
Caragana korshinskii Kom. plantation
reduced soil aggregate stability and
aggregate-associated organic carbon on
desert steppe
Qi Lu1,*, Hongbin Ma1,2,*, Yao Zhou1, Roberto Calvelo-Pereira3 and
Yan Shen1,2

1 Ningxia University, School of Agricultural, Yinchuan, Ningxia, China
2Ningxia University, Breeding Base for State Key Laboratory of Land Degradation and Ecological
Restoration of Northwest China, Yinchuan, Ningxia, China

3 Massey University, School of Agriculture and Environment, Palmerston North, New Zealand
* These authors contributed equally to this work.

ABSTRACT
Background: After implementing of the “Grain-for-Green” project, Caragana
korshinskii Kom. has been widely planted in China’s arid regions. Although natural
restoration grassland and artificial Caragana plantations measures have long been
focuses in carbon research, the combined influence of natural restoration grassland
and artificial Caragana plantation measures on aggregate stability and the
aggregate-associated organic carbon (OC) remains unclear.
Method: We selected natural grassland (NG) and three different densities of
Caragana plantations (high planting density, HG; middle planting density, MD; low
planting density, LD) on desert steppe. The soil aggregate distribution and stability
index such as fractal dimension (D), mean weight diameter (MWD), geometric
mean diameter (GMD), percentage of aggregation destruction (PAD), as well as
aggregate-associated OC concentration and stock were measured.
Results: Results shows that the soil aggregates were primarily macroaggregates (>2
mm) and mesoaggregates (0.25–2 mm) under dry sieving while microaggregates
(<0.25 mm) were preponderant under wet sieving (more than 57%). Overall,
compared with Caragana plantations, the MWD (4.43 and 4.51 mm) and GMD (1.72
and 1.83 mm) were both highest in two soil layers under the NG and the D (2.77 and
2.71) was lowest. Compared with the NG, the aggregate-associated OC stocks in
the 0–40 cm depths in the LD, MD, and HD decreased by 41.54%, 46.93%, and
42.03%, respectively. SOC stock was mainly concentrated in the soil aggregate with
sizes of >2 mm and <0.25 mm. These results suggested that natural grassland
restoration measures could improve the soil aggregate stability and aggregate-
associated OC concentration better than Caragana plantation restoration measures,
which NG may be optimal for increasing carbon sequestration and stabilizing soil
aggregates on desert steppe.
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INTRODUCTION
The desert steppe of China’s arid regions in China is part of the world that suffers from
severe soil erosion (Fu et al., 2011) and is a very fragile ecological environment (Chen et al.,
2007; Wei et al., 2010) where soil erosion control has become very relevant. Due to
excessive human interference with the natural ecosystem, the ecosystem is becoming
increasingly fragile, leading to desertification of grasslands and severe soil erosion. As an
essential part of the terrestrial ecosystem, vegetation is the center of material circulation
and energy flow in the ecosystem and plays a vital role in soil and water conservation and
carbon sequestration. The growth of vegetation can effectively improve soil structure,
input more organic matter into the soil system, and improve soil quality (Dou et al., 2020).
It has been reported that vegetation restoration can control soil erosion and improve
ecological environmental conditions (Xu et al., 2014). Reforestation has become a
strategic decision to address the environment (Fu et al., 2011). Since 1999, China has
implemented the “Grain for Green Program” (GGP), which is one of the most
comprehensive ecological reconstruction programs (State Forestry Administration,
1999–2011), also known as the Returning Farmland to Forests or Grassland Project (Deng,
Liu & Shangguan, 2014). Although the arid region’ desert steppe has been improved in
terms of soil and water conservation (Fu et al., 2011), including wind erosion reduction,
improved sand fixation (Wang, Shao & Shao, 2010), and increasing the carbon storage
after large-scale plantations (Jia et al., 2017), the suitability of various vegetation
restoration methods remains controversial (Jiao et al., 2012). This is due to differences in
climate, soil and vegetation, causing significant variability in China’s arid and semiarid
regions (Gao et al., 2014). However, despite the number of studies focusing on ecosystem
restoration is increasing, how soil stability is modified by vegetation restoration remains a
poorly understood process.

Over the last two decades, several researchers have examined the responses of soil
aggregate size distribution and stability to management measures, and reported the role of
aggregates in soil organic carbon accumulation. Zhu, Shangguan & Deng (2017) indicated
that natural restoration grasslands had better soil organic carbon and aggregate stability
than plant forests on the Loess Plateau, China. Cheng et al. (2015) also revealed that after
vegetation restoration, macroaggregates’ content increased significantly, enhancing the
uniformity of the soil aggregate size distribution and inducing greater soil organic carbon
sequestration. However, these studies did not integrate soil physical and chemical property
indicators to comprehensively evaluate aggregates’ stability and explore the relationship
between soil aggregate stability parameters and the organic carbon of each size class of
the aggregates. Soil aggregates are soil structural units with a diameter of <10 mm formed
by the rearrangement, flocculation and cementation of soil particles (Bronick & Lal, 2005).
Aggregates are usually grouped by size: macroaggregates (>2 mm; Qiu et al., 2015; Wei
et al., 2013), mesoaggregates (0.25–2 mm; Li et al., 2007), and microaggregates (<0.25 mm;
Tisdall, 1996; Shrestha et al., 2004). New vegetation establishment accelerates the
cementation of soil particles and redistributes aggregates of different size, ultimately
determining the magnitude and direction of soil C accumulation (Qiu et al., 2015).

Lu et al. (2022), PeerJ, DOI 10.7717/peerj.12507 2/24

http://dx.doi.org/10.7717/peerj.12507
https://peerj.com/


A number of researchers have demonstrated that the macroaggregates had larger SOC
concentration accumulation and higher soil aggregates stability. Similarly, it has been
reported that macroaggregates and mesoaggregates were a source of organic carbon
enrichment (Puget P.Angers D.A.Chenu, 1998; Puget P.Chenu C.Balesdent, 2000).
However, some researchers had the distinctive standpoints, for instance, Christensen
(1986) research demonstrated that microaggregates have also been proven to be the
primary contributor to soil carbon sequestration. Therefore, it is essential to clarify the
concentration of different aggregate size fractions in driving changes of SOC
concentration. The hierarchical theory of aggregation proposed that microaggregates form
mesoaggregates and macroaggregates (Edwards & Bremner, 1967), with organic matter
contributions as a binding agent (Haynes & Swift, 1990). Research has suggested that, in
certain soils, increases in aggregate stability are associated with the storage of more soil
organic carbon (Haynes & Beare, 1997). Moreover, the permanence of carbon inside
microaggregates impacted long-term soil carbon accumulation (Six & Paustian, 2014).
In arid and semiarid environments, both wind and water erosion significantly impacted
the soils (Okolo et al., 2020). The stability of dry stable aggregates (DSA) can be used to
evaluate the ability of soil to resist wind erosion effects, while the stability of wet stable
aggregates (WSA) is more suitable for predicting the ability of soil to resist rainfall erosion
(Okolo et al., 2020). Parameters commonly used to study structure and aggregate stability
in soils include soil mean weight diameter (MWD), geometric mean diameter (GMD),
percentage of aggregate destruction (PAD), and fractal dimension (D) (Zhou et al., 2020).
Large values of MWD and GMD indicate higher average particle size class of soil
aggregates and better soil structure stability (Zhu, Shangguan & Deng, 2017). The larger
the fractal dimension (D) value of soil aggregates, the higher the possibility of aggregate
breakage and the gradual increase in the number of microaggregates in the soil
(Castrignano & Stelluti, 1999).

Caragana korshinskii is a legume shrub widely planted in the arid desert steppe areas of
China. Caragana is a pioneer plant with rapid growth and high resistance to drought, cold,
and barrenness, thereby used to control grassland soil erosion and avoid desertification
(Ma et al., 2008; Fang et al., 2008). In recent years, ecological construction projects,
including Caragana shrubs’ planting, have been under development on desert grasslands,
such as those in Ningxia, Inner Mongolia, and Gansu in the eastern area of the Loess
Plateau of China (Gao et al., 2014). Recent research had mainly focused on the effects of
vegetation rehabilitation on the distribution of aggregates and aggregate-associated OC
(Fu et al., 2009; Kirkels, Cammeraat & Kuhn, 2014; Zhou et al., 2007) and the dynamics of
soil carbon sequestration (Zhu, Shangguan & Deng, 2017). In addition, the effect of
planting Caragana shrubs on parameters such as soil nutrients and stoichiometries in this
region have been reported (Yang & Liu, 2019). However, few studies have investigated the
different impacts on the two land uses (natural restoration grassland and man-made
Caragana shrubs plantations) on soil aggregate stability and aggregate-associated OC in
the desert steppe of the arid region of China. Therefore, an improved understanding of soil
aggregate stability and aggregate-associated OC in Caragana plantations in the arid desert
steppe is necessary. To propose a theoretically based rational design for the restoration
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method of desert steppe, we assumed that (1) aggregate stability and aggregate-associated
OC would be more favorable in the soil under natural grassland than in Caragana
shrub-land and (2) SOC in macroaggregates and mesoaggregates would be positively
associated with aggregate stability. In this study, we investigated the effects of Caragana
shrubs established at three planting densities (HD, high planting density; MD, middle
planting density; LD, low planting density) on the soil aggregate stability and soil aggregate
stability parameters on the soil aggregate organic carbon of different soil aggregate size
classes. Therefore, the objectives of this study are (1) to analyze the soil aggregate fraction
distribution and soil aggregate stability in natural grasslands and at different Caragana
planting densities; (2) to determine the distribution of SOC associated with the size
fractions of aggregate classes; and (3) to investigate the relationship between soil aggregate
stability parameters and the aggregate organic carbon of different soil aggregate size
classes. Finally, these results can provide a basis of further assessing of Crargana shrub
planting measures in the arid desert steppe of China or other similar regions.

MATERIALS AND METHODS
Experimental site
The field experimental site is located on the southern edge of the Mu Us Desert, in the arid
desert steppe of Yanchi County (107�19′E, 37�88′N), located in Northwest China (Fig. 1).
The area is characterized by a typical temperate continental arid climate, with an
annual average temperature of 7.6 �C, annual accumulated temperature ≥ 0 �C of 3,430 �C,
mean annual precipitation of 290 mm, and average annual evaporation of 2,132 mm.
The soil type is dominantly desertification sierozem, based on Chinese Soil Taxonomy
(Soil Survey Staff, 2010). Throughout the year, alternating strong northwesterly winter and
spring winds and heavy summer rainfall, leading to the region suffer severe wind and water
erosion.

At the background of “Grain for Green Program” implementation, many Caragana
shrub and natural restoration grasslands were distributed in the study area, and the
Caragana population recruitment was generally realized by reproduction from seed. At the
study site, large numbers of Caragana shrubs have been planted and fenced since 2003.
Caragana shrubs are distributed on the desert steppe in strips with different densities.
Through 17 years vegetation restoration, the main dominant species are Lespedeza
davurica, Leymus secalinus, Artemisia scoparia, Oxytropis psamocharis, Euphorbia esula,
and Corispermum mongolicum.

Experimental design
Experimental site zonal vegetation belongs to desert steppe. Caragana shrubs
are distributed on the desert steppe in strips with different densities, including
4,690 bundles/hm2 (HD, high planting density), 3,573 bundles/hm2 (MD, middle planting
density), and 2,012 bundles/hm2 (LD, low planting density). Caragana inter-shrub
grasslands with consistent topography, soil, vegetation, and growth conditions were
selected as the study plots in the experimental area. There is a large area where Caragana
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shrubs are not planted which is considered NG (natural grassland). The slope, aspect,
elevation and other natural factors were carefully considered when plots were selected to
ensure that their topography features were roughly consistent. The main soil physical and
chemical properties of the study sites are shown in Table 1. Caragana shrubland was

Figure 1 Location of the study area in the Yanchi County, Ningxia, China. The photos of the grasslands were (A) natural grassland, (B) low
Caragana planting density grassland, (C) middle Caragana planting density grassland and (D) high Caragana planting density grassland. (Map
created by ArcGIS Desktop 10.5, Esri, Redlands, CA, US. https://desktop.arcgis.com; Photo credit: Qi Lu).

Full-size DOI: 10.7717/peerj.12507/fig-1
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paired with adjacent natural restoration grassland to ensure the two restoration types
had similar land use history. Then, soil aggregate stability and organic carbon distribution
were studied among three Caragana shrub (HD, MD, and LD) planting densities and
natural grassland (NG). Finally, the characteristics of Caragana and the ground grassland
vegetation between Caragana shrub belts at each site are listed in Table 2. The schematic
diagram of natural grassland and different densities of Caragana planting is shown in
Fig. 1.

Experimental sampling
The soil sampling was conducted in early August 2019. Three sampling plots (50 m ×
50 m) were chosen at random on the desert grasslands between each Caragana shrub
density (i.e., HD, MD, LD) and natural grassland (NG). At the center and four corners of
each plot, five 1 m × 1 m quadrats were chosen to obtain soil bulk density and undisturbed
soil samples at depths of 0–20 cm and 20–40 cm, respectively, and then sealed in a
plastic box to avoid being crushed and impacted during transportation back to the
laboratory. A soil drilling sampler was used to sample the 0–20 cm and 20–40 cm soil
layers of each plot. Five soil samples were taken from the center and four corners of each
plot, and then the five auger samples were pooled to make a composite sample at each
depth for the measurement of soil physical and chemical properties. In the laboratory, the
samples were air-dried at room temperature and stored for further analyses.

Table 1 Basic soil characteristics of Caragana korshinskii plantations (0–40 cm).

Site Bulk density
(g/cm3)

Soil organic
carbon (g/kg)

Total soil
nitrogen (g/kg)

Alkali-hydrolyzale
nitrogen (mg/kg)

Total soil
phosphorus (g/kg)

Available
phosphorus (mg/kg)

Soil water
content (%)

NG 1.49 ± 0.01ab 4.49 ± 0.46a 0.08 ± 0.01ab 15.94 ± 1.68ab 0.31 ± 0.01a 2.52 ± 0.15b 6.82 ± 0.43a

LD 1.50 ± 0.01ab 4.81 ± 0.40a 0.07 ± 0.01b 18.89 ± 1.43a 0.27 ± 0.01b 2.96 ± 0.12ab 2.70 ± 0.30b

MD 1.45 ± 0.02b 5.62 ± 0.50a 0.10 ± 0.01a 17.00 ± 1.14ab 0.27 ± 0.01b 3.37 ± 0.20a 3.05 ± 0.30b

HD 1.50 ± 0.02a 6.46 ± 1.66a 0.07 ± 0.01ab 14.18 ± 0.99b 0.25 ± 0.01b 3.25 ± 0.22a 2.91 ± 0.25b

Note:
Different letters in the same column indicate significant differences at the 0.05 level. NG, natural grassland; LD, low planting density; MD, middle planting density; HD,
high planting density.

Table 2 The ground grassland vegetation characteristics between Caragana shrubs belts.

Site Caragana shrubs Ground grassland vegetation

Planting density
(Cluster/hm2)

Height
(cm)

Shrub
biomass (kg/ha)

Density
(Plants/m2)

Height (cm) Coverage (%) Herbaceous biomass (g/m2)

NG – – – 130.00 ± 5.86bc 10.51 ± 0.72a 51.67 ± 2.19a 72.58 ± 6.41a

LD 2,012 150.43 ± 4.81a 2644.93 ± 4.61b 210.33 ± 1.52a 7.24 ± 0.36b 37.00 ± 3.51b 37.62 ± 2.70bc

MD 3,573 121.53 ± 0.64b 3378.60 ± 6.39a 165.00 ± 1.26b 6.82 ± 0.21b 42.67 ± 3.71ab 44.96 ± 4.43b

HD 4,690 110.30 ± 3.10b 1590.49 ± 9.12c 106.67 ± 3.76c 5.94 ± 0.49b 24.33 ± 2.73c 29.04 ± 2.22c

Note:
Different letters in the same column indicate significant differences at the 0.05 level. NG, natural grassland; LD, low planting density; MD, middle planting density; HD,
high planting density.
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Analyses of soil physical and chemical properties
Separation of soil aggregates
The stability of soil aggregates was determined using conventional dry and wet sieving
methods (ISSAS, 1978). A 0.5 kg air-dried soil samples were passed through a nest of flat
sieves 5, 2, and 0.25 mm in sequence using a dry-sieving method, and the soil aggregates in
each sieve was weighed to determine the ratio of different aggregate components to the
total soil mass. The total weight of the soil aggregates was determined by adding the
weights of the soil aggregates in the four size sections (>5, 2–5, 0.25–2, and <0.25 mm).

The aggregates at all levels determined by the dry sieve were mixed into 50 g air-dried
soil samples according to the ratio. After pouring the prepared soil sample on the sieve
group (2, 0.5, and 0.25 mm), the sieve group was immersed in water for 10 min
(Kemper, Rosenau & Nelson, 1985). Then, the screen was shaken up and down slowly
30 times and removed. The soil samples on the sieves of all levels were washed into a
beaker with water and then oven-dried at 40 �C for 48 h to constant weight. The soil bulk
density (BD) was measured using the ring knife method (Hossain, Chen & Zhang, 2015).

Chemical characterization of soil samples
The Kjeldahl method (Bremner, 1960) was utilized to analyze total soil nitrogen (TN). Soil
total phosphorus (TP) was established using the molybdophosphate method after wet
digestion with H2SO4 (Parkinson & Allen, 1975). Available nitrogen (AN) was determined
using a microdiffusion technique after the samples were subjected to alkaline hydrolysis
(Wang, Liu & Xue, 2012). The soil extract available phosphorus (AP) was determined
by sodium bicarbonate extraction (Olsen et al., 1954). Soil organic carbon (SOC) was
determined using dichromate oxidation (Walkley & Black, 1934).

Study of fractal dimension
The fractal dimension (D) of the soil aggregates was studied following the equation:

ð3� DÞ lgðdi=dmaxÞ ¼ lgðWðd, diÞ=W0Þ (1)

whereW(δ< di) is the cumulative mass of soil particles smaller than di and W0 is the sum of
the masses of all the grain size particles. Using this model, lg(di/dmax) and lg(W(δ< di) /W0)
were used as the horizontal and vertical coordinates, and the fractal dimension was
calculated by the regression method (Turcotte, 1986; Chakrabortia et al., 2003).

Assessment of soil aggregate stability
To assess the impact of different treatments (NG, HD, MD and LD) on soil structure, we
calculated two indexes related to soil aggregate stability: mean weight diameter (MWD)
and geometric mean diameter (GMD) (Klute, Kemper & Rosenau, 1986). The MWD
and GMDwere calculated using the following equations (Chaplot & Cooper, 2015; Obalum
& Obi, 2014):

MWD ¼
Xn

i¼1

XiWi (2)
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GMD ¼ expð
Pn

i¼1
ðlnXiÞWi

Pn

i¼1
Wi

Þ (3)

where n is the number of fractions (>5, 3–5, 2–3, 1–2, 0.5–1, 0.25–0.5, <0.25 mm), Xi is the
mean diameter (mm) of the sieve size class (5, 3, 2, 1, 0.5, and 0.25 mm), and Wi is the
proportion of the soil retained on the sieve.

Additionally, the percentage of aggregate destruction (PAD, %) was calculated as:

PAD ¼ W�W 0

W
� 100 (4)

whereW is the mass fraction of aggregates >0.25 mm after dry sieving; andW′ is the mass
fraction of aggregates >0.25 mm after wet sieving.

The stock of OC in bulk soil and aggregate
The stock of OC (g m−2) in bulk soil calculated using the following equation:

SOCBS ¼ H � BD� OC
100

(5)

where BD is the soil bulk density (g cm−3), H is the thickness (cm) of the soil layer, and OC
is the OC content (g kg−1) in different soil layers.

The stocks of OC (g m−2) associated with each size fraction were calculated as follows:

SOCAi ¼ H � BD� OCi �Wi

10
(6)

where OCi is the OC content (g kg−1) associated with each aggregate size fraction.

Statistical analyses
One-way analysis of variance (ANOVA) was conducted using SPSS software (Version
19.0) to compare aggregate size distribution, percentage of aggregate destruction (PAD),
mean weight diameter (MWD), geometric mean diameter (GMD), and fractal dimension
(D). Multiple comparisons of means for each variable were performed using a least
significant difference (LSD) at a significance level (a) = 0.05. We chose the related
indicators, including soil properties (BD, SOC, TN, TP, AN, and AP), D, PAD, MWD, and
GMD, as the initial variables to perform principal component analysis. Then, we selected
the common factors, F1, F2, and F3 by the factors analysis method in SPSS based on
these related indicators. Finally, using this method, we calculated the total score (F value)
of soil aggregate stability. According to these scores, we drew the Fig. 2 in our manuscript.
General linear regression models (GLRMs) were used to evaluate the influence of soil
aggregate stability on the soil organic carbon of different soil aggregate size classes.
The graphs of the proportion of different aggregate fractions, the MWD, GMD, and D of
soil aggregate and PAD value under different vegetation restoration measures were drawn
by Microsoft Excel 2010. The radar charts were created with Origin 9.0 (OriginLab
Corporation, Northampton, MA, USA).
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RESULTS
Aggregate size distribution
The soil aggregate contents were varied across Canagana planting densities (Fig. 3). At a
depth of 0–20 cm, NG = 60%, HD = 33%, MD = 40%, and LD = 43% of the >2 mm dry
sieving aggregate were observed (Fig. 3A). Samples collected from 20–40 cm depth, the
percentage of >2 mm aggregates for the four treatments increased in the following order:
NG > MD > LD > HD (Fig. 3A). In detail, at soil depths of 0–20 cm, the content of
>0.25 mm aggregates in the NG, MD, and LD treatments was significantly higher than
that in HD (P < 0.05). Moreover, under the NG and MD treatments, the content of
>0.25 mm aggregates in the 20–40 cm soil was significantly higher than that of HD and LD
(P < 0.05). The soil of mid-planting density had significantly more material in the
>0.25 mm size class relative to the other Caragana treatments, although natural grassland
soil had more macroaggregates (P < 0.05) (Fig. 3A).

Under each treatment 0–40 cm soil layer, the wet sieving aggregates are dominated by a
particle size of <0.25 mm, with content of 57–93%, followed by >2 mm particle size, and
the content of 0.5–2 mm water-stable aggregates is the lowest of 1–5% (Fig. 3B). At the
0–20 cm soil depth, there was no significant difference in the content of aggregates
>0.25 mm between treatments (P > 0.05). However, at a soil depth of 20–40 cm, the
content of >0.25 mm aggregates under the MD treatment was significantly higher than that
of the other treatments (P < 0.05).

Figure 2 Comprehensive scores of different Caragana planting densities. NG, natural grassland; LD,
low planting density; MD, middle planting density; HD, high planting density.

Full-size DOI: 10.7717/peerj.12507/fig-2
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Stability parameters (D, MWD, GMD, and PAD) of soil aggregates
planted with different Caragana planting densities
Regression analysis was used to calculate the fractal dimension D value of the soil aggregate
particle size at different Caragana planting densities (Fig. 4A). The D value of each
treatment ranged from 2.71 to 2.99 in the 0–20 cm soil layer. For dry-sieving aggregate, the
D value in the NG treatment was significantly smaller (P < 0.05) than that in the other
treatment. For wet-sieving, treatment HD was significantly larger (P < 0.05) than the other
treatments (Fig. 4A). The same variation trend was observed for the aggregates at the
20–40 cm soil depth.

The results show that the value of MWD and GMD of the dry stable aggregates obtained
by the dry-sieving method are higher than those of the wet-sieving method (Fig. 4).
The mean weight diameter of dry-sieving aggregates (D-MWD) and the geometric mean
diameter of dry-sieving aggregates (D-GMD) of the NG treatment were significantly
larger than those of the Caragana plantation. In terms of the three types of Caragana
plantation sites, the D-GMD and W-GMD values of the LD treatment at soil depths of
0–20 cm and 20–40 cm were significantly larger than those of the other treatments
(P < 0.05). The LSD test showed that at a soil depth of 20–40 cm, the W-MWD and
W-GMD of the MD treatment were significantly larger than those of the NG and several
Caragana plantation treatments (P < 0.05). Additionally, the W-GMD of wet-sieving
aggregates and its change rule of W-MWD are consistent.

Our results showed that the percentage of aggregate destruction (PAD) varied on
average from 29–85% (Fig. 4). The PAD of HD >0.25 mm aggregates in the 0–20 cm

Figure 3 Dry sieving (A) and wet sieving (B) aggregate contents of different fractions at 0–40 cm depth of soil in different Caragana planting
densities. NG, natural grassland; HD, high planting density; MD, middle planting density; LD, low planting density. The values for the >0.25 mm
aggregate in different land use types followed by the different lowercase letters indicate significant difference (P < 0.05).

Full-size DOI: 10.7717/peerj.12507/fig-3
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Figure 4 The D (A), MWD (mm) (B), GMD (mm) (C), and PAD (%) (D) values from 0–40 cm of soil
aggregate in different Caragana planting densities in sample sites on the Loess in desert steppe.
Different lowercase letters correspond to significant difference at P < 0.05. The bars represent stan-
dard errors. NG, natural grassland; HD, high planting density; MD, middle planting density; LD, low
planting density. D, the fractal dimension; MWD, the mean weight diameter; GMD, the geometric mean
diameter; PAD, the percentage of aggregate destruction. Full-size DOI: 10.7717/peerj.12507/fig-4
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soil depth was significantly higher than that in the other treatments (81%) (P < 0.05).
At 20–40 cm soil depths, MD was significantly lower than that of the NG and HD
treatments (P < 0.05), and the PAD of the >0.25 mm aggregate in the MD reached a
minimum (29%). For all of the sites, PADs of different plantation distances demonstrated
the following order: HD (79%) > NG (74%) > LD (42%) > MD (49%).

The comprehensive score of soil aggregate stability
The soil dry aggregate size distribution is mainly affected by wind erosion, so statistical
software was used to perform principal component analysis on 11 soil texture and dry
aggregate index indicators and extract four principal components (PCs) (Table 3).
The principal component eigenvalues were 4.56, 2.17, and 1.38 (both > 1) and explained
74% of the data variability. Therefore, the first three principal components are
extracted. According to the results of the principal component analysis, the initial factor
coefficient loading matrix can be obtained, and combined with the variables of the
standardization processes, the expressions of the principal components are obtained
as follows:

F1 ¼ 0:41X1þ 0:42X2þ 0:40X3þ 0:10X4� 0:15X5þ 0:34X6� 0:27X7� 0:17X8

þ 0:43X9þ 0:24X10þ 0:01X11;

F2 ¼ �0:24X1� 0:21X2� 0:29X3þ 0:51X4� 0:02X5þ 0:30X6� 0:30X7

þ 0:27X8þ 0:00X9þ 0:43X10þ 0:33X11;

F3 ¼ 0:02X1þ 0:06X2þ 0:04X3� 0:24X4� 0:67X5� 0:06X6þ 0:46X7

þ 0:28X8þ 0:02X9þ 0:20X10þ 0:40X11:

Table 3 Contribution of factorial loads and eigenvalues of the analyzed variables of soil texture and
dry aggregate indexes indicators.

Indexes Factors Coefficient matrix

1 2 3 1 2 3

X1 0.87 −0.35 0.03 0.41 −0.24 0.02
X2 0.90 −0.31 0.07 0.42 −0.21 0.06
X3 0.85 −0.43 0.05 0.40 −0.29 0.04
X4 0.22 0.75 −0.29 0.10 0.51 −0.24
X5 −0.33 −0.03 −0.78 −0.15 −0.02 −0.67
X6 0.73 0.44 −0.07 0.34 0.30 −0.06
X7 −0.57 −0.45 0.54 −0.27 −0.30 0.46
X8 −0.36 0.40 0.33 −0.17 0.27 0.28
X 9 0.92 0.00 0.02 0.43 0.00 0.02
X10 0.52 0.63 0.24 0.24 0.43 0.20
X11 0.03 0.49 0.47 0.01 0.33 0.40
Eigenvalue 4.56 2.17 1.38
Variance (%) 41.41 19.69 12.56
Cumulative variance (%) 41.41 61.09 73.66

Note:
PC, Principal component; X1, D-D, fractal dimension by dry-sieving; X2, D-MWD, mean weight diameter by dry-
sieving; X3, D-GMD, geometric mean diameter by dry-sieving; X4, PAD, percentage of aggregate destruction; X5, SOC,
soil organic carbon; X6, TN, total nitrogen; X7, BD, soil bulk density; X8, AP, available Phosphorus; X9, TP, total
phosphorus; X10, AN, available nitrogen; X11, D-WR0.25 = >0.25 mm dry-sieving aggregate specific gravity.
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The first, second, and third principal components explain 41.41%, 19.69%, and 19.69%
of the variability, respectively. Therefore, the weights of the first, second, and third
principal components in the sum of the three principal components are 56.22%, 26.73%,
and 17.05%, respectively. The formula for comprehensive evaluation can be obtained:
F = 0.562F1 + 0.267F2 + 0.171F3. The comprehensive evaluation index is obtained by
linear weighted summation to analyze the stability of soil aggregates. The larger the value,
the more stable the soil aggregates. Figure 2 comprehensively evaluates the stability of
soil aggregates at different Caragana planting densities. The results showed that at a
soil depth of 0–20 cm, the desert grassland scored the highest, while at a soil depth of
20–40 cm, the grassland with middle Caragana planting density had the highest
comprehensive score. Overall, the comprehensive score of the entire 0–40 cm soil layer
was: NG > MD > LD > HD.

Aggregate-associated OC concentration and stock
Figure 5 shows that the average organic carbon concentration in aggregates of different
sizes ranged between 0.38 and 1.94 g C/kg soils. The SOC concentration of each aggregate
fraction has the highest carbon content in >2 mm aggregates and the lowest organic
carbon in the 0.25–0.5 mm aggregates. The soil aggregate-associated OC concentration in
the NG was significantly higher than that of any treatment (P < 0.05). In the 0–20 cm and
20–40 cm soil layers, for the treatments of Canagana, the aggregate-associated OC
concentrations were the highest in the HD treatment, ranging from 0.57 to 1.87 g/kg.
In the same soil layer for the same treatment, the aggregate-associated OC concentrations
with different fractions varied slightly, and the mesoaggregates (0.25–2 mm) had high OC
concentrations.

The highest OC stock associated with macroaggregate, mesoaggregate, and
microaggregate was found in NG, both at 0–20 and 20–40 cm depth (Fig. 6).
The aggregate-associated OC stock was mainly concentrated in >2 and <0.25 mm

Figure 5 Distribution of wet stable aggregate-associated OC concentration at 0–40 cm depth of
different Caragana planting densities (g kg−1). Different lowercase letters correspond to significant
difference at P < 0.05. The bars represent standard errors. NG, natural grassland; HD, high planting
density; MD, middle planting density; LD, low planting density.

Full-size DOI: 10.7717/peerj.12507/fig-5
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aggregates. From the perspective of soil depth, the aggregate-associated OC stock of
the shrubs with different planting densities increased in deeper soil layers, while the
aggregate-associated OC stock in the natural grassland decreased with the depth of the soil
layer.

Relationship between aggregate stability and the SOC of different
aggregate fractions
The SOC concentration in the 0.25–0.5 mm and microaggregates (<0.25 mm) were
significantly positively correlated with MWD and GMW, and significantly negatively
correlated with D (P < 0.05) (Fig. 7). The SOC concentration in the large macroaggregates
(>2 mm) was significantly and positively correlated with GMW (P < 0.05).

DISCUSSION
In this study, the organic carbon content in aggregates and its relationship with the
aggregates’ stability was analyzed. Our results suggested that whether Caragana
plantations can improve soil aggregates’ stability and the accumulation of SOC depends on
the Caragana shrub planting density. Compare to natural grassland and Caragana
shrub plantation, the natural restoration of grasslands can be beneficial to promote the
formation of soil aggregates and aggregate-associated OC.

Distribution of the soil aggregate stability index between the dry and
wet sieve methods in the two land-use types
Generally, land use and soil management affect soil aggregate size distribution and stability
(Hu et al., 2015). Soil aggregate stability can be used as one indicator of soil quality
evaluation (Arshad & Cohen, 1992). The stability of soil aggregates affects soil
characteristics, including soil porosity, compactness, aeration, and erosion resistance (Six,
Elliott & Paustian, 2000). We found that the aggregate stability of the surface soil in the
natural desert steppe plot was better than that of the Caragana korshinskii plantation
plots (Fig. 4). Table 2 showed that the height, coverage and grassland aboveground
herbaceous biomass on the natural desert steppe are significantly higher than those on the

Figure 6 Aggregate-associated OC stock in different Caragana planting densities. Lowercase letters
indicate the differences in SOC in the aggregates with different sizes in the same treatments (P < 0.05).
*Significant difference (at the 0.05 level) in soil aggregate-associated OC stock in different Caragana
planting densities in the 0–20 and 20–40 cm soil layers. Full-size DOI: 10.7717/peerj.12507/fig-6
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grassland where Caragana is planted. Therefore, the impact of litter accumulation in the
natural desert steppe is large, which is conducive to the accumulation of soil nutrients
(Pérès et al., 2013). Furthermore, the lignin and cellulose from plant litter bring more
binding agents, such as polysaccharides and fungi, which increase soil aggregates’ stability
(Zeng et al., 2020). In contrast, in the subsurface soil layer, aggregates’ stability in the
Caragana low planting density plot was better than that of the natural desert steppe plot
(Fig. 4). It is well known that established reforestation can have a profound impact on soil.
For example, the introduction and growth of exotic shrub species may change the
composition of the original local vegetation community (Zhang et al., 2020), thereby
increasing the potential for carbon sequestration and affecting soil aggregates’ stability
(Cavagnaro, Cunningham & Fitzpatrick, 2016). Soil water content is an essential limiting
factor in arid desert grassland ecosystems. The amount of water input to the desert steppe
is very small and largely unpredictable. Therefore, the fiercest competition among
vegetation communities in arid regions is the competition for water (Noy-Meir, 1973).
Similarly, in the present study, the soil water content of the shrub-grown desert steppe was

Figure 7 Relationships between aggregate-associated carbon (g kg−1) and soil aggregate stability
(MWD-w, Mean weight diameter of dry sieving aggregates, mm; GMD-w, Mean weight diameter
of wet sieving aggregates, mm; and D-w, Fractal dimension of wet siev). Statistical models are
general linear regression model with SOC of different aggregate size classes as an independent variable
and soil aggregate stability parameters (MWD, GMW, and D) as fixed factor.

Full-size DOI: 10.7717/peerj.12507/fig-7
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significantly lower than that of the natural desert steppe (Table 1). The stability of deep
grassland soil structure after shrub planting in arid areas may be closely related to the
planting density of shrubs. High-density planting of Caragana may not be suitable for
ecological restoration in arid areas because it would cause severe water shortages in deep
soils (Zhang et al., 2020).

The root system is another important factor affecting the formation and stability of soil
aggregates. A previous study reported that the roots of herbaceous plants are mainly fine
roots, while Caragana belongs to shrubs, which have thicker roots. Gyssels et al. (2005)
reported that fine roots can increase the direct contact area between roots and soil, which is
more conducive to enhancing the soil aggregates’ stability. Compared with areas where
Caragana is planted, bare grassland soil is not tilled, and herbaceous vegetation contributes
to the aggregation of fine soil particles by root exudates and biomass and by adding organic
material into the soil (Qiu et al., 2015). In natural grasslands where Caragana is not
planted, the root system is mostly an herbaceous root system, which is shallower in the soil.
Undisturbed soil may promote fungal growth and the proliferation of fungal hyphae that
contribute to macroaggregate formation (Beare et al., 1993). The cementation of
polysaccharides and humus in soil organic matter on soil particles can improve soil
stability (Bai & Zhou, 2020). For the desert steppe that grows Caragana, many root
systems that penetrate into the soil can mechanically destroy existing aggregates (Hu et al.,
2019).

The fractal dimension (D) is not only one of the parameters reflecting soil stability but
also an alternative indicator to describe the desertification process (Gao et al., 2014).
Perfect & Kay (1991) characterized the soil aggregate size distribution of different cropping
treatments by fractal theory. The average mass diameter (MWD) and average geometric
diameter (GMD) of soil aggregates are commonly used indicators to reflect soil aggregates’
size distribution. The larger the MWD and GMD values are, the higher the average
particle size of the aggregate and the higher the stability (Celik, 2005). The results indicated
that after Caragana shrub belts were planted in the desert steppe, soil macroaggregates
were more easily disrupted, and aggregates’ stability declined. In addition, it can be
seen from Fig. 2 that the effects of the middle planting density Caragana land on the
stability of the soil aggregate were the greatest, the low planting density Caragana land was
second, and the high planting density Caragana land was the worst compared to the
natural desert steppe. In addition, in the middle-density Caragana planting area, the
biomass of Caragana shrubs was significantly greater than that of shrubs with low and
high planting densities (Table 2). This means that there were large amounts of litter and
organic matter in the soil of the middle-density Caragana planting area; thus, the
concentration of soil nutrients was higher (Zhang et al., 2018). Furthermore, the MWD
and GMD values of wet-sieving aggregates were smaller than those of dry-sieving
aggregates. The reason is that many non-water-stable aggregates are decomposed,
indicating that there were many dried soil aggregates in this area (Zhou et al., 2020).
Therefore, in terms of this result of soil aggregate stability, we can conclude that
undisturbed grassland can improve the stability parameters of aggregates more effectively
than afforestation. Compared with the restoration of natural desert grasslands, this study
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emphasizes the positive impact of middle-density Caragana planting on soil aggregates’
stability.

The influence of natural grassland and Caragana planting density on
soil aggregate-associated carbon
We can comprehensively and objectively understand the changes in the soil organic
carbon pool (Bai, Zhou & He, 2020). Planting woody species in arid areas may promote
soil carbon accumulation in the soil (Zhou, Boutton & Wu, 2017). The effects of planting
shrubs on soil carbon concentrations in arid and semi-arid areas have been studied in
the past, but the results have been mixed. Some studies found a significant increase in soil
OC concentration following the revegetation of desert steppe (Su et al., 2010; Wang et al.,
2019), whereas Cunningham et al. (2012) found that three decades of afforestation did
not lead to substantial changes in the carbon concentration of the soil. It is speculated
that on a longer time scale, shrub plantings are likely to have larger impacts on the
amount and forms of soil carbon (Wang et al., 2019). Our results showed that
shrubland exhibited a higher soil organic carbon content than natural grassland, but the
aggregate-associated OC concentration was lower than that of natural grassland (Table 1)
(Fig. 5). This may be related to the short cultivation period of Caragana, which did not
have a significant impact on the soil aggregates. The high concentration of aggregates
in natural desert steppe areas could explain the relatively high aggregate stability observed
in the soils (Fig. 4). This could be due to the absence of tillage of the natural desert steppe.
This can also be attributed to the different carbon sequestration potentials of grass and
shrubs (Guo, Wang & Gifford, 2007). Lignified litter enters the soil and turns into
organic matter at a slower rate than herb litter (Paul et al., 2017). In addition, the
establishment and development of Caragana shrubs may disturb and accelerate the
decomposition of litter (Yang, Liu & An, 2018). The sum of aggregate-associated OC
concentrations in NG was 2.8 and 2.4 g/kg−1 higher than those in the Caragana shrub
plantation area at depths of 0–20 cm and 20–40 cm, respectively (Fig. 5), indicating that
natural grasslands have greater carbon sequestration potential than artificial Caragana
shrubs (Zhong et al., 2021).

The dynamic change in SOC not only depended on the input of organic matter but
was also closely related to the structure of the soil aggregates (Zhang et al., 2016).
Moreover, based on four dominant land-use types on the Loess Plateau, Zhong et al. (2019)
revealed that the physical and chemical protection of organic carbon in aggregates is one of
the main mechanisms of carbon sequestration in soil. In addition, our study showed
that the increase in SOC concentration overtime was more dependent on macroaggregates
and mesoaggregates than on microaggregates. Here, we have confirmed that
mesoaggregate fractions have the highest organic carbon concentration (Fig. 5).
Fresh residues first enter the soil and form microaggregates, which are then encrusted
with intra-aggregate particulate organic matter and microbial products to form
macroaggregates (Six, Elliott & Paustian, 2000). Fungi dominated the macroaggregates and
mesoaggregates to a greater extent than the other fractions. Bacteria enrichment is often
reported for microaggregate fractions (Smith et al., 2014). Bacterial cell walls are more

Lu et al. (2022), PeerJ, DOI 10.7717/peerj.12507 17/24

http://dx.doi.org/10.7717/peerj.12507
https://peerj.com/


susceptible to decomposition than fungal cell walls. The decomposition rate of fungal
secretions is slow, and the mean residence time in the soil is long (Guggenberger et al.,
1999; Six et al., 2006). Therefore, the mesoaggregates and macroaggregates provided better
physicochemical protection to the organic carbon associated with these fractions.

CONCLUSIONS
We evaluated the effects of different Caragana shrub planting densities and natural
restoration grasslands on soil aggregate stability and aggregate-associated carbon in
the desert steppe of an arid region of China. Caragana plantations destroyed the
macroaggregate and mesoaggregate fraction structure of desert steppe soil with a
concomitant reduction in soil aggregate-associated OC, whereas natural grassland favored
soil aggregate-associated OC accumulation. The comprehensive soil aggregate stability
scores are ordered as follows: NG > MD > LD > HD. However, due to the high content of
microaggregates, the retention of SOC during Canagana plantation and natural
restoration can be attributed to the accumulation of OC in microaggregates. Overall,
natural restoration grassland had a better effect than planting Caragana shrubs in terms of
improving the soil structure and increasing the soil aggregate-associated OC
concentration.
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