deep in the system software. We did find a way to
disable the preflash light, thereby avoiding the issue of pupillary
constriction. Additionally, having the patient in a darker environ-
ment assisted in obtaining a clearer view of the red reflex. But,
limitations in on-site lighting conditions required still further ad-
justments to the light-processing balance in the application soft-
ware. Still further, a lack of reliable wireless or cellular connection
required the application to be updated to store photographs
temporarily until an upload opportunity became available.

To aid the picture takerdand to standardize the distance the cell
phone was from a participantdEyeScreen displayed boxes around
the participant’s eyes when they were detected to be the proper
distance. The boxes were a sign to the picture taker to take the
picture. The image of the participant’s eyes was then displayed on
the screen. EyeScreen provided the picture taker with the option to
accept the pictures and move to the next direction of gaze or to
retake the image (Fig 1). This process allows for multiple attempts
at each gaze if the participant is moving or the image is blurry. The
user interface for the Android application displayed helpful tips for
optimal photography, and the system required no specialized
training (Fig 2).

Participants’ age, race or ethnicity, sex, and presence of ocular
conditions were recorded and attached to their images. In the
ophthalmology clinics, these ophthalmic conditions were obtained
from the patient’s chart. All collected patient information was
deidentified.

The images underwent automatic image processing within the
application to bound the eyes in boxes to preserve participant
privacy. The images of the eyes alone then were uploaded to a
secure server at the University of Michigan. The images then were
reviewed by an ocular oncologist (H.D.) and classified into simple
categories (normal vs. abnormal or leukocoria; Fig 3). Eyes with
leukocoria were assigned the label “abnormal.” During the
labeling process, very poor quality and ungradable images were
removed (i.e., images in which the pupil was not visible). These
images then were used to fine-tune a pretrained machine learning
model. Each image underwent preprocessing, including resizing to
224 � 224 and normalizing to the dataset mean. Then, each image
was augmented by rotating 90�, 180�, and 270�; adjusting satu-
ration, sharpness, brightness, contrast, and gamma; and adjusting
hue by 0.5 and e0.5 (polar opposites of color hue). Additionally,
images were partitioned by patient using unique identifiers recor-
ded at the time of image capture. All testing was carried out at the
level of the participant, with all gaze directions tested together for
each participant. This is more clinically relevant than testing by
individual photograph. Our application uses an ImageNet model,
specifically, ResNet, an open-source deep learning network
developed for use in image processing applications.15 This model
was selected because of its performance in image processing and
to assess the potential of open-source, free models. Our model
uses only unstructured data. We used a pretrained ImageNet model
and retrained the model using our dataset. The ImageNet deep
learning model was trained with 80% of the images and tested on



Figure 1. Diagram showing basic screening steps in use of the EyeScreen
application.
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the remaining 20%. Because of the imbalance in our dataset toward
normal eyes, we selected a threshold to maximize sensitivity at the
expense of specificity. These images were randomized, and
training and testing sets also were separated at the patient level.
The batch size was 100, the learning rate was 3 � 10e6, and we
used an Adam optimizer. After 10 epochs, we saw that the
Figure 2. Screenshots obtained by the authors showing the logo and user int
University of Michigan), before taking photographs.
accuracy, sensitivity, and specificity did not change by a significant
amount. We continued to train for 100 epochs, and the model did
not diverge. Cross-validation was not able to be performed with the
small amount of positive cases.

Results

More than 4000 images of eyes were obtained, approxi-
mately 4 per participant. Table 1 shows demographic
information of participants and the distribution of normal
red reflex and abnormal red reflex eyes, separated by
training and testing datasets at the level of the participant
and including image counts.

Eighty percent of the participant images were used in
training the model with multiple ResNet training processes
completed. One hundred fifty iterations were completed
before the model accuracy converged to a stable value. The
remaining 20% of the images were used to test the accuracy
of the model. Sample images used in testing are shown in
Figure 4.

The model using the testing set of images from 291
participants showed sensitivity of 87% and specificity of
73%. The ROC curve and area under the ROC curve for
erface for the Android EyeScreen app (developed by Joshua Meyer from
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Figure 3. Ophthalmology-facing user interface used to label images for network training.
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this dataset are shown in Figure 5. Figure 6 shows the
precision-recall curve and area under the precision-recall
curve value. The bulk of the testing improvements
occurred within 10 epochs. Table 2 shows the confusion
matrix for test data at the level of the participant.
Figure 7 shows eye photographs that the model classified
incorrectly to demonstrate characteristics of difficult
images. The area under the ROC curve and area under
the precision-recall curve were selected metrics to allow
for evaluation of algorithm performance. Sensitivity and
specificity are reported to allow for direct assessment of
clinical relevance. Positive and negative predictive values
are not reported because the study population may not be
representative of the global population in need of screening
for retinoblastoma.
Table 1. Demographics of Participants by Testing

Participants Classified as Showing Normal Red Refle

Training Testing

Total no. 944 236
Age (mos)
Mean 12.2 11.5
0e2 (count) 135 44
3e12 (count) 460 103
13e19 (count) 74 28
20e29 (count) 26 5
30e89 (count) 123 28

Sex, no. (%)
Female 332 (35) 79 (33)
Male 612 (65) 157 (67)

4

Discussion

Compared with high-income countries, children with reti-
noblastoma from low-income countries seek treatment an
older age with more advanced disease and a higher rate of
metastasis.3 Patients from high-income countries are diag-
nosed at a median age of 14.1 months, with <1% of patients
having extraocular retinoblastoma and <1% having metas-
tasis. In contrast, patients from low-income countries
received a diagnosis at a median age of 30.5 months, with
49.1% having extraocular retinoblastoma and 18.9% having
metastasis. Clearly, a significant delay in the recognition of
retinoblastoma occurs in low-income countries when
compared with recognition of retinoblastoma in
and Training Dataset and Total Image Count

x
Participants Classified as

Showing Abnormal Red Reflex Total Images Captured
(Eye Pairs)Training Testing

222 55 4356

13.1 9.9
30 7 1300
119 30 2300
24 10 416
7 1 244
29 3 640

72 (32) 25 (45)
150 (68) 30 (55)



Figure 4. Sample images of (AeE) normal red reflex and (FeJ) abnormal
pupil reflex in model training and testing.

Figure 5. Receiver operating characteristic (ROC) curve with area under
the ROC curve (AUROC) for EyeScreen testing dataset.

Figure 6. Precision-recall (PR) curve with area under the PR curve
(AUPRC) for EyeScreen testing dataset. AUROC ¼ receiver operating
characteristic.
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high-income countries. A review of presentations of reti-
noblastoma in Ethiopia found that the most common pre-
senting sign was proptosis, signifying late presentation and
late referral patterns for these patients.16 Considering 85%
of patients with global retinoblastoma are from the low-
income countries, an unmet need exists for effective, easy,
and low-cost screening tools for retinoblastoma.

Leukocoria, or white pupil, is the most common pre-
senting symptom in 63% of patients globally. In a meta-
analysis, Subhi et al17 reported that estimated sensitivity
of abnormal red reflex testing for detecting ocular
pathologic features was 7.5% and specificity was 97.5%.
The positive predictive value was 53%, and the negative
predictive value was 74%. Leukocoria, or white pupil, can
be detected via flash photography and is the most
common presenting sign for retinoblastoma. Two
smartphone-based screening applications evaluate the pu-
pil color; both have significant drawbacks. MDEyeCare is
available only on iOS devices (Apple, Inc). Android
phonesdtypically available at much lower price pointsd
make up 85% of the cellular phone sector, whereas iOS
phones make up 12% as of December 2020.18 A need exists
for an Android phone-based application such as EyeScreen.
Given the widespread use of Android smartphones in
Sub-Saharan Africa and other resource-limited settings, a
leukocoria-detecting application would be accessible for
users in these areas.

CRADLE, an Android-based and iOS application, ex-
amines existing photographs on the user’s device and as
such would not be effective as a community-based screening
tool.19 Another iOS-based application, MDEyeCare, was
assessed in a small study of 28 patients; it requires relatively
standard conditions for photographs, which may be difficult
to achieve in a clinical setting. EyeScreen is an improvement
because it addresses the limitations of the other 2 Android
applications.

In this study, in a resource-limited setting and under
varied clinical conditions, we demonstrated the potential of
the EyeScreen application. The performance of the appli-
cation also likely will continue to improve as additional
photographs and populations are added into the training
dataset. In addition to the use of low-cost smartphones, the
5



Table 2. Confusion Matrix for Test Dataset

Actual

Predicted

TotalNegative Positive

Negative TN ¼ 173 FP ¼ 63 236
Positive FN ¼ 7 TP ¼ 48 55
Total 180 110

FN ¼ false-negative; FP ¼ false-positive; TN ¼ true-negative; TP ¼ true-
positive.

Figure 7. Examples of incorrectly identified eyes in the EyeScreen test
dataset.
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use of low-resource-demand machine learning technology
allowed EyeScreen to serve as a proof of concept that may
develop into an effective tool as soon as sensitivity is
increased further with additional data and the application is
tested in multiple settings and populations. Currently,
because of the rarity of retinoblastoma, false-positive find-
ings would exceed true-positives greatly. The sensitivity of
EyeScreen remains too low in its current form to be
deployed for use in screening for a disease in which false-
negative findings have such dire consequences. We have
taken care to develop EyeScreen in a population subject to
typical increased difficulty in screening. Children with
darker fundus pigmentation may have abnormal reflex
testing results because an increased amount of melanin
pigment can give a duller red reflex. Factors that change the
appearance of normal eyes can affect model performance,
and we wanted to ensure that our input data were from this
patient base from the outset to account for these variations.
One limitation of our study thus far is that the patient
photographs came from a single population in Addis Ababa,
Ethiopia, and further development may benefit from the
inclusion of additional populations. Another important
limitation to note is that this study represents an early-stage
proof of concept, and further validation and examination of
the model is necessary before implementation in clinical
care. Because of the small number of patients with positive
results, cross-validation and confidence estimates were not
completed; however, this study demonstrated that the Eye-
Screen application, with its low-cost, efficient technologies,
shows promise in developing into an effective tool in a
resource-limited setting with further study.

Current community-based screening protocols have poor
sensitivity or require training and do not reach many of the
most vulnerable populations.20 Further development of
effective, free, and simple-to-use applications like Eye-
Screen could allow increased screening of the populations in
community-based settings, allowing earlier referral and
treatment. Pediatric screening programs vary widely among
6

countries.21 This application has its ideal use in settings that
already perform community-based screening and interven-
tion, such as childhood vaccination campaigns, and if
targeted toward the minimally trained community health
worker.

In this study, we explored the feasibility of a low-cost,
low-input, end-to-end system using transfer learning algo-
rithms to provide diagnosis of a key presentation of reti-
noblastoma. Work is ongoing to allow detection of
additional ocular pathologic features within the application
and to increase its performance for further studies.
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