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Gonadotrope cells of the anterior pituitary are characterized by their ability to mount 
a cyclical pattern of gonadotropin secretion to regulate gonadal function and fertility. 
Recent in  vitro and in  vivo evidence suggests that gonadotropes exhibit dramatic 
remodeling of the actin cytoskeleton following gonadotropin-releasing hormone 
(GnRH) exposure. GnRH engagement of actin is critical for gonadotrope function on 
multiple levels. First, GnRH-induced cell movements lead to spatial repositioning of 
the in vivo gonadotrope network toward vascular endothelium, presumably to access 
the bloodstream for effective hormone release. Interestingly, these plasticity changes 
can be modified depending on the physiological status of the organism. Additionally, 
GnRH-induced actin assembly appears to be fundamental to gonadotrope signaling 
at the level of extracellular signal-regulated kinase (ERK) activation, which is a well-
known regulator of luteinizing hormone (LH) β-subunit synthesis. Last, GnRH-induced 
cell membrane projections are capable of concentrating LHβ-containing vesicles and 
disruption of the actin cytoskeleton reduces LH secretion. Taken together, gonadotrope 
network positioning and LH synthesis and secretion are linked to GnRH engagement of 
the actin cytoskeleton. In this review, we will cover the dynamics and organization of the 
in vivo gonadotrope cell network and the mechanisms of GnRH-induced actin-remod-
eling events important in ERK activation and subsequently hormone secretion.

Keywords: gonadotropin-releasing hormone receptor, actin cytoskeleton, extracellular signal regulated kinase 
signaling, gonadotrope cell signaling, luteinzing hormone, network dynamics

inTRODUCTiOn

Gonadotrope cells are a population of endocrine cells located in the anterior pituitary that are 
responsible for regulating the reproductive axis (1, 2). Gonadotropin-releasing hormone (GnRH) 
is synthesized in hypothalamic neurons and secreted in a pulsatile manner toward the fenestrated 
capillaries in the median eminence. Following release, GnRH is transported via the hypophysial 
portal vessels to the anterior pituitary where it binds to the GnRH receptor (GnRHR) located on 
gonadotrope cells. Stimulation of the GnRHR culminates in the synthesis and secretion of four 
main gene products: the common glycoprotein α-subunit, the hormone-specific luteinizing hor-
mone (LH) β subunit, follicle-stimulating hormone (FSH) β-subunit, and the GnRHR (1–3). The 

Abbreviations: GnRH, gonadotropin-releasing hormone; GnRHR, gonadotropin-releasing hormone receptor; LH, luteinizing 
hormone; FSH, follicle-stimulating hormone; MAPK, mitogen-activated protein kinase; ERK, extracellular signal regulated 
kinase; Arp 2/3, actin-related protein 2 and 3; mTORC2, mammalian target of rapamycin complex 2.
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heterodimeric glycoproteins, LH and FSH, are then released into 
systemic circulation where they regulate gonadal development 
and function by stimulating steroidogenesis, gametogenesis, 
folliculogenesis, and ovulation (4, 5).

Depending on the phenotypic markers used to identify 
gonadotropes, the population undergoes dynamic changes in 
both size and numbers depending on the stage of the estrous 
cycle (6–8). For example, gonadotropes are thought to represent 
approximately 5–7% of total anterior pituitary cells during 
diestrus but can increase upwards to 15% in proestrus (8, 9). 
Additionally, evidence suggests that gonadotropes are a het-
erogeneous population of cells that can be classified as small, 
medium, and large (10–12). Gonadotropes that are large are 
bihormonal and enriched during estrus (13). Gonadotrope 
cells are also organized in homotypic and heterotypic cellular 
networks that can adapt to changing physiological conditions to 
generate coordinated hormone pulsatility (14–16). Examples of 
adaptable mechanisms in gonadotropes include cell morphol-
ogy, migration, and positioning to vasculature; all of which 
requires a dynamic actin cytoskeleton.

The actin cytoskeleton plays an important role in cell divi-
sion, motility, and intracellular trafficking of vesicles. The actin 
cytoskeleton has been extensively studied in the nervous system 
where it is important in synaptic morphology, function, vesicle 
mobilization, and recycling (17–20). Similarly, in secretory cells 
such as gonadotropes, an intact actin cytoskeleton is important 
in the regulated release of vesicular hormones and the replen-
ishment of these vesicles with reserve vesicles (21–23). Thus, 
gonadotrope network organization and plasticity is essential 
to the optimization of proper reproductive function. In this 
review, we will highlight gonadotrope population networks and 
organization, GnRH-mediated actin reorganization events, and 
functionally linking these events with mitogen-activated pro-
tein kinase (MAPK) activation and subsequent gonadotropin 
secretion.

GOnADOTROPe DeveLOPMenT  
AnD ORGAniZATiOn

The anterior pituitary is a complex endocrine gland that secretes 
multiple hormones to control homeostasis, growth, lactation, and 
reproduction. It is composed of five distinct endocrine cell types: 
gonadotropes, thyrotropes, corticotropes, somatotropes, and lac-
totropes (24). During murine development, organogenesis of the 
pituitary commences at embryonic day (e) 9.0 with a focal dorsal 
invagination of somatic oral ectoderm (Rathke’s pouch) to form 
the anterior and intermediate lobes (25). Lineage commitment 
and differentiation of pituitary cells initiates at e12.5 in a sequen-
tial manner and are orchestrated by combinatorial expression of 
cell type-specific transcription factors, epigenetic modifications, 
and cell–cell interactions (24, 26, 27). Gonadotrope cells are the 
last of the anterior pituitary cell lineages to undergo terminal 
differentiation with expression of the Lhb transcript occurring 
on e16.5, then Fshb on e17.5. Gonadotropes begin to become 
clustered and are localized to the central mediolateral region by 
e18.5 (14, 24, 27).

During development, it has been suggested that organization 
of latter differentiating anterior pituitary endocrine cell types (i.e., 
gonadotropes) are directed by earlier developing endocrine cell 
types (14). Indeed, corticotropes, which have been detected in 
mice at e13.5, are thought to direct the differentiation and cluster-
ing of gonadotropes (14, 15). The organization of the heterotypic 
network between gonadotropes and corticotropes occurs along 
the ventral surface of the anterior pituitary and is thought that 
these cells maintain direct contact throughout adulthood. In 
contrast, the homotypic network of gonadotropes develops along 
the dorsal surface of the anterior pituitary with little contact with 
other endocrine cell types (14). Interestingly, pituitaries that are 
deficient in corticotropes, Tpit−/− pituitaries display a decrease in 
gonadotrope cell volume and an increase in gonadotrope number 
due to an alternate cell fate adopted by their common precursor 
(28). A role for inter-connected networks was also highlighted 
between lactotropes and gonadotropes where ablation of gon-
adotropes resulted in modifications of lactotrope development 
and organization (29). Thus, network inter-connectivity between 
endocrine cell types may act as a scaffold that serves to organize 
and establish gonadotrope networks.

Postnatally, gonadotrope populations have been shown to be 
homogenously distributed throughout (lateral, caudal, rostral) 
the anterior pituitary when imaging whole-mount preparations of 
entire pituitary glands from prepubertal mice (30). However, fol-
lowing reproductive maturation, there is an increased density of 
gonadotropes in the rostral region relative to the lateral and ventral 
regions of the anterior pituitary. Furthermore, postpubertal gon-
adotrope populations have been characterized as being organized 
in string like clusters on both the ventral and dorsal surfaces of 
the anterior pituitary (14). Thus, plasticity within the gonadotrope 
population may be key for mounting appropriate responses to 
fluctuating hormone levels that occur as mice transition from 
pre- to postpuberty. Toward this end, priming gonadotropes with 
long-term estradiol treatment increased cellular plasticity and 
responsiveness to GnRH (30). Interestingly, the population of 
gonadotropes as a whole in sexually mature mice also display a 
high degree of plasticity depending on the physiological demands. 
This is demonstrated in lactating mice where gonadotropes reside 
in clusters in the lateral and ventral areas and not in the rostral 
region (30). Taken together, it is clear that gonadotrope networks 
exhibit a continuous plasticity that is pertinent to producing a 
proper response to changing physiological conditions.

GOnADOTROPe PLASTiCiTY IN VIVO

A primary goal of cellular secretory elements of endocrine glands 
is directed secretion of hormone into the blood stream. As such, 
endocrine cells are often embedded in connective tissue sur-
rounded by rich vascular networks. In particular, it has long been 
evident that gonadotrope cells display considerable surface area 
in close apposition to capillary endothelium (14, 30). Such an 
arrangement presumably allows for efficient and robust delivery 
of gonadotropin into the circulation. It is reasonable to predict 
that gonadotrope “priming” reflects multiple events that include 
enhanced GnRH responsiveness, mobilization of secretory 
granules and, perhaps, increased apposition of the basolateral 
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secretory surface area of gonadotropes. Collectively then, each 
of these would contribute to placing both gonadotropes and 
secretory granules in the most effective position for maximal 
release of hormone in response to GnRH stimulation. According 
to this paradigm, GnRH not only elicits exocytosis of secretory 
granules from gonadotropes but also contributes to organizing 
these cells in the most favorable spatial orientation to achieve 
the rapid and pronounced increase in circulating gonadotropin 
concentrations.

Gonadotropes are characterized by their ability to mount a 
cyclical pattern of hormone secretion, an event critical in the 
production of the preovulatory LH surge in females (2, 3, 31, 
32). Previous evidence suggests that these cells display both 
structural and functional plasticity throughout the female 
reproductive cycle (6, 9, 30). Under conditions of GnRH and, 
perhaps, steroid stimulation, morphological rearrangements of 
gonadotropes are elicited leading to the development of cellular 
processes or projections that extend toward capillary sinusoids. 
As early as 1985, Dr. Gwen Childs noted that GnRH stimulated 
gonadotropes developed processes during peak LH secretory 
episodes (7). Osamura and colleagues in Japan also demonstrated 
a similar phenomenon based on three dimensional reconstruc-
tions of pituitary vasculature and endocrine cells (33, 34). 
Previous live cell studies of ex vivo pituitary slices have shown 
that gonadotropes display a high degree of plasticity in the face of 
neuroendocrine stimulation (30, 35). GnRH exposure to murine 
pituitary slices leads cell processes and spatial repositioning of 
GFP-labeled gonadotropes using the ex vivo paradigm (35). The 
stimulation-dependent plasticity displayed by gonadotropes is 
thought to lead to increased association between gonadotropes 
and the microvasculature of the pituitary (30). Spatial positioning 
of gonadotropes reveals a much closer proximity to vasculature 
when compared to corticotropes (14), and there is evidence that 
gonadotropes can have a close spatial association with more than 
one blood vessel through multiple cellular projections. It should 
be noted that the GnRH-induced cellular projections extending 
toward blood vessels contain LH secretory granules, which may 
increase the secretory impact of gonadotropes (36).

Gonadotropin-releasing hormone-induced plasticity in 
gonadotropes creates transient cellular structures in the form 
of lamellipodia, membrane ruffles, and filopodia. The actin 
cytoskeleton supports these membrane remodeling events by 
assembling actin monomers to form filamentous actin (17, 37, 38).  
We have previously found that GnRH induces rapid dynamic 
engagement of the actin cytoskeleton within 1 min of treatment 
(35). However, pretreatment with a pharmacological disruptor 
of the actin cytoskeleton, jasplakinolide (Jas), blunts GnRH-
induced membrane remodeling events (35). Not only does the 
actin cytoskeleton play an important role in structural support 
and cell migration but it is also important for coordinating the 
trafficking and release of secretory vesicles in endocrine cells. We 
have previously shown that upon GnRH stimulation of primary 
murine gonadotrope cells, there is an approximate 3.5-fold 
increase in LH secretion (36). In contrast, GnRH stimulation to 
primary murine pituitary cells that are pretreated with Jas results 
in a significant reduction in LH secretion with no difference 
compared to vehicle (36). Thus, the GnRH-mediated plasticity is 

critical in maintaining physiological levels of LH and to spatially 
align responsive gonadotropes in close proximity to the pituitary 
vasculature for secretory events.

Gonadotrope plasticity is also pertinent in establishing an 
organized network throughout the anterior pituitary. Network 
organization is a critical aspect in the maintenance of reproduc-
tion as gonadotropes must orchestrate hormone secretory events 
in the face of changing physiological demands. In order for proper 
gonadotrope organization, it is thought that communication and 
interaction between endocrine and non-endocrine networks 
is an underlying mechanism. Specifically, folliculostellate cells 
predominantly communicate through gap junctions and parac-
rine and autocrine signaling with endocrine cells in the anterior 
pituitary (15, 39). Additionally, the number of gap junctions 
between folliculostellate cells and the altered morphological 
relationship with hormonal cells in the anterior pituitary also 
provides additional evidence of functional plasticity in this non-
hormonal cell type (40–42). Overall, the large-scale gonadotrope 
reorganization and interaction with non-hormonal cells may be 
the key in mounting a proper response to changing physiological 
conditions through connections with one or more blood vessels 
via their protrusions.

GOnADOTROPe SiGnALinG TO ACTin

Gonadotropin-releasing hormone actions are modulated 
through the GnRH receptor (GnRHR), a G-protein-coupled 
receptor found on the plasma membrane of gonadotropes. Upon 
activation, the GnRHR undergoes a conformational change that 
promotes the activation of the heterotrimeric G-proteins, spe-
cifically, Gαq/11. Activation of Gαq/11 activates phospholipase Cβ1, 
which hydrolyzes phosphatidylinositol-4,5-bisphosphate (PIP2) 
to generate inositol-1,4,5-triphosphate (IP3) and diacylglycerol 
(DAG). IP3 interaction with the IP3 receptor induces an elevation 
of intracellular Ca2+ from the endoplasmic reticulum, while DAG 
activates one or more isoforms of PKC (43, 44) that initiate Ca2+ 
influx through activation of voltage-gated L-type Ca2+ channels 
(VGCCs) (45–47). These upstream events underlie GnRH activa-
tion of extracellular signal-regulated kinase (ERK), the MAPK 
predominantly involved in regulating LHβ synthesis (48–50).

The actin cytoskeleton is a dense meshwork of protein polymers 
that undergoes cycles of assembly and disassembly and is regu-
lated by a number of actin-associated proteins (37). Cortactin is a 
filamentous actin-binding protein that acts as an actin-scaffolding 
protein to mediate actin polymerization (51, 52). Cortactin medi-
ates actin polymerization by binding actin-related protein (Arp) 2/3 
complex, a nucleating factor that serves to facilitate actin filament 
branching, through a three amino acid motif in its amino terminus 
(52). Furthermore, cortactin is a target of multiple tyrosine and 
serine/threonine kinases (53, 54). Our laboratory has previously 
shown that cortactin activation is required for GnRH-induced 
plasticity in αT3-1 gonadotropes, and that src-induced tyrosine 
phosphorylation of cortactin is key in facilitating association of 
Arp3 to effectively engage the actin cytoskeleton (36).

In addition to regulating actin polymerization, cortactin may 
also serve as a functional link between intracellular signaling cas-
cades and actin assembly events (53–55). Interestingly, disrupting 
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the actin cytoskeleton with Jas resulted in a loss of GnRH-induced 
ERK phosphorylation. However, GnRH-induced cell movement 
and projections is not inhibited by the MAPK kinase 1 inhibitor 
PD98059. Collectively suggesting that in αT3-1 cells, ERK activa-
tion is not a prerequisite for actin reorganization, but an intact 
actin cytoskeleton is required in the activation of ERK (35, 36). 
Consistent with this work, HEK293 cells expressing the GnRHR 
showed altered cellular morphology and cytoskeletal reorganiza-
tion following treatment with GnRH. In addition, activation of 
ERK was significantly reduced following cytoskeletal disruption 
(56). The precise mechanism of how actin engagement impacts 
ERK activation remains unclear although data suggests that PKC is 
working downstream of the actin cytoskeleton. In support of this, 
direct activation of PKC with phorbol 12-myristate 13-acetate was 
not sufficient to induce cytoskeletal remodeling suggesting that 
PKC is working downstream of the actin cytoskeleton to facilitate 
activation of ERK in gonadotropes. Recent work also supports 
the notion that actin reorganization may be important for GnRH-
mediated opening of L-type calcium channels (47)—the key 
calcium signal leading to ERK activation (46, 47).

Dynamin, a large GTPase and proline-rich domain-containing 
protein, possesses mechanochemical properties important in 
membrane remodeling events and fission (57). Many of these 
functions of dynamin appears to be associated with remodeling 
of the actin cytoskeleton (58); however, the mechanism by which 
it does so remains unclear. Overexpression of dominant-
negative dynamin mutant proteins impaired in hydrolyzing GTP 
(K44A) perturbs many F-actin-rich cellular structures (59–61). 
Consistent with this data, αT3-1 cells transfected with K44A 
resulted in a loss of GnRH-induced actin remodeling events (62). 
Our group also demonstrated that pharmacological inhibition of 
dynamin GTPase activity, using both dynasore and dyngo, not 
only perturbed GnRH-induced actin reorganization but also sig-
nificantly suppressed ERK activation (63). Thus, highlighting the 
importance of dynamin GTPase activity in actin reorganization 
and subsequent MAPK activation. In addition, the actin-binding 
protein, cortactin, not only enhances dynamin GTPase activity 
but also binds dynamin through its C-terminal SH3-domain (64). 
It is also well known that dynamin and cortactin colocalize in 
podosomes (65), membrane ruffles (66), and actin comets (67). 
Similarly, our group highlighted that upon GnRH stimulation, 
cortactin and dynamin are redistributed and become colocalized 
in areas indicative of high actin reorganization in αT3-1 cells (63). 
In addition to regulating Tyr phosphorylation of cortactin, there 
is also evidence that src induces Tyr phosphorylation of dynamin 
(62, 68). Thus, GnRH-induced gonadotrope plasticity may be 
modulated through the interaction of dynamin and cortactin to 
effectively engage the actin cytoskeleton to subsequently regulate 
PKC activation, VGCC opening, and ERK phosphorylation (47, 63).  
Clearly, the functionality and mechanism by which dynamin 
regulates gonadotrope plasticity warrants further investigation.

Although our group and others have started to unravel the 
signaling intermediates, GnRH utilizes to engage the actin 
cytoskeleton, identification of the full cohort of intermedi-
ates remains unclear. Recent work suggests that mammalian 
target of rapamycin (mTOR) also signals to the actin cytoskel-
eton to regulate cellular morphology both in  vitro and in  vivo  

(69, 70). mTOR is a serine/threonine protein kinase that 
forms two distinct complexes, mTORC1 and mTORC2. Our 
recent work using the LβT2 gonadotrope cell line establishes a 
specific role for mTORC2 in regulating membrane remodeling 
events (71). Pharmacological inhibition of mTORC2-blunted 
GnRH-mediated actin reorganization and similarly attenuated 
activation of ERK and LHβ gene expression (71). Although we 
have established an additional key intermediate linking GnRHR 
signaling to actin remodeling and ERK activation, the upstream 
signaling molecules regulating activation of mTORC2 in LβT2 
cells remains unknown. It has been previously demonstrated that 
the Rho GTPase, Rac1, binds to and activates mTORC2 and also 
facilitates localization to the plasma membrane (72). GnRH also 
modulates LβT2 cell morphology and migration through Rho 
family members (73). Thus, Rac1 is likely a strong candidate 
involved in mediating mTORC2 activation and subsequent 
engagement of the actin cytoskeleton in gonadotrope cells. 
Taken together, GnRH-mediated actin cytoskeletal reorganiza-
tion is controlled by multiple signaling networks to insure proper 
reproductive functioning.

COnCLUSiOn

The gonadotrope population displays profound plasticity that is pre-
sent during late stages of embryological development and continues 
into adulthood (14, 15). The plasticity in the population is not only 
dependent on fluctuating hormone levels and reproductive status 
but also other endocrine cellular networks acting as a guidance 
scaffold. However, the gonadotrope plasticity in an individual cell is 
dependent on an intact dynamic actin cytoskeleton that is directed 
by multiple signaling intermediates. The actin cytoskeleton in gon-
adotropes serves a critical function in maintaining competence of 
the hypothalamic–pituitary–gonadal axis and mammalian fertility. 
We highlighted that GnRH engages the actin cytoskeleton to not 
only increase cell movement but also causes membrane remodeling 
events in the form of membrane ruffles, filopodia, and lamellipodia 
to potentially gain increased access to the pituitary vasculature (30). 
We suggest that cortactin and dynamin form an actin remodeling 
protein complex that functionally links neuroendocrine stimulation 
and actin polymerization (35, 36, 63). We also underscore mTORC2 
as an additional signaling intermediate important in regulating 
membrane remodeling events and subsequent MAPK activation in 
gonadotropes (71). However, despite our data emphasizing gonado-
trope plasticity and associated proteins; the mechanisms by which 
actin polymerization results in activation of ERK upstream of PKC 
remains largely undefined.
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