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Abstract
Background: Adaptive immunity in jawless fishes is performed by a unique set of pro-
teins termed variable lymphocyte receptors (VLRs). Here we compare the crystallo-
graphic structures of VLRs and the human primary hemostasis receptor, glycoprotein 
(GP) Ib. It has been estimated jawless fish vertebrates diverged from jawed vertebrates 
500 million years ago. Identifying structural similarities provides insights into the ori-
gins of primary hemostasis and the unique adaptive immunity of jawless fishes.
Methods: Three- dimensional structures obtained from crystallographic data and pri-
mary sequences alignments are compared. The results focus on overall domain ar-
rangement to include the structural roles of leucine- rich repeats (LRRs), disulfide bond, 
and disulfide loop arrangements.
Results: The crystal structures of human GPIb (GPIbαN) and jawless fish VLRs are made 
up of three common segments each. The N- terminal cap and the C- terminal cap are 
characterized by disulfide bonds conserved in both GPIbαN and VLRs. The body of each 
molecule consists of LRRs which varies depending on the number of LRRs present in 
each molecule. The stacking of the LRRs results in the formation of a concave surface 
which serves as a motif to build ligand- binding specificity with the flanking regions.
Conclusion: A comparison of VLR and GPIb structures reveals a phylogenetic trail of 
cellular differentiation contributing to mammalian hemostasis and jawless fish adap-
tive immunity. The results provide a structural basis to explain some of the interrela-
tionships between hemostasis and immunity in vertebrates and potentially identifies a 
common ancestral motif linking hemostasis and immunity.
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Essentials
• Structural similarities between platelet GPIb and immune proteins of jawless fishes are profiled.
• VLRs from lamprey eels and hagfish share a conserved domain arrangement with platelet GPIb.
• Leucine-rich repeats flanked by disulfide loops are common between glycoprotein Ib and VLRs.
• Ancestors of the vertebrate lineage likely contain an ancient domain for hemostasis and immunity.
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1  | INTRODUCTION

Mammalian hemostasis is controlled by a highly evolved arrangement 
of receptors, ligands, enzymes, and cofactors that all coordinate to 
prevent blood loss and support normal wound repair following injury.1 
In the human situation a designation of primary (platelet phase) ver-
sus secondary (fluid phase) hemostasis provides an early differential 
diagnosis for many of the different bleeding disorders.2 At the center 
of mammalian primary hemostasis is the platelet adhesion receptor, 
glycoprotein (GP)Ib- IX, containing a well characterized binding site for 
von Willebrand factor (VWF).3,4 The platelet GPIb- IX complex and the 
genes supporting its expression are quite unique with the most closely 
related mammalian structure or gene being GPV which can be puri-
fied as part of the same, albeit larger, platelet receptor complex, the 
GPIb- IX- V complex.5 The ligand binding activity of the GPIb- IX- V com-
plex resides in the extracellular N- terminus of α- subunit of the GPIb 
(GPIbαN) expressed on the surface of circulating platelets.

Here, we highlight structural similarities derived from crystallo-
graphic analyses between GPIbαN and variable lymphocyte receptors 
(VLRs) of the jawless fishes, the lamprey eel and hagfish.6 The VLRs 
are a unique adaptive immune system, completely different from the 
V, D, and J immunoglobulin genes responsible for vertebrate adaptive 
immunity.7 Lamprey VLR germline genes undergo somatic rearrange-
ment to create a repertoire of mature VLR genes each providing unique 
diversity for immune function. Individual variation does exist among 
the VLR proteins, while preserving a general domain organization. It 
is estimated the jawless fishes diverged in vertebrate phylogeny more 
than 500 million years ago.8 Thus, the jawless fishes present an oppor-
tunity to study the functionally important mammalian proteins within 

an ancient lineage. Here, the common domain organization between 
GPIbαN and VLRs will highlight a structural motif with ancestral roots 
in both hemostasis and immunity.

2  | METHODS

We searched the RCSB protein data bank (www.rcsb.org) for structures 
similar to GPIbαN, using DALI server.9 Close structural neighbors of 
GPIbαN were VLRs of the jawless fishes, the lamprey eel and hagfish.6 
Analysis focused on an N- terminal cap (NT), LRRs, and a C- terminal 
cap (CT). Both the NT and CT have conserved disulfide bonds. GPIbαN 
has 8 LRRs, while the VLRs discussed here vary from 6 to 8. Therefore, 
we employed the following strategy for structural comparisons. We 
split the VLR into two parts, the first comprising of NT and LRRs and 
the second being CT. These parts were separately superposed with 
the corresponding regions of GPIbαN using the program COOT.10 The 
figures were generated using the program PyMol (PyMOL Molecular 
Graphics System, Version 1.3 Schrödinger, LLC, Cambridge, MA, USA).

3  | RESULTS AND DISCUSSION

Highlighting the structural similarities are a superposition of GPIbαN 
with the VLRAs of sea lamprey (VLRAlamp) and hagfish (VLRAhag), and 
hagfish VLRB (VLRBhag) (Figure 1A–C).11,12 The most striking unifying 
structure between GPIbαN and the VLRs are the LRR modules that 
vary in number for the individual VLRs compared to the 8 LRRs found 
in human GPIbαN (Figure 2).13 The LRRs in all of these proteins are 

F IGURE  1 Superposition of the GPIbαN (green) intact domain structure with VLR structures from sea lamprey and hagfish. (A) Superposition 
of GPIbαN (PDM ID 1m10) with the VLRAlamp domain of sea lamprey (PDM ID 3M18). Here the C- terminal portion of VLRA was superposed 
separately with the corresponding region of GPIbαN as VLRAlamp has one leucine rich repeat (LRR) fewer than GPIbαN. (B) Superposition of 
VLRAhag from hagfish (PDM ID 2o6q) (magenta) with GPIbαN. Here the VLRAhag also has 8 LRRs, but lacks the thumb- like extended loop. 
(C) Superposition with VLRBhag from hagfish (PDM ID 2o6s). Here the C- terminal region is superposed separately as VLRBhag lacks 2 LRRs 
compared to GPIbαN, but does contain a loop in a similar position to GPIbαN and VLRAlamp. (D) Structural superposition of the β- hairpin loop of 
VLRAlamp with the β- hairpin loop of GPIbαN (1m10). The loop is shorter in the VLRAlamp, but the Cys9- Cys20 bond coincides with the Cys4- Cys17 
bond of the GPIbαN. (E) The superposition of the C- terminal portion (Cys192 to Cys246) of VLRAlamp with the corresponding region of GPIbαN 
(Cys209 to Cys264). The disulfide bridges are shown as sticks cyan for GPIbαN and orange for VLRAlamp. The Cys residues are labelled in green and 
magenta respectively. The disulfide bonds Cys192- Cys228 and Cys195- Cys246 of VLRAlamp superposes well with the Cys209- CysC248 and Cys211- 
Cys264 bonds of GPIbαN
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flanked by motifs containing disulfide bridges (Figure 1D, E). GPIbαN 
has a single amino- terminal intramolecular disulfide bridge between 
Cys4- Cys17. VLRAlamp has two amino- terminal disulfide loops between 

Cys3- Cys11 and Cys9- Cys20 with the latter forming a disulfide linked 
β- hairpin similar to the hairpin loop in GPIbαN (Figure 1D). Both 
VLRAhag and VLRBhag have the amino- terminal disulfide bridges similar 
to those found in VLRAlamp (Figure 3A). Carboxy- terminal to the LRRs 
are a pair intramolecular disulfide loops found in VLRAlamp, VLRAhag, 
and GPIbαN (Figures 1E and 3B). The GPIbαN disulfide intramolecu-
lar bridges form between Cys209- Cys248 and Cys211- Cys264; VLRAlamp 
disulfide loops are formed between Cys192- Cys228 and Cys195- Cys246 
(Figure 1E). VLRBhag disulfide loops are formed between Cys185- 
Cys218 and Cys187- Cys230 (Figure 3B). VLRAhag has only a single 
Cys241- Cys269 bond with two remaining residues, Cys243 and Cys288, 
unpaired in the crystal structure (Figure 3B). Thus, the cysteines and 
disulfide bridges are similarly arranged while functioning in either he-
mostasis or immunity.

As shown by the crystal structure of the GPIbαN/VWF complex, 
residues Val227 to Ser241 form a large loop that undergoes a confor-
mation change to interact with VWF. In complex with VWF, these 
residues adopt a β- hairpin structure and form an extension of the cen-
tral β- sheet of the VWF A1 domain through strong hydrogen bond 
interactions (Figure 4A). VLRAlamp contains a similarly positioned 
loop, albeit shorter, formed by Asn211- Ser220 (Figure 1E). Interestingly, 
VLRAlamp crystal structures with antigens, hen egg white lysozyme 
or H- antigen trisaccharide, demonstrate the primary binding region 
of VLRAlamp is within the similar loop supporting the GPIb/VWF in-
teraction (Figure 4A–C).12,14 Thus, an overall conservation of domain 
structure likely facilitates the intermolecular interactions involving the 
Val227 to Ser241 loop of GPIbαN and the similar loops within VLRAlamp 
and VLRBhag. However, the loop is not a universal requirement as ev-
ident by its absence in VLRBhag (Figure 1B). Thus, the role of the loop 
varies in the antigen binding properties for individual VLRs while being 
essential to the GPIb.N/VWF interaction.

Based on gene arrangement, others have proposed the VLR 
genes arose from some primitive GPIb- IX complex in the vertebrate 
lineage.15 Conserved positions of the intron sequences within 5’ un-
translated sequences, intron- less coding sequences for leucine- rich 
repeats (LRRs), and coding sequences for a connecting peptide and 
a threonine- proline- rich stalk are shared between the GPIb- IX genes 
and the VLR germline gene.15 LRRs are present throughout nature, so 
their presence alone does not necessarily highlight a common ances-
tor, but the intron- less nature of coding sequences, introns in the 5’ 
UTR and the highly similar protein structures documented here, sug-
gest a common ancestral gene shared between human GPIb- IX and 
jawless fish VLR genes.

Some investigators have pointed out the structural and sequence 
similarities between GPIbα and VLRs earlier. For example, from se-
quence comparisons, Rogozin et al. have suggested that GPIbα and 
VLRs may share a common evolutionary origin.15 Other investigators 
have shown that parts of VLRA superpose well with parts of GPIbα, 
but these comparisons focused primarily on the LRRs.12,14 The LRRs 
provides the molecule its concave surface for ligand binding, but our 
arguments on the evolutionary links between GPIbα and VLRs are 
mostly based on the similarities in NT and CT which contain con-
served disulfide bridges. These disulfide bridges have withstood the 

F IGURE  2 Sequence of alignment of leucine- rich repeats. 
Comparative alignment of leucine- rich repeats (LRRs) among 3 
representative VLR sequences illustrated in Figure 1 along with 
the extracellular glycoprotein Ibα domain of the human platelet 
receptor. The LRR numbers vary among the lamprey and hagfish VLR 
between 4 and 8. Leucine alignments are highlighted in yellow. Other 
similarities where 3 out 4 residues match are highlighted in gray
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evolutionary pressures and assaults for more than 500 million years. 
They served as anchoring points around which changes took place. 
The similar gene arrangements along similar protein domain conserva-
tion seems to discount the structures being the result of convergent 
evolution, but does not unequivocally eliminate the possibility of a 
convergent evolution.

Striking in the structural similarities between human GPIbα and the 
jawless fish immune system are implications for a common structural 

origin for primary hemostasis and the unique immune system of the 
jawless fishes. The subphylum vertebrata (phylum Chordata) is di-
vided into agnatha (jawless fish) and gnathostomata (jawed fish) with 
the former containing only the lamprey eel and the hagfish lineages 
(Figure 4D). Based on fossil records, the agnatha lineage is estimated 
to have diverged from gnathostomata more than 500 million years 
ago during the Cambrian period.8 The gnathostamata group con-
tains more than 60 000 species of vertebrates including all mammals, 

F IGURE  3 Sequence of paired cysteine residues. Paired cysteine alignments guided by the structural superpositions. (A) Conserved 
intramolecular disulfide loops within the human platelet adhesion receptor (GPIbα), lamprey adaptive immune molecule (VLRAlamp), and 
representative hagfish VLRs (VLRAhag and VLRBhag) are shown for the motifs N- terminal to the LRRs. Both the lamprey eel and hagfish contain 
an additional amino- terminal disulfide loop not present in the human GPIbα molecule, but the second amino- terminal loop of the jawless fishes 
acquires a similar β- hairpin conformation as found in human GPIbα (see Figure 3A). (B) Additional disulfide loops of similar size and linkage are 
also depicted as they occur carboxyl- terminal to the LRRs. (Two unpaired Cys residues (Cys243, Cys288) exist in the crystal structure of VLRAhag 
and are shown for comparison
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F IGURE  4 Comparative ligand binding to GPIbαN and VLRs. Representative ligands bound to GPIbαN and VLRAlamp illustrates ligand binding 
takes place on the concave surface generated by the LRRs. (A) Binding of GPIbαN to the VWF A1 domain (PDB ID 1M10) is shown. Note that 
the binding is mediated primarily through the Val227- Ser241 loop (red) which assumes a β- hairpin conformation. (B) Binding of the VLRAlamp to 
lysozyme is shown (PDB ID 3M18). Here the loop (red) also plays a critical role in ligand binding, but with a different conformation. (C) VLRAlamp 
bound with a trisaccharide moiety is shown (PDB ID 3E6J). The loop assumes a β- hairpin conformation and accommodates the ligand in 
between the hairpin and the concave surface formed by the LRRs. The orientation of GPIbαN is flipped around by 180⁰ compared to the VLRs 
to better illustrate the loop and its interaction with the VWF A1 domain. (D) Modern phylogenetic taxonomy can take a variety of forms but 
typically places evolutionary lineages together based on fossil records and structure/function relationships. The phylum Chordata can be divided 
into protochordates (invertebrates) and vertebrates (animals with backbones). While protochordata is not a recognized taxonomic group, it is a 
convenient designation to include several subphylum, such as Tunicata and Cephalochordata. Studies to date, have suggested protochordates 
are devoid of the plasma- based clotting system common to vertebrates. Based on fossil records, a major division in the vertebrate lineage 
occurred during the Cambrian period (approximately 510–570 million years ago) leading to jawless fish and jawed animals. It is within the 
vertebrate lineage that hematological specialization appears and the origins of primary and secondary hemostasis are seen
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birds, reptiles, amphibians, and fishes. Interestingly, the protochor-
dates which comprise the remaining two subphyla of chordata lack 
a plasma- based coagulation system based on the apparent absence 
of a thrombin ortholog.16 Thus, if one attempts to trace the origins 
of primary and secondary hemostasis, the subphylum vertebrata is a 
logical starting place where elements of both primary and secondary 
hemostasis can be identified.17

These data may reflect a phylogenetic trail of cellular differenti-
ation and the origins of hemostasis. In non- mammalian vertebrates, 
the role of the platelet is performed by a circulating nucleated cell, 
termed the thrombocyte.18 Interestingly, in more primitive animals an 
overlap exists where the same cell can support both hemostasis and 
immunity.18 Indeed, invertebrate rudimentary hemostasis and immune 
function are performed by a single cell type found in blood (hemo-
lymph), termed the hemocyte.19 In the case of mammalian platelets 
there is emerging evidence for their participation in immune function, 
as well.20–22 Thus, when viewed in the overall phylogenetic trail the 
need for mechanisms to limit blood loss (hemostasis) and protect 
against foreign invaders (infection) can be traced to an ancestral pro-
tein whose remnants are now highly specialized.

When considering the presence of an even more ancient gene/
protein present in the ancestors of the vertebrate lineage, did this mol-
ecule have both hemostatic and immune functions? If so, it suggests 
an ancestral homologous motif that has evolved to become more ded-
icated to either the prevention of blood loss or a defense mechanism. 
Interestingly, the highly specialized mammalian GPIb- IX complex, and 
other platelet receptors as well, are now being recognized for their 
ability to participate in inflammatory processes. Still to be defined, is 
the molecular basis of hemostasis in the jawless fishes. However, the 
possibility for residual ancient homologous functions linking primary 
hemostasis to inflammation exists and this is likely to provide some 
unexpected and exciting future discoveries.
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