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A B S T R A C T   

Misinterpretations of P-values and 95% confidence intervals are ubiquitous in medical research. Specifically, the 
terms significance or confidence, extensively used in medical papers, ignore biases and violations of statistical 
assumptions and hence should be called overconfidence terms. In this paper, we present the compatibility view 
of P-values and confidence intervals; the P-value is interpreted as an index of compatibility between data and the 
model, including the test hypothesis and background assumptions, whereas a confidence interval is interpreted 
as the range of parameter values that are compatible with the data under background assumptions. We also 
suggest the use of a surprisal measure, often referred to as the S-value, a novel metric that transforms the P-value, 
for gauging compatibility in terms of an intuitive experiment of coin tossing.   

1. Introduction 

A recent multicenter randomized trial at 130 sites in 18 countries 
hypothesized that ticagrelor, in combination with aspirin for 1 month, 
followed by ticagrelor alone, improves outcomes after percutaneous 
coronary intervention compared with standard antiplatelet regimens 
[1]. The primary endpoint at 2 years was a composite of all-cause 
mortality or new Q-wave myocardial infarction. The intention-to-treat 
rate ratio (RR) estimate using the Mantel-Cox method was 0.87 [95% 
confidence interval (CI): 0.75–1.01] with two-sided P-value of 0⋅073. 
The authors concluded that “In our multicenter randomized trial, tica
grelor in combination with aspirin for 1 month followed by ticagrelor 
alone for 23 months was not superior to standard 1-year dual anti
platelet therapy followed by aspirin monotherapy in terms of the com
posite endpoint of all-cause mortality or new Q-wave myocardial 
infarction after percutaneous coronary intervention” [1]. This conclu
sion is based on comparing the P-value of 0.073 to the cutoff default 
value of 0.05. Also, the paper freely uses the term “significantly” 
including the expression of “did not differ significantly between … 
groups” four times. 

Such misinterpretations of P-value based on the cutoff value of 0.05 
and ignorance of the association measure estimate and 95% confidence 
interval are not uncommon in medical research, which are a conse
quence of using overconfidence terms such as significance or confi
dence. In this paper, we argue that P-values and confidence intervals 

should be interpreted as compatibility measures of different values of 
parameters with data, and suggest using an alternative measure known 
as the S-value, which better facilitates the compatibility view. 

2. P-value as a measure of compatibility 

The P-value is often defined as the probability of the observed or 
more extreme results if the test hypothesis is true. This definition 
implicitly assumes some background assumptions including population 
distribution of the outcome variable (e.g., Normal distribution), random 
sampling or randomization of the participants, random measurement 
error in the exposure and outcome variables, and no bias in the design, 
execution, analysis, and reporting. In fact, a statistical-testing procedure 
tests both the test hypothesis and background assumptions, which we 
refer to as the model. The P-value is an index of compatibility between the 
data and the model, which varies between 0 (completely incompatible) 
to 1 (completely compatible) [2–6]. For a sufficiently small P-value, we 
conclude that the model is incorrect, that is, either the test hypothesis or 
background assumptions or both are incorrect; otherwise we can assume 
that a rare event has occurred [2]. Thus a very small P-value doesn't 
necessarily indicate a false test hypothesis if some background as
sumptions are violated. However, for a sufficiently large P-value, we can 
only say that the data are compatible with the model predictions. How
ever, we cannot conclude that the model is correct as the P-value is not 
an index of support for the tested model [2,3,7]. In clinical studies, there 
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is no guarantee that the background assumptions embedded in the 
model are correct, and in fact many assumptions are often violated in 
practice. In the example mentioned above, the model assumes absence 
of all Cochrane biases [8] including selection bias, performance bias, 
detection bias, attrition bias, and reporting bias as well as random 
confounding [9][19–22]. Also the Mantel-Cox test used in the paper is 
based on the following assumptions: [10][23] censoring is independent 
of the outcome, the survival probabilities do not vary with follow-up 
time, and the events occurred at specified times. Censoring due to 
deaths (about 3% in each group) and lack of blinding may violate some 
of these assumptions. Moreover, adherence to the allocated intervention 
was not perfect and some participants in both groups did not receive or 
complete the allocated intervention, so the analysis was 
intention-to-treat (ITT). The ITT approach does not invalidate the hy
pothesis testing, however [8]. 

3. S-value 

To avoid misinterpretations of the P-value, we suggest transforming 
it to a quantity known as the Shannon-information or surprisal or self-in
formation called S-value [3–6,11–13] (see Appendix 1): 

S − value = − log2(P − value) = −
loge(P − value)

loge2 

With base 2 for the logarithm, the S-value is scaled in bits (binary 
digits) of information, where “bit” refers to the information capacity of a 
binary (0,1) digit. Thus the S-value is the number of bits of information 
in the data against the model, including background assumptions and 
the test hypothesis. Fig. 1 shows that the S-value exponentially increases 
as the P-value goes to zero. In the limits, the S-value = 0 when the P- 
value = 1, which implies that the data provide no information against 
the model, but as for P-value = 1, we cannot conclude that the model is 
correct the S-value approaches infinity when the P-value approaches to 
zero, which indicates that the data provide infinite information against 
the model, leading one to a more decisive conclusion that the model is 
incorrect. 

Unlike the P-value, the S-value has an intuitive interpretation in a 
physical experimental coin tossing. Suppose we are concerned about 
fairness of a coin, so we toss it 4 times and the result turns out to be 4 
heads. The P-value would be 

( 1
2
)4, and the S-value 4, which conveys the 

same evidence against the model as seeing all heads in 4 independent 
tosses of a coin against the hypothesis that the coin is fair [3]. As an 
example, the S-value of 4.3 bits corresponding to an observation of P- 
value = 0.05 is hardly more surprising than seeing all heads in 4 fair 
tosses. This shows that the common dichotomization of P-value at 0.05 is 
an overstatement of evidence against the model as the amount of in
formation that a P-value = 0.05 conveys is small [3,4]. Significance 
testing has been popular simply due to its simplicity as it has allowed 

researchers and clinicians to make decisions based on the cutpoint of 
0.05. 

In fact, more stringent cutpoints are used outside the health sciences. 
For example, the 5-sigma criterion for discovery in physics as used for 
Higgs boson particle corresponds to a one-sided P-value of about 1 per 
3.5 million with a corresponding S-value of 21.7 bits [14]. Another 
advantage of the S-value is that log scaling makes information additive, 
e.g., two independent studies with the same test hypothesis yielding a P- 
value of 0.05 provides an S-value of 4.3 + 4.3 = 8.6 bits of information 
against the model. Finally, the S-value resolves some misconceptions 
about the P-value, as shown in Table 1 [3,15–17]. The reported P-value 
of 0.073 in the case study translates to an S-value of 3.8 bits, which is 
hardly less surprising than seeing all heads in 4 fair tosses. This S-value 
clearly suggests that it is unjustified to differentially treat P-values of 
0.073 and 0.05, as the S-value, unlike the P-value, is a metric that does 
not contain any cutpoint. 

4. Testing alternative hypotheses 

Researchers tend to report P-values only for the null hypothesis, 
which often corresponds to no association between two variables in the 
population. However, they can and should test alternative hypotheses, 
especially those that correspond to minimal clinically important differ
ences [18], and compare the compatibility of different parameter values 
with the data [3]. As an example, the P-value for the RR of 0.8 for the 
primary endpoint in our example is 0.27 (please see Appendix 2 for the 
computations) which translate to an S-value of − log20.27 = 1.9 bits. 
Therefore, a 20% reduction in the rate of the primary endpoint of the 
study is more compatible with the data than the rate ratio of 1 (S-value 
= 3.8). Also, the paper reports RR of 0.8 [95% CI: 0.60–1.07] with a P- 
value of 0.14 for the endpoint of new Q-wave myocardial infarction with 
a corresponding S-value equaling − log20.14 = 2.8 bits. The authors 
concluded that “The frequency of … new Q-wave myocardial infarction 
… did not differ significantly between groups”. However, we can verify 
that the P-value for the RR of 0.75 equals 0.66 with an S-value 
of− log20.66 = 0.60 bits. Thus, the information against RR of 1 is 2.2 bits 
higher than that for RR of 0.75, which spoils the conclusion of the paper. 

5. Compatibility intervals 

The 95% confidence interval is often interpreted as the range of 
values which include the parameter of interest with the probability of 
95%. However, in the presence of biases, the background assumptions 

Fig. 1. S-value vs. P-value.  

Table 1 
Some misinterpretations of P-values and their resolution using S-values.  

Misinterpretations of P-values Clarification by S-values 

P-value is the probability that the result is 
due to chance 

S-value is not bounded to be between 
0 and 1 so it is not confused with this 
probability 

P-value is an error probability resembling 
the alpha level 

S-value is not bounded to be between 
0 and 1 so it is not confused with this 
probability 

Large P-values indicate test hypothesis is 
plausible and small P-values indicate 
test hypothesis is implausible 

S-values provide refutational 
information against the model 
including both background 
assumptions and test hypothesis 

A P-value <0.05 implies test hypothesis is 
false and a P-value >0.05 implies test 
hypothesis is correct 

S-value has an intuitive interpretation 
based on observing all heads in fair 
coin tossing to gauge the evidence 
against the model without any 
reference to an arbitrary cutpoint 
S-value shows that the amount of 
information in the P = 0.05 is small 
(only 4.3 bits) 

Equal intervals in P-value represent equal 
changes in the evidence as measured by 
the SD change 

Equal intervals in S-value represent 
equal changes in the evidence as 
measured by the information  
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are not met (e.g., the assumptions of random sampling and randomi
zation are violated in observational studies) and thus confidence in
tervals should be more accurately termed as overconfidence intervals. We 
prefer to use the term compatibility intervals with the following inter
pretation: The 95% confidence interval includes the range of values 
which are compatible with the data, that is, statistical testing of values 
provides no >4.3 bits of information against them assuming the back
ground assumptions are correct. In our case-study, statistical testing 
provides no >4.3 bits of information against the rate ratios in the range 
of 0.75–1.01 (4.3 bits information are against the rate ratio limits of 0.75 
and 1.01). Moreover, there is no information against 13% decrease in 
the rate of the primary endpoint among the experimental group 
compared to the control group (RR = 0.87, P-value = 1, and S-value =
0). 

6. Conclusion 

The P-value should be interpreted as an index of compatibility be
tween the data and the model, including the test hypothesis and back
ground assumptions. The confidence interval should be named 
compatibility interval, and interpreted as the range of values which are 
compatible with the data. The S-value represents the information of the 
data against the model, facilitating the compatibility interpretation. 
Moreover, it is not subject to many misinterpretation of the P-value, and 
should be used in practice along with the P-value and compatibility 
interval. This is especially the case when interpreting results of clinical 
studies.  

Appendix 1. S-value 

The S-value, the Shannon-information, surprisal, or self-information is a logarithmic transformation of P-value: S − value = − log2(P − value) = −
loge(P− value)

loge2 . As S-value is calculated using base-2 logarithm, its units are called bits (binary digits) of information where “bit” refers to the information 
capacity of a binary (0, 1) digit. The first integer larger than S-value is the number of binary digits needed to encode 1

P− value e.g., the S-value for P-value 
= 0.05 is 4.3 and 1

0.05 = 20 is written in binary code as 10,100 with 5 digits, because 16 + 0 + 4 + 0 + 0 = 20. 
Unlike P-value, the S-value has an intuitive interpretation: it conveys the same information or evidence against the entire model as seeing all heads 

in k independent tosses of a coin conveys against the hypothesis that the coin is fair where k is the nearest integer to the S-value. As an example, the S- 
value of 4.3 bits corresponding to an observation of P-value = 0.05 is hardly more surprising than seeing all heads in 4 fair tosses with the probability 
of 
( 1

2
)4

= 1
16. We note that, the expected information, called Shannon entropy, which is the average of S-values against the entire model is 1.44 bits, so by 

chance alone we should expect to see 1 or 2 bits of information. 
The 95% confidence interval, which we call compatibility interval, can be interpreted using S-value. The 95% compatibility interval includes the 

range of values for which statistical testing supplies no >4.3 bits of information against assuming the background assumptions are correct. Also the 
study power can be defined using the S-value concept: With an alpha level of 0.05, the power is the probability of obtaining at least 4.3 bits of in
formation against the model including the test hypothesis and background assumptions if the alternative hypothesis (often corresponding to a minimal 
clinically important difference) is correct. 

Information penalization should be performed for data-driven selection and multiple comparisons. As an example, two-sided P-value, the double of 
the smaller one-sided P-value, is the default for statistical testing in medical research as the direction of the violation of test hypothesis is often not 
known. Doubling subtracts 1 bit of information from the S-value: the information of 1 is a penalty for the data pick the test direction. As an example, Z 
= 1.79 in our case-study yields two one-sided P-values: 0.0367, and 0.9633. The S-value for the smaller P-value, 0.0367, is 4.8, but we cannot exclude 
the possibility that the experimental treatment is worse than the control treatment. So we have to double the smaller P-value to obtain P = 0.073 which 
is translated to S = 3.8: we used up 1 bit of information to let the data choose the test direction. As another example, the Bonferroni adjustment 
preserves the alpha level, the probability of making at least one type-1 error, for multiple testing by multiplying P-values by K, the number of 
comparisons. The information penalty is then log2K (e.g., 2 if K = 4). 

Appendix 2. Testing alternative hypotheses 

The Wald chi-square test statistic can be calculated for testing alternative hypothesis HA: θ = θ1, using the point estimate T with estimated standard 
error S as follows: 

P − value = P

(

χ2(1)〉
(

T − θ1

S

)2
)

where χ2(1) is a chi-squared random variable with degree freedom of 1. For example, in the case study, θ1 = ln(0.8),T = ln(0.87), and S =
ln(1.01)− ln(0.75)

2×1.96 = 0.076, and so 

P − value = P

(

χ2(1)〉
(

ln(0.87) − ln(0.8)
0.076

)2
)

= P
(
χ2(1)〉1.22

)
= 0.27  
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