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Abstract

Background: Luteimonas abyssi XH031', which was previously isolated from subseafloor environment of the South
Pacific Gyre (SPG), was an aerobic, gram-negative bacterium, and was identified to be a novel species of the genus
Luteimonas in the family of Xanthomonadaceae. The nutrients utilization and metabolic mechanisms of XH031"
indicate its plasticity. In view of the above characteristics, its genome was sequenced, and an in-depth analysis of
the XH031" genome was performed to elucidate its adaption to extreme ecological environment.

Results: Various macromolecules including polysaccharide, protein, lipid and DNA could be degraded at low
temperature by XH031" under laboratory conditions, and its degradation abilities to starch, gelatin and casein were
considerably strong. Genome sequence analysis indicated that XH031" possesses extensive enzyme-encoding genes
compared with four other Luteimonas strains. In addition, intricate systems (such as two-component regulatory
systems, secretion systems, etc.), which are often used by bacteria to modulate the interactions of bacteria with
their environments, were predicted in the genome of XH031". Genes encoding a choline-glycine betaine transporter and
99 extracellular peptidases featured with halophilicity were predicted in the genome, which might help the bacterium to
adapt to the salty marine environment. Moreover, there were many gene clusters in the genome encoding ATP-binding
cassette superfamily transporters, major facilitator superfamily transporters and cytochrome P450s that might function in
the process of various substrate transportation and metabolisms. Furthermore, drug resistance genes harbored in the
genome might signify that XH031" has evolved hereditary adaptation to toxic environment. Finally, the annotation of
metabolic pathways of the elements (such as carbon, nitrogen, sulfur, phosphor and iron) in the genome elucidated the
degradation of organic matter in the deep sediment of the SPG.

Conclusions: The genome analysis showed that XH031" had genetic advantages to adapt to subseafloor environment.
The material metabolism manifests that the strain may play an important ecological role in the biogeochemical cycle of
the SPG, and various cold-adapted extracelluar enzymes produced by the strain may have significant value in application.
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Background

Marine sediments, the extreme ecological environment
characterized by low light intensity, low temperature,
low oxygen concentration and high hydrostatic pressure
[1], account for more than two-thirds surface area of the
earth. Temperature, energy, and hydrostatic pressure
may be the primary challenges facing the subseafloor mi-
crobes. Some extreme microbes such as psychrophiles
and barophiles can grow at those conditions [2]. Micro-
organisms existing hundreds of meters below deep sea-
floor were first described by Parkes in 1994 [3], which
motivated a coordinated, systematic investigation of the
subseafloor biosphere. Distinct from organisms living in
the “light” biosphere, which are supported by the sun-
light energy, the energy of microbes living in the dark
biosphere mainly comes from chemical reactions [4].
The energy flux and circulation of materials in the dark
deep-sea biosphere have become a research frontier and
the focus of attention. In addition, the unique geochem-
ical features of deep-sea conditions indicate that subsea-
floor microbes might play significant roles in deep-sea
biogeochemical cycles [5].

Subseafloor sediments have accumulated about 10 bil-
lion tons of organic matter [6]. As decomposer of deep-
sea sediment, microbes are crucial in digesting organic
matter by means of secreting extracellular hydrolytic en-
zymes. Most importantly, these enzymes, which are psy-
chrophilic, display a high catalytic efficiency in
biogeochemical processes and have high potentials in
biotechnology and industry applications [7]. As additives
and biocatalysts, psychrophilic enzymes have also been
used in the process of chemical synthesis, that can not
only minimize unwanted side reactions which happen at
higher temperatures, but also preserve essential nutri-
tional value and flavor of food in foodstuff industries [8].
However, very few researches have been conducted re-
garding the psychrophilic enzymes secreted by microbes
from subseafloor sediments.

XHO031" was isolated from the depth of 18.1-18.2 m
below sea floor sediment (5074 meters below sea level) of
the South Pacific Gyre (SPG) at station U1370 (41.51° S
153. 6° W), where oxygen persists through the entire sedi-
ment sequence to depths of at least 75 meters below sea
floor [9]. The strain belongs to Gammaproteobacteria and
is a Gram-negative, strictly aerobic, yellow and rod-
shaped bacterium [10]. The strain has been found to se-
crete various exoenzymes when it was identified as a novel
species in our previous studies. Oxidase- and catalase- are
positive in XH031" and starch, gelatin, casein and Tween
20, 40 and 80 can also be digested by the strain. Addition-
ally, esterase (C4), valine arylamidase, trypsin, «o-
chymotrypsin, a-glucosidase, leucine arylamidase, alkaline
(and acid) phosphatase activities are present in this strain
[10]. Meanwhile, some gene clusters might have been
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developed by the strain to adapt to the deep sediments.
Genomic analysis of XH031" would indicate how various
nutrients are hydrolyzed and on what nutrients this strain
depends to live in the extreme environment. Moreover,
genome sequence data would be quite helpful in develop-
ing detailed hypothesis on the special role of Xanthomo-
nadaceae members in marine biogeochemical cycling.
Therefore, the whole genome of XH031" was sequenced
and analyzed, and the genomic comparison with other
two bacteria in the genus of Luteimonas was also per-
formed. The results provide the first picture of XH031" in
adaptation to the extreme environment of the subseafloor
sediment.

Results and discussion

Characteristics of XH031" and the abilities to digest various
macromolecules

After incubating 2—-3 days at 28 °C on marine agar 2216
(MA; Becton Dickinson), the strain formed circular
(1.0-1.5 mm in diameter), yellow-pigmented, convex,
and slightly transparent colonies. 16S rRNA gene se-
quence showed that it has 96.95 % similarity with Lutei-
monas aestuarii B9, and the data from polyphasic
analysis also indicated that the strain represents a novel
species of the genus Luteimonas [10].

By using different culture media, at least four kinds of
macromolecules could be degraded by XH031" at low
temperature under laboratory conditions. These macro-
molecules include polysaccharides (starch, cellulose and
chitin), proteins (gelatin and casein), lipids (Tween 20,
40 and 80) and DNA. The strain had stronger enzymatic
activities of amylase, gelatinase, cellulase and caseinase
than those of DNase, lipase and chitinase. In the poly-
saccharide hydrolyase family, it held higher hydrolytic
abilities to starch and cellulose than that of chitin.
Meanwhile, the protease (including gelatinase and casei-
nase) activities were equally high with that of amylase.
In addition, this bacterium showed catalase activity but
no lecithinase activity (Table 1).

Global genomic characteristics and comparison with other
Luteimonas genomes

The genome of XH031" is composed of 3,988,191 bp (one
chromosome with no plasmid) and the calculated G + C
content is 69.26 %, which is slightly lower than the experi-
mentally determined 70.2 % [10]. Six rRNA genes (includ-
ing two 5S rRNAs, two 16S rRNAs and two 23S rRNAs)
and 51 tRNA genes were identified in the genome. The
number of tandem repeat sequence is 272 and the total
length of tandem repeat sequence is 29,798 bp, which ac-
counts for 0.75 % of the whole genome. In addition, 21
microsatellite DNA and 191 minisatellite DNA were
found in the genome. The general genomic features of
XHO031T were described in [Additional file 1: Table S1].
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Table 1 Enzymatic activities detected in XH031"

Enzymes Temperature
28°C 16°C 4°C

Amylase -+ 4 T+
Gelatinase +++ ++++ +
Cellulase +++ + +
Caseinase 4+ +++ w
DNase + + _
Chitinase + + _
Tween 20 Lipase + + _
Tween 40 Lipase + + _
Tween 80 Lipase + W _
Lecithinase - - _
Catalase + + +

®W: Weak positive; +: Positive; +++ or ++++: Highly positive; —: Negative
Hydrolytic circle was used to detect enzymatic activities by the value of H/C.
H: diameter of hydrolytic circle (cm); C: diameter of colony (cm). Weak (W): 0 <
H/C<0.1; +: 0.1 <H/C<1.0; ++: 1.0 <H/C<2.0; +++: 2.0 <H/C<3.0;

++++: H/C>3.0

A total of 3,605 coding sequences (CDSs) were pre-
dicted within the genome of XH031". Among the pre-
dicted CDSs, 2,918 (80.9 %) genes were predicted in the
Kyoto Encyclopedia of Genes and Genomes pathway
(KEGG) database, 2,483 (68.9 %) genes were annotated
in the Cluster of Orthologous Groups of proteins (COG)
categories, while 3,056 (84.8 %), 1,418 (39.3 %) and 3,006
(83.4 %) genes were applicable within nonredundant
(NR), SwissProt and TrEMBL databases, respectively. At
the same time, 2,885 matched genes were predicted to
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be involved in 35 metabolic pathways predicted in the
KEGG database. Eighty-nine (2.3 %) and 297 (7.5 %)
matched genes are involved in encoding enzyme-families
and carbohydrate metabolism pathways (Fig. 1), respect-
ively. There were about 4.8 % genes involved in the
process of carbohydrate transport and metabolism ac-
cording to COG categories (Fig. 2). In addition to gen-
eral function prediction only (R) and function unknown
(S) genes, the largest proportion of orthologous genes
with certain function in XH031" were predicted to be
related with amino acid transport and metabolism
(7.8 %), which might enable the strain to degrade or-
ganic matter, especially for the decomposition of sedi-
mentary organic nitrogen in the oligotrophic sediment.

The genome of XH031" is larger than that of the three
other Luteimonas strains: L. mephitis DSM 12574
(AULNO1000000), Luteimonas sp. J29 (AWZR01000000),
Luteimonas sp. J16, and is smaller than that of L. huabeien-
sis HB2 (JAAN01000000). L. mephitis DSM 12574 was iso-
lated from experimental biofilters used for the waste gas
treatment of an animal-rendering plant, while HB2 was
isolated from water samples collected from stratum water
located in Huabei Oilfield, China. Additionally, XH031"
harbored the largest number of tRNA, rRNA and COG
clusters compared with four other strains. Basic features of
these genomes were given in Table 2 and their phylogen-
etic relationship on the basis of 16S rRNA gene sequence
was shown in Fig. 3. Phylogenetic tree indicated that
XHO031" formed a tight phylogenetic cluster with L. /ua-
beiensis HB2, while Luteimonas sp. J29 and J16 shared the
same 16S rRNA gene sequence.
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Fig. 2 Functional classification of ORFs encoded by XH031" genome based on the COG. In total, 3,951 ORFs with orthologs in the COG database
were classified and the percentages indicate the frequencies of ORFs with assigned functions
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Further comparison on the basis of all the predicted
protein sequences of XH031", DSM 12574 and HB2
were made (Fig. 4). Although these isolates belonged
to different species of genera Luteimonas, they shared
a great number of orthologous genes (1604), account-
ing for about 47.8 %, 46.7 % and 56.3 % of all genes
of XH031", HB2 and DSM 12574, respectively. There
were more common genes between XH031" and HB2
(597) than those between XHO031T and DSM 12574
(136). COG categories were also compared among the
genomes of XHO031%, HB2 and DSM 12574 (Fig. 4,
the pie charts), and the results showed that transla-
tion/ribosomal structure (J), energy production and
conversion (C), amino acid transport and metabolism
(E) and cell wall/membrane/envelope biogenesis (M)
were highly conserved among genomes of the three

strains. Although HB2 harbors more specific genes
(1,093, 31.8 %) than XHO031" (1,020, 30.4 %) and
DSM 12574 (968, 33.9 %), the functions of the spe-
cific genes are categories of general function predic-
tion only (R) and function unknown (S). Meanwhile,
XHO031" harbors slightly higher proportion of specific
genes which belong to inorganic ion transport and
metabolism (P), cell wall/membrane/envelope biogen-
esis (M), transcription (K) and carbohydrate transport
and metabolism (G) than the other two strains.
Among them, specific genes of transcription (K) in
XHO031" genome took a larger proportion (9.1 %) than
others. More transcriptional regulators in the genome
of XH031" might help the strain to develop sophisti-
cated systems to regulate gene expression accurately
and thus adapt to the adverse extreme environment.

Table 2 Genome features of XH031" and other Luteimonas genomes

Labyssi XH031" L.huabeiensis HB2

L.mephitis DSM 12574 Luteimonas sp. 129 Luteimonas sp. J16

Genome size (bp) 3,988,191 4295921
G+ C content (%) 69.26 716

CDS length 3,549,861 3,862,454
tRNA number 51 45

rRNA number 6 3

Gene number 3,605 3,778
COG cluster number 2447 1,647

3416011 3,401,613 3,419,099
68.5 719 71.76
3,028,522 3,083,695 3,066,469
45 44 45

3 3 3

2,658 2,667 3,170
1,469 1,566 1,532
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Fig. 3 Phylogenetic tree of XH031" and other Luteimonas strains based on 165 rRNA gene. Tree was produced by neighbor-joining method with
1000 bootstrap replications. The sequence alignment and phylogenetic calculations were performed with MEGA 5.0

Lutei phitis (NR_025304)

Metabolic features oriented with physiological functions
Central metabolism

According to KEGG pathway classification (Fig. 1), 1,553
matched genes were predicted to participate in the me-
tabolism of XH031". Among the genes participated in
the metabolism, 24.0 % were involved in amino acid me-
tabolism, 19.1 %, 10.6 %, 7.6 %, 7.3 %, 5.7 % and 8.0 %
genes were involved in carbohydrate, energy, nucleotide,
lipid, enzyme and xenobiotics biodegradation metabol-
ism, respectively. All these metabolism-associated genes
in XHO31" ensure its survival advantage in harsh marine
environment.

For central carbohydrate metabolism, XH031" genome
harbors a full set of genes that encoded essential enzymes
to carry out Embden-Meyerhof-Parnas pathway. Interest-
ingly, hexokinase is absent, but is replaced by three glucoki-
nases (GL001731, GL003323 and GL003530) in the
genome of XHO031". In microorganisms, glucokinase and
permease genes can offer an alternative or supplemental
way for glucose entrying into glycolysis [11]. In addition, all
the enzymes involved in tricarboxylic/citricacid cycle
(CAC) and hexose monophosphate (HMP) pathways are
present. Genes for D-galacturonate and D-glucuronate hy-
drolysis are also found in the genome (Additional file 2:
Table S2). Isocitrate lyase (ICL; GL002375 and GL003473)
and malate synthase (MS; GL003472), which are the two
key enzymes in glyoxylate cycle, are harbored in the gen-
ome of XH031". ICL and MS might be utilized to catalyze
pyruvate and acetic acid to synthesize C,-dicarboxylate to
ensure essential metabolism of the strain. Therefore, glyox-
ylate cycle as a replenishment pathway might play an im-
portant role in the CAC metabolism pathway. These
versatile metabolism pathways allow the strain to sur-
vive in the extreme environment. However, Entner-
Doudoroff (ED) alternate pathway is missing because
2-keto-3-deoxy-6-phosphogluconate aldolas and 6-
phosphogluconatedehydratase, the two characteristic
enzymes of ED pathway, are absent in XH031".

Nutrients metabolisms

Metabolic pathways of diverse monosaccharides, disac-
charides and aminosugars were presented in XH031"
genome, which revealed the capability of the strain

utilizing carbohydrates. For example, N-acetylglucosa-
mine-6-phosphate deacetylase (NagA), the key enzyme
of utilizing the amino sugar N-acetylglucosamine as well
as genes of utilizing monosaccharides including ribose,
L-fucose and mannose, were predicted in the genome of
XH031". Meanwhile, XH031" harbors five predicted
glucosidases (2 beta- and 3 alpha-), six xylanases, one
alpha-galactosidase and three xylosidases that enable the
strain to degrade carbohydrates.

XHO031" has more predicted genes of peptidases, li-
pases and esterases than those of the other four strains
(Table 3). Gelatin (collagen) is an important part of the
sedimentary organic nitrogen (SON) and high molecular
weight dissolved organic nitrogen that is abundant in
the deep sea [12, 13]. Extracellular proteases (gelatinase
and caseinase) produced by XHO031" indicate that this
strain might play significant role in degradation of SON.
Meantime, 203 peptidases, 6 chitinases and 4 DNases
encoding genes were predicted in the genome, agreeing
with the experimental results that XH031" could de-
grade casein, lipids, gelatin and DNA (Table 1).

Among the 203 predicted peptidases of XH031", 99 of
which have signal peptides. Additionally, there are two
chitinases and one amylase with signal peptides. Ninty-
nine peptidases with signal peptides of XH031" were al-
lotted to six families in the MEROPS database [14]:
serine peptidase (53), metallopeptidase (33), threonine
(3), cysteine (3), glutamic acid (1) and aspartic acid pep-
tidases (1), and the remaining were unknown catalytic
types. Serine peptidases and metallopeptidases with sig-
nal peptides account for 87 % of all extracellular pepti-
dases, coincident with the report that extracellular
peptidases of seafloor sedimentary bacteria are mainly
serine proteases and metalloproteases families [13]. Vari-
ous extracellular peptidases harbored by XH031" reveal
that the strain might have remarkable ability to degrade
a variety of peptides and proteins from its surroundings,
which play a major role in the degradation of SON.

XHO031" contains all the predicted genes required
for fatty acid biosynthesis and oxidation. Polar lipids
including phosphatidylethanolamine (PE), phosphati-
dylglycerol (PG), diphosphatidylglycerol (DPG) and
some unknown phospholipid (PL) have been
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Fig. 4 Comparison of specific and core genes among XH031", DSM 12574 and HB2. The Venn diagram shows the number of orthologous and
specific gene clusters among each strain, and the pie charts show the relative abundance compared to all COG categories of the orthologous

experimentally identified in this strain [10]. In
addition, there are four lysophospholipases, five carb-
oxyl esterases, two phospholipases Al, two GDSL,
two GDXG family lipases, six thioesterase family pro-
teins and three metallophosphoesterase family pro-
teins encoding genes that have been predicted in the
genome of XH031". These enzymes might be used by
XHO031" to decompose organic matter containing car-
bon, phosphorus and sulphur.

Elements (N, S and Fe) metabolisms

Nitrogen recycling is very important within the marine
system and the main flow of nitrogen is from organic ni-
trogen to nitrate (or nitrite) to ammonium and back-
ward. Two predicted nitrite reductases (GL000686,
GLO000805) might have the responsibility for the change
of nitrite to ammonia in XHO031". One nitrite trans-
porter (GL003071) and one putative nitrate/nitrite re-
sponse responser (GL003071) in the genome of XH031"
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Table 3 The number of predicted enzymes of XH031" and four other strains of genus Luteimonas

Labyssi XH031" L.huabeiensis HB2

L.

mephitis DSM 12574 Luteimonas sp. 129 Luteimonas sp. J16

Histidine kinase 47 14 10 10 10
Peptidase 203 45 38 40 38
Glucosidase 5 1 1 1 6
Xylanase 6 2 0 2 2
Xylosidase 3 0 0 1 1
Alpha galactosidase 1 0 0 0 0
Betagalactosidase 0 1 0 1 1
Amylase 3 0 0 0 0
Chitinase 6 1 0 0 0
Other glycosidase 16 3 4 4 4
Lipase 24 3 3 3 3
Esterase 58 4 1 5 5
DNase 4 0 0 0 0
suggest that this strain might absorb nitrite from the  Transport systems

sediment when nitrite is available.

XH031" has one predicted sulfate transporter
(GL001999), one predicted sulfate/thiosulfate transporter
subunit (GL000105) and the corresponding permease
subunit (GL000106), which might transport sulfate ions
into the cells. In addition, one subunit of sulfate adeny-
lyltransferase (GLO00798) and one adenylylsulfate kinase
(GL000799) predicted in the genome might be utilized
to convert sulfate to adenylyl sulfate (APS) then to 3'-
phosphoadenylyl sulfate (PAPS). PAPS can be catalyzed
to sulfite by PAPS reductase. Meanwhile, two sulfite re-
ductase gene clusters (GL000796, GL000797) along with
flavoprotein and hemoprotein in XH031" might be used
to deoxidize sulfite to hydrogen sulfide (H,S). Two pre-
dicted phosphoadenosine phosphosulphate reductases
(GL000795, GL000798) might take part in the sulfate me-
tabolism. Three predicted cysteine synthases (GL000496,
GL000676 and GL000790) from the genome might be uti-
lized to convert H,S to cysteine which may enter amino
acid or other metabolism pathways.

Iron is one of the mineral elements that are indispens-
able for microbial growth [15]. It functions mainly in the
reduction of ribonucleotides, the transport, storage and
activation of oxygen, and other electron transport
through a series of electron carriers that span a range of
redox potential. The primary form of ferrum (Fe) is the
trivalent Fe (III) in organism, and ferric reductases are
usually soluble flavin reductases in prokaryotes [16].
Usually, the reduction of ferric iron in organism is very
important during cellular iron uptake. XH031" has one
predicted ferric reductase (GL000225) and two units of
ferredoxin nitrite reductases (GL000686, GL000805),
which might catalyze ferric to dissoluble ferrous iron
and enter the iron metabolism pathways.

Protein secretion plays pivotal roles in regulating the in-
teractions of microbes with their living environments
[17]. Six types of secretion system (Type I-VI), as well as
the two-arginine translocation (Tat) and Sec-SRP export
systems are present in the genome of XHO031". Except
for pathogenicity, recent studies indicate that type III se-
cretion system (T3SS) may be used for the formation of
biofilm to cope with complicated conditions [18].

Sixteen predicted translocase proteins were found in the
genome of XH031" including Tat translocon (TatABCE),
Sec translocon (SecABDEFGY), YidC and YajC translo-
con. In addition, one DNA translocase (GL001427) and
three ATP/ADP translocases (GL000181, GL000837 and
GL002697) were also found in the genome.

A total of 172 genes were predicted to encode transporter
proteins in the genome of XHO031", including 85 ATP-
binding cassette (ABC) superfamily transporters, 49 TonB-
dependent receptors and 38 MEFS gene clusters. ABC-type
transporters are widespread among microbes and could
transport various substrates across intra- and extracellular
membranes, including sugars, mono- and oligosaccharides,
metabolic products, peptides, cations, toxins, drugs, vita-
mins and amino acids [19]. Some of the ABC transporters
have developed an important function of multidrug resist-
ance (MDR). Zunongwangia profunda SM-A87 isolated
from deep-sea sediment have been reported to have 40
ABC-type transporters [20]. Both XHO031T and SM-A87
verified the report that ABC transporters are very rich in
deep-sea microbes [21]. Moreover, three amino acid perme-
ases (AAPs) and four amino acid transporters (AATs) were
predicted in XH031". AAPs and AATs may contribute to
absorbing amino acids and oligopeptides. Further, molyb-
date, tungstate, lipopolysaccharides and lipoproteins might
be transported through the transport systems of XH031".
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In addition, a large number of genes which encode xy-
lose, glucose/galactose, lactose, fucose and arabinose
carbohydrate permease were predicted in the genome.
Permeases and transporters existing in XHO031" might
help the strain to uptake nutrients in the intricate eco-
logic niche of the deep-sea sediment.

As one of the constituents of cell-surface signaling sys-
tems (CSS), TonB-dependent outer-membrane proteins
make a difference in sensing extracellular signals of bac-
teria and transmitting them into the cytoplasm [22].
Three TonB protein genes (GL001351, GL002531 and
GL003254) and 50 TonB-dependent receptors were
found in the genome of XH031", which is in accordance
with the previous report that TonB proteins are fewer
than TonB receptors [23]. The genome contains 10 pre-
dicted TonB-dependent siderophore receptors, which
might be involved in the course of iron transporting into
cells to be available for metabolic functions [24].
Furthermore, 35 putative outer membrane protein genes
were predicted in the genome, and most of them encode
peptidoglycan-associated proteins. These features of the
secretory system and transporters reveal that XH031"
might have a tight relationship with its environments.

Substrates utilization

Polysaccharide is one of the main sources of carbon and
energy. In the extreme marine environment, polysaccha-
rides can help microorganisms condense organic ingre-
dients, absorb metal ions, and form biofilms [25, 26].
XHO031" genome contains 28 predicted glycosyltransfer-
ases, of which eight belong to family I and ten belong to
family II. Glycosyltransferases can help the strain to
synthesize oligosaccharides, disaccharides and polysac-
charides [27]. According to the COG database, genes en-
coding carbohydrate transport and metabolism account
for 4.78 % of the whole genome (Fig. 2), which indicates
that XH031" has many predicted enzymes involved in
degrading oligo- and polysaccharides. The genome also
contains three genes encoding exopolysaccharide bio-
synthesis protein, including one capsular exopolysac-
charide family protein, to conduct the synthesis of
exopolysaccharides.

XHO031" showed many kinds of polysaccharide hy-
drolysis activities such as amylase, cellulase, and chiti-
nase at low temperature by experiments (Table 1). It had
more predicted polysaccharide hydrolysis enzymes than
four other strains of genus Luteimonas (Table 3). Three
annotated amylase genes, six chitinase genes and one
cellulase gene were predicted in the genome, which were
in agreement with our experimental results that it had
the ability to degrade starch, chitin and cellulose
(Table 1). The other four strains of genus Luteimonas
had no amylase and chitinase coding genes, with the
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exception that L.huabeiensis HB2 had just one chitinase
coding gene.

Based on COG annotation, XH031" harbors some
predicted enzymes to metabolize DNA and RNA, which
included tatD DNase family protein (EC 3.1.21), Mg-
dependent DNase L and ATP-dependent exonuclease V
(alpha and beta subunits). Since DNA is plentiful in
seafloor sediments, more than half of them can be de-
graded rapidly by DNase [28]. The hydrolysate of DNA
can provide carbon and phosphorus sources which may
participate in the process of biogeochemical cycle.
Thus, a variety of extracellular enzymes presented in
sedimentary bacteria elucidates their important eco-
logical role in SON degradation. The versatility of
metabolic pathways enables the strain to utilize various
nutrients much easier in the seafloor sediment.

Defensive mechanisms

Two L-lactate/malate dehydrogenases, cytochrome bd
ubiquinol oxidase subunits I (GL000066), subunits II
(GL000067) and cytochrome ¢ oxidase were predicted in
the genome of XHO031". Acting as the terminal oxidases
of the electron transfer chains of many bacteria, the
cytochrome oxidases have high oxygen affinity and can
impede the toxity of reactive oxygen [29]. The existence
of these enzymes in XH031" might help it to survive in
the microaerobic and toxic environment of the deep sea.
In addition, the strain harbors predicted Superoxide Dis-
mutases (SOD, EC1.15.1.1), which include Fe/Mn
family-SOD, Mn/Zn family-SOD, Fe-SOD, Mn-SOD and
Cu/Zn SOD. Bacterial SOD nullified the bactericidal ac-
tivity of O3 by changing it into H,O,, while catalase
might be used to dislodge the toxic effects of H,O, [30].
As anti-oxidant enzymes, SOD and catalase helped the
strain to antagonize oxygen toxicity, which formed a part
of defensive mechanism in the adverse environment.
However, bacteriorhodopsin and retinal genes involved
in photophosphorylation are absent in XH031" genome,
consistent with the dark seafloor conditions in which the
isolate survived.

XHO031" possesses type IV pilus assembly mechanism
including a cluster of 18 pili genes. The pilA gene en-
coding the major structure of pili is present in the gen-
ome, while pilR and pilS genes are absent. PilR and pilS
mutants were reported to defense against the infection
of phage Cf and be susceptible to Cf infection, respect-
ively [31]. The loss of pilR and pilS may inhibit the inva-
sion of phage, which provides XHO031" survival
advantages in such disadvantageous environment.

Two-component regulatory system (TCRS)

Two-component regulatory system (TCRS), as one of the
transmembrane signal transduction mechanisms, is utilized
by bacteria to sense and respond to environmental
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conditions. Typical TCRS are composed of a transmem-
brane dimeric sensor histidine kinase (HK) and acytoplas-
mic cognate response regulator (RR) [32—35], which are
involved in regulating various biological processes, such as
chemotaxis, osmolarity, bacteriolysis and differentiation
[36-38]. HKs and other predicted enzymes of XHO031T
compared with other four strains were shown in Table 3.
The number of two-component proteins varies greatly
among bacteria. Generally, strains that are more adaptive
in their environment usually have larger number of TCRS
genes [39]. For example, Pseudomonas syringae pv. tomato
DC3000 is a widespread bacterial plant pathogen that
needs a sophisticated array of TCRS proteins to deal with
diverse plant hosts and other adverse environmental condi-
tions, which has been reported to have the largest number
of TCRS genes with 69 HKs and 95 RRs [39]. XHO0317T has
47 HKs and 68 RRs involved in TCRS according to gen-
omic analysis. Among these proteins, 12 predicted proteins
contain both the HK and RR domains, each of these differ-
ent pairs dedicating to unique signals to tackle intricate liv-
ing conditions.

In TCRS, bacterial signal-transducing protein NtrB
and bacterial enhancer-binding protein NtrC are the two
important transcription regulator proteins of bacteria
[40, 41]. Phosphorylation can be utilized to transfer in-
formation between regulator proteins each other.
Through phosphorylation relay between regulator pro-
teins, some transcription promoters can be activated to
regulate hydrostatic pressure in deep-sea bacteria. For
example, 6>* promoter, as one of the o factors, has been
found to have a function in pressure-regulated transcrip-
tion in Shewanella violacea, which is a deep-sea piezo-
philic bacterium [42]. XHO031" contains one NtrB
(GL003435) and six NtrC (GL000281, GL001446,
GL002570, GL002571, GL003435 and GL003436) genes
which might play a part in regulating hydrostatic pres-
sure to enable XHO031" to live in the deep-sea
environment.

Chemotaxis

A total of 36 ORFs are related to chemotaxis (Additional
file 3: Table S3), of which six encode methyl-accepting
chemotaxis proteins (MCPs). Fifty ORFs were found to
encode chemosensory transducer proteins and 17 ORFs
encoded adenylyl cyclase MCPs. All the predicted MCPs
in XH031" have transmembrane domains, and some
conserved domains of MCPs have been identified. The
plasmid achromobacter secretion (PAS) domain was
found in three MCPs (GL000612, GL001443 and
GL001692). The PAS domain was reported to have been
as an aerotaxis receptor to interact with adenylyl cyclase
MCP for signal transduction in E. coli [43], and the PAS
domain predicted in XH031" might contribute to the
adaption to microaerobic conditions.
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Enzymes associated with secondary metabolite biosynthesis
Multidomain modular non-ribosomalpeptide synthetase
(NRPS) and polyketide synthase (PKS) are the two im-
portant enzymes detected in bacteria and fungi to func-
tion in biosynthesis of secondary metabolite [44—46].
According to COG database, there are two putative
NRPS modules with related protein genes, and 26
polyketide synthase (PKS) gene clusters in XHO031"
[Additional file 4: Table S4]. The two NRPS predicted
in XHO031" genome were found to encode PKS, which
might involve in putative secondary metabolism path-
ways. Polyketide is the secondary metabolite including
pigment, antibiotic and mycotoxin produced by PKS
in microbes or plants [47-50]. In addition, ABC and
MES transporters have the function in synthesizing
toxic compounds, such as fungicides and other anti-
mycotic agents [51]. It was reported that MES trans-
porters can regulate the production of penicillin and
heighten the sensibility of Penicillium chrysogenum to
phenylacetic acid [52]. Meanwhile, four drug resistance
transporters and one tetracycline resistance protein
(TetA) of MFS were found to be encoded in the genome
of XHO031, signifying that XH031" might evolve heredi-
tary adaptation to live in toxic environment.

Cytochrome P450s (CP450s) consist of heme-thiolate
proteins that ubiquitously distribute in all domains of
life and play critical roles in various substrate metabo-
lisms. These substrates include not only endogenous
chemicals such as steroids but also xenobiotic complexes
including drugs, pesticides and environmental contami-
nants [53]. XH031T has metabolism related genes of
cytochrome P450s, and four of them are glutathione s-
transferases which might participate in glutathione me-
tabolism or xenobiotics biodegradation and metabolism
[Additional file 4: Table S4]. The existence of CP450s in
XHO031" might be essential for the synthesis of the pri-
mary or secondary metabolites.

Tolerance to salinity and low temperature

Choline-glycine betaine transporter has been reported to
exist in many marine microbes such as Z. profunda SM-
A87 and Gramellaforsetii KT0803 to adapt to salty mar-
ine environment [20]. Glycine betaine is a preferential
protective solute to regulate osmotic balance in hypersa-
line environments [54]. And choline as precursor can be
converted to glycine betaine by using a two-step oxida-
tion process. XH031" is a halophile that has an optimum
growth rate at 0-3 % (w/v) NaCl salinity, with 0-11 %
(w/v) NaCl salinity range in nutrient broth (NB; Difco)
[10]. One choline-glycine betaine transporter predicted
in XHO031" genome reveals that the strain might use or-
ganic compatible solutes to keep its cellular osmotic bal-
ance. In addition, trehalose is a stress metabolite to
function in desiccation tolerance, cold resistance and
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also osmoregulation in bacteria. XH031" contains two
predicted trehalose-6-phosphate synthases implying that
the strain might have the capability to synthesize trehal-
ose to antagonize adverse conditions.

To maintain the fluidity of membrane is a crucial chal-
lenge for the microbes in survival at low temperature.
The amount of unsaturated fatty acids can affect the flu-
idity of the membrane. XH031" harbors three predicted
type-1I fatty acid desaturase genes, which might dedicate
to synthesize unsaturated fatty acids and thus to fit for
cold temperature. Traces of unsaturated fatty acids such
as Cy5. 1 wbc and C;7.; w8c have been detected in the
previous study [10], consistent with the above predic-
tion. Additionally, XHO031" harbors seven predicted cold
shock proteins (CSPs) including four CspA family pro-
teins, and 12 predicted heat shock proteins (HSPs) with
one HslU, DnaK, GrpE, HtpX, HsIR respectively and two
DnaJ chaperones. Both CSPs and HSPs help the strain to
cope with various stresses such as osmotic shock, starva-
tion, heavy metals, ultraviolet radiation or low
temperature [55, 56].

Special structures

As a special structure of Gram-negative bacterium, cap-
sule is a key role in the process of nutrient conservation,
adsorption, information recognition, ion interchange,
etc. Two capsular polysaccharide biosynthesis proteins
predicted in the genome indicate that the strain might
have the ability to form capsule.

Flagellum is the most effective cellular structure to
conduct taxis (chemotaxis, phototaxis, oxygentaxis or
magntotaxis) for bacteria. XH031" has a polar flagellum
observed by transmission electron microscope [10], and
genome analysis showed that there were 37 genes in-
volved in the assembly of flagellum of XH031". As two
transcriptional activator proteins, FIhC and FIhD have
been reported to affect cell division in Erwinia caroto-
vora subsp. carotovora and E. coli respectively [57, 58].
FIhC and FIhD were not predicted in XH031" genome.
The absence of FIhCD may help bacterial strains keep a
stable division rate to respond immediately to environ-
mental changes thus providing competitive advantages
[59]. A biofilm is a community of microbes formed by
multiple bacterial species which can resist various envir-
onmental stresses of ocean environments such as os-
motic shock, desiccation, pH shifts or ultraviolet
radiation [60]. Six biofilm-forming related genes were
found in XH031" genome, showing that XH031" might
form biofilm to counteract detrimental surroundings.

Genetic advantages to adapt to subseafloor sediments

Analysis of the complete genome of XH031" revealed
the significant genetic advantages of this strain to adapt
to subseafloor sediments. Living at depth exceeding
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5,000 m in the deep sea, the strain has to face the two
main challenges of low temperature and high hydrostatic
pressure. Three type-I fatty acid desaturase genes har-
bored in XH031" genome may help the strain to keep
the membrane fluidity which is a common modulatory
mode for cells growing at low temperature. XH031" has
been detected to contain 6.5 % of C,s.; w7c and/or Cig.;
w6c, while L. mephitis DSM 125747 only has trace
amount (1 %) of it in our previous study [10]. Addition-
ally, TCRS involved in cold signal transduction are con-
tained in XHO031" genome manifesting that XH031" has
genetic advantage to survive at low temperature. The
change of membrane fluidity may affect membrane-
associated functions, such as transportation of nutrients.
It has been reported that the Cq,; fatty acid increases in
relative abundance and the Ci4 decreases proportion-
ally in marine psychrophilic vibrio during starvation,
which results in an increase of membrane fluidity and
enables essential nutrients to be transported across cel-
lular membrane [61]. Delong and Yayanos found that
the ratio of unsaturated to saturated fatty acids as well
as long-chained ployunsaturated fatty acids of a barophi-
lic marine bacterium increase with the increasing of
hydrostatic pressure [62, 63], resulting in a raise of
membrane fluidity to transport substances across cellu-
lar membranes. Therefore, hydrostatic pressure may
function in the substances transportation and the mech-
anism merits further investigation.

Many HSPs and molecular chaperones that may be
utilized to antagonize the high hydrostatic pressure were
predicted in XHO031". As major promoters of HSPs
genes, DnaK/DnaJ can be activated under pressure
shock, which might help to fold the newly synthesized
proteins and prevent misfolding of partially denatured
proteins [64, 65], and GrpE may function as a support
factor of DnaK/DnaJ] [66]. HSPs and other molecular
chaperones are responsible for protecting protein or
membrane stability, but how they protect cells from high
pressure is still unclear.

In addition to low temperature and high pressure, os-
motic stress is another property of the deep sea that
XHO031" must cope with. Extracellular peptidases usually
have more aspartic acids, a higher proportion of acidic
residues and a lower predicted soelectric point (PI) than
the intracellular peptidases. Since low PI and plenty of
acidic residues are the two key features of halophilic
proteins [67], the extracellular peptidase is more halo-
philic than the intracellular one. Harboring so many
extracellular peptidases (99), XH031" has the ability to
live in the saline conditions.

Moreover, various predicted extracellular enzymes (in-
cluding polysaccharide hydrolytic enzymes, peptidases,
etc.) in the genome of XH031" were detected under la-
boratory conditions. Sedimentary carbohydrate has been
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reported to be degraded more easily by four enzymes
(i.e., lipase, a-amylase, f-glucosidase and peptidase) than
by only one enzyme [53]. Compared with other four spe-
cies of Luteimonas, XH031" contains more polysacchar-
ide hydrolytic enzymes, peptidases, lipases and esterases
(Table 3), which indicates that XH031" might convert
sedimentary bio-polymeric materials into smaller mole-
cules easily and make the absorption of multiple nutri-
ents efficient under the ultra-oligotrophic extreme
conditions. At the same time, the oxidation of organic
compounds will release maximum amounts of energy
through aerobic respiration, while toxic substances such
as peroxide or superoxide produced in the aerobic me-
tabolism as by-products can be degraded by catalase,
peroxidase or SOD in XH031".

Furthermore, numerous ABC transporters and TonB-
dependent receptors were predicted in the genome of
XHO031". ABC transporters, which are also called traffic
ATPases, participate in nutrients uptake and preserva-
tion of osmotic homeostasis [68], while TonB-dependent
receptors can help large substrate molecules like sidero-
phores and vitamins to be transported into the cell. They
may endow the strain a capability to transport various
nutrients with high efficiency.

Conclusions

The whole genome sequence of XH031" exhibited valu-
able insight in its common and more specific character-
istics of deep-sea bacteria, such as numerous ABC-type
transporters and extracellular peptidases. In addition,
possessing intricate systems (TCRS, CSS, secretion sys-
tem and substrate transport system etc.) in the genome,
the strain has developed hereditary adaptation to thrive
in the sediment environment of the SPG. Moreover,
comparative analysis with other bacteria of Luteimonas
demonstrated that the strain had a greater number of
exoenzymes to survive in the extreme conditions. Exten-
sive hydrolytic abilities and metabolic versatility unrav-
eled the adaptive strategies and the significant ecological
role of the strain in the biogeochemical cycle. Further-
more, the property to export a variety of cold-adapted
enzymes provides an extensive application prospect in
industry.

Methods

Bacterial strain and DNA extraction

XHO031" was previously isolated from subseafloor sedi-
ment of the South Pacific Gyre during the Integrated
Ocean Drilling Program (IODP) Expedition 329, and
was identified to be Luteimonas abyssi sp. Nov [10].
Genomic DNA was extracted according to standard
methods [69]. The quality of the genomic DNA was de-
tected by DNA gel electrophoresis and it showed a pure
high molecular weight DNA.
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Screening of extracellular enzymes of strain XH031"
Extracellular polysaccharide hydrolases including amyl-
ase, cellulase and chitinase were detected on different
medium at 28 °C, 16 °C and 4 °C, respectively. These
media were marine agar 2216 agar (MA; Becton Dickin-
son) supplemented with soluble starch (0.2 %, w/v), car-
boxymethyl cellulose (1 %, w/v) and 1/10 (v/v) chitin
colloid (10 %, w/v) [70]. The size of the transparent zone
on selective media showed the strength of the enzyme
activities. Casein and gelatin cultural media [70] were
used to screen extracellular protease. DNase activity was
detected by using DNA test agar medium (Qingdao
Hope Bio-technology Co., Ltd) according to the manu-
facturer’s instruction, and 1 M HCI solution was flooded
to detect the DNase activity. The lipase screening
medium was MA plates supplemented with 0.05 % (V/
V) Tween 20, Tween 40 or Tween 80, respectively.
When opaque halo appeared on selective medium plate,
the strain was positive. Lecithinase medium was used to
detect whether the strain can degrade phosphatidylcho-
line. The medium was MA supplemented with 0.1 liter
yolk solution (10 %, v/v) per 1 liter medium [70]. The
appearance of milky halo indicated the strain was posi-
tive of lecithinase activity. Additionally, H,O, was used
to detect catalase activity.

Genome sequencing, annotation and analysis

The draft genome of strain XH031" was sequenced
using Illumina HiSeq2000 with a 500-bp paired-end
shotgun sequencing which achieved about 42.69-fold
coverage. SOAP denovo assembler software was applied
to assemble these reads (http://sourceforge.net/projects/
soapdenovo?2/files/SOAPdenovo2/).The draft genome
contained 36 contigs (>500 bp), ranging from 218 bp to
946,316 bp (the N50 and NO90 contig sizes were
370,530 bp and 85,099 bp, respectively) which could be
assembled into 6 scaffolds. The size of scaffolds was
521 bp to 3,965,915 bp (the N50 and N90 scaffold sizes
were all 3,965,915 bp). A total of 3,605 genes were con-
tained in the genome and the total length of genes was
3,549,861 bp which made up 89.01 % of the genome. Six
rRNA operons and 51 tRNA operons were predicted by
using tRNAscan and RNAmmer software. There were
no genomic island and prophage genes according to all
these annotation databases. Tandem Repeat (TR) was
predicted by using Tandem Repeat Finder (http://tan-
dem.bu.edu/trf/trfhtml) [71]. Putative CDSs were
detected with Glimmer 3.02 (http://www.cbcb.umd.edu/
software/glimmer/) [72, 73]. RNAmmer software (ver-
sion 1.2) was used to predicted rRNAs (http://
www.cbs.dtu.dk/services/RNAmmer/) [74]. tRNAScan-
SE (version 1.23) (http://gtrnadb.ucsc.edu/) was used to
identify tRNAs [75]. SRNAs were obtained by Rfam (ver-
sion 10.1) (http://rfam.sanger.ac.uk/) [76]. Function
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annotation was performed through KEGG (http://www.ge-
nome.jp/kegg/) [77-79], COG (http://www.ncbi.nlm.nih.-
gov/COG/) [80, 81], Swiss-Prot, TrEMBL (http://
www.uniprot.org/) and Gene Ontology (GO) (http://
www.geneontology.org/) [82], NCBI nonredundant (NR)
protein databases (http://www.ncbinlm.nih.gov/RefSeq/)
[83]. The prediction of signal peptides (SP) was performed
using SignalP version 3.0 [84]. Clustal W [85] and Mega 5.0
[86] were used to perform the sequence alignment and
phylogenetic analysis.

Comparative genomics

The complete genome sequences and the general gen-
ome features of L. huabeiensis HB2, Luteimonas sp. J16,
Luteimonas sp. J29 and L. mephitis DSM 12574 were re-
trieved from NCBI database. The predicted enzymes of
the above four strains were obtained from IMG (http://
img jgi.doe.gov/). Proteins from XH031" were compared
with these of L. huabeiensis HB2 and L. mephitis DSM
12574 by using BLASTP with an E-value cutoff of le-5.
Orthologous proteins to be defined as reciprocal best hit
proteins were calculated by the BLAST algorithm, with
the minimum 40 % identity and 70 % coverage [59]. Pro-
teins without orthologs were regarded as specific pro-
teins. The COG function category was analyzed by
seeking all predicted proteins against COG database ac-
cording to the BLASTP.

Nucleotide sequence accession number

This Whole Genome Shotgun project has been deposited
at DDBJ/EMBL/GenBank under the accession
JUKHO00000000. The version described in this paper is
version JUKH01000000.
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