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Abstract: The perioperative use of regional anesthesia and local anesthetics is part of almost every
anesthesiologist’s daily clinical practice. Retrospective analyses and results from experimental studies
pointed towards a potential beneficial effect of the local anesthetics regarding outcome—i.e., overall
and/or recurrence-free survival—in patients undergoing cancer surgery. The perioperative period,
where the anesthesiologist is responsible for the patients, might be crucial for the further course of
the disease, as circulating tumor cells (shed from the primary tumor into the patient’s bloodstream)
might form new micro-metastases independent of complete tumor removal. Due to their strong
anti-inflammatory properties, local anesthetics might have a certain impact on these circulating
tumor cells, either via direct or indirect measures, for example via blunting the inflammatory stress
response as induced by the surgical stimulus. This narrative review highlights the foundation of
these principles, features recent experimental and clinical data and provides an outlook regarding
current and potential future research activities.
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1. Introduction

Local anesthetics (LA) are well-known substances and a mainstay of anesthesia since
the introduction of cocaine in 1884. There is a huge amount of evidence supporting the
perioperative use of local anesthetics, either administered systemically or used as part
of regional anesthesia techniques for a variety of reasons: the drugs and their associated
analgesic procedures are effective regarding pain relief due to their ability to block the
voltage-gated sodium channel, thus inhibiting nerve cell depolarization [1,2], they might
reduce postoperative nausea and vomiting (PONV) [3,4], and they might pave the way to
an early and enhanced recovery after surgery [5]. Additionally, by using local anesthetics
and regional anesthesia, opioid consumption might be reduced, thus leading to improved
postoperative bowel function, less constipation, and early restoration of oral nutrition [6].
Moreover, a reduction of postoperative morbidity by dampening the surgical stress re-
sponse, which could be correlated with perioperative myocardial infarction, pulmonary
infection, and thromboembolism, might be another strong advantage of the use of regional
anesthesia and LA [7,8].

However, there is more to it. The hypothesis that regional anesthesia and LA might
be able to influence cancer recurrence was generated from retrospective studies, and over
the last couple of years, several experimental studies—both in vivo and in vitro—have
pointed out the importance of the anti-inflammatory and even anti-cancer/anti-metastatic
effects of LA in this context and have provided insight into potential mechanisms by which
the LA might be able to exert their impact on malignant cells. This narrative review will
highlight and summarize the current knowledge regarding these potentially beneficial
anti-metastatic effects of the LA in order to increase the acceptance of this concept among
our fellow anesthesiologists.
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2. Background Concept: Circulating Tumor Cells

Since 1869, when Thomas Ashworth described malignant cells in the peripheral blood
of a patient with metastatic subcutaneous thoraco-abdominal tumors [9], this particular cell
population, shed from the primary tumor into the bloodstream, was termed as circulating
tumor cells (CTCs) and has gained a lot of scientific attention over the years and decades.
During surgical procedures, CTCs are released into bloodstream [10] and—depending
on the tumor entity—prognosis might be negatively correlated with their quantity [11].
Techniques for precise detection and characterization have evolved more in recent years [12].
Some of these techniques are based on the detection of epithelial surface markers such as
EpCAM, which is highly expressed, for example, by breast cancer cells [13]. Other methods,
such as immunocytochemical characterization, which separate CTCs by their distinct
morphological features, are also available [14]. As already mentioned, the detection of CTCs
in an individual patient’s blood as well as the number of CTCs has been correlated with
metastasis, disease status [15], and clinical outcome, for example, in HER-2-positive breast
cancer [16] or thyroid cancer [17]. However, before becoming CTCs, the epithelial tumor
cells have to undergo epithelial-to-mesenchymal transition (EMT) to be able to migrate,
invade their surroundings, and finally enter the circulation [18]. After exiting the blood
stream at a remote location, the cells might then become epithelial again (mesenchymal-to-
epithelial transition, MET) and form new metastatic sites [19] (see also Figure 1).

Figure 1. Schematic illustration of metastasis formation by circulating tumor cell. CTC = circulating tumor cells; EMT =
epithelial-to-mesenchymal transition; MET = mesenchymal-to-epithelial transition [20].

It could even be assumed that CTCs might be able to form new metastatic sites
even after complete tumor excision by so-called tumor self-seeding. Kim and colleagues
investigated the ability of malignant human breast, colon, and melanoma cells to seed
a tumor from circulation in mouse model, showing that self-seeding might only require
minimal adaptation of CTCs to the recipient microenvironment [21]. The authors could
further demonstrate that CTCs sense attraction signals from the tumor and are, furthermore,
able to extravasate and invade the surrounding tissue in response to these signals [21].

Although controversially discussed, several clinical trials were able to show that CTCs
might serve as a potential prognostic marker, for example, in colorectal cancer [22,23]. Even
the use of CTCs in monitoring tumor response to systemic therapy is widely examined.
Hou and colleagues analyzed 97 blood samples from patients suffering from small-cell lung
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cancer using the earlier mentioned EpCAM-based immunomagnetic detection method [24].
This particular study demonstrated the importance of both baseline CTC numbers as well
as of the changes in CTC numbers after chemotherapy as prognostic factors in patients
with small-cell lung cancer [24].

It has been demonstrated that CTCs are increasingly released during the crucial peri-
operative period [25], the short stretch of time in which the anesthesiologist is responsible
for the patient. Increasing evidence suggests that this period might be crucial regarding
the long-term outcome after cancer surgery, possibly—among other factors—due to a
significant inflammatory response, which then impairs the ability of the innate immune
system to detect and destroy CTCs [26,27]. The innate immune system, especially the
natural killer (NK) cell activity (NKA), is significantly unstable under stress [28]. Under
normal circumstances, NK cells are mainly responsible for a phenomenon called immune
surveillance, which also includes the detection of CTCs [26]. A significant loss of NKA
after abdominal surgery, for example, leads to a compromised resistance to tumor devel-
opment in rats; Ben-Eliyahu and colleagues were able to show an increased lung tumor
retention in rats, which received surgery prior to inoculation with radiolabeled tumor cells
in comparison to the unstressed control group [29]. An attenuation of this stress response,
e.g., by local anesthetics, might therefore, in turn, be able to decrease the ability of CTCs to
metastasize [26,30].

3. Background Concept: Inflammatory Stress Response
3.1. Overview

Appropriate activation of the innate and adaptive immune response requires a bal-
anced and sufficient cytokine production. Under normal circumstances, i.e., in the absence
of stress, the immune system is able to avoid a hyper-inflammatory response [31,32]. The
current SARS-CoV-2 pandemic has again impressively demonstrated how a dysregulation
of cytokine production with excessive high circulating levels of these biological messen-
gers can cause systemic collateral damage leading to multi-organ-failure [31]. However,
not only pathogens or autoimmune disorders are able to trigger the so-called cytokine
storm [31]. Cancer and its therapies, such as surgery or chemotherapy, may as well cause
an immune cell hyperactivity [33–35]. As already described, the perioperative period as
a vulnerable time has become a focus of attention in clinical and experimental studies
over the past decades—especially in cancer surgery [36]. Surgical trauma inevitably leads
to an inflammatory response [37], unbalancing pro- and anti-inflammatory factors [38],
ultimately leading to additional immunosuppression [39], which in turn might then favor
the CTCs to escape their immune surveillance [26] (Figure 2). Tissue trauma causes the
release of vasoactive meditators (e.g., leukotrienes and histamine) and plasma components
evoking an inflammatory microenvironment and systemic acute phase reaction with the
release of pro-inflammatory cytokines like interleukin (IL)-1, IL-6 [40,41], IL-8, and tumor
necrosis factor α (TNF-α) [42]. These cytokines, however, have distinct effects; high levels
of IL-6, for example, lead to the initiation of signal transduction processes, ultimately
causing endothelial hyperpermeability and hypotension, an effect that might be important
during the pathogenesis of acute lung injury and pulmonary edema [43]. TNF-α not only
induces fever and augments systemic inflammation, but also regulates parts of the immune
system, e.g., by inducing inflammatory signaling events involving nuclear factor kappa B
(NF-kB) [44]. The activation of this transcription factor leads to an increased expression of
pro-inflammatory genes, thus further enhancing other inflammatory processes [45].
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Figure 2. Schematic illustration of processes leading to perioperative inflammation and immune suppression (surgical
stress response) and possible inhibition by local anesthetics (shown as ⊥). LA = local anesthetics; IL = interleukin;
TNFα = tumor necrosis factor α; ICAM-1 = intercellular adhesion molecule 1; MHC = major histocompatability complex;
NK cell = natural killer cell. Modified after [46].

3.2. Inflammation, the Inflammatory Response, and Cancer

Inflammation affects disease progression. Virchow hypothesized in 1863 that injury
and chronic inflammation might serve as the origin of tissue proliferation and cancer.
Although the exact mechanisms are still not fully understood, there is increasing evidence
that an inflammatory environment enhances proliferation, survival, migration, and an-
giogenesis of tumor cells and that misguided immune cell recruitment might be related
with cancer recurrence [47]. Kim and colleagues were able to provide evidence for the
assumption that IL-6 and IL-8 might be tumor-derived attraction signals [21]. High IL-6
serum-levels are associated with poor prognosis for lung, breast, and colon cancer [48–50].
TNF-α-induced NF-kB activation seems to play a major role during these pathophysi-
ologic circumstances as well [51]; upregulated NF-kB transcription might be a critical
link between inflammation and cancer, as inactivation of the NF-kB pathway attenuates
the formation of inflammation-associated tumors in a colitis-associated cancer model in
mice [52]. Another important molecule in terms of cancer and inflammation is intercellular
adhesion molecule 1 (ICAM-1). It usually serves as a counter receptor for the neutrophil
cluster of differentiation (CD) 11b/CD18 on the surface of endothelial cells, but is also
expressed by many cancer cell types [53,54]. A tight adherence of neutrophils and tumor
cells via the tumor-expressed ICAM-1 activates the neutrophils, weakens the endothelial
barrier, and enhances the extravasation of CTCs [55]. Vascular hyper-permeability and
endothelial barrier function is mainly regulated by Src tyrosine protein kinase (Src) [56],
which also plays an important role for the metastatic potential of tumor cells, due to its
ability to regulate, e.g., tumor cell migration and invasion by various signal transduction
pathways, including TNF-α [57].

3.3. Anti-Inflammatory Effects of Local Anesthetics

Local anesthetics, especially the amide local anesthetics, have strong anti-inflammatory
properties, which have also been studied extensively [42]. Lidocaine and ropivacaine, for
example, were demonstrated to be able to preserve endothelial barrier function by an atten-
uation of TNF-α-induced Src activation in vitro, e.g., in pulmonary endothelial cells [58],
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which also leads to reduced phosphorylation of ICAM-1 and diminished neutrophil adhe-
sion [58]. Two further studies reported a beneficial effect of ropivacaine on experimental
lung injury in rats and mice, which was also due to a reduction in Src activation as well as in
ICAM-1 expression [59,60]. A decreased phosphorylation of IkB by lidocaine and, therefore,
an inhibition of NF-kB activation as observed by Lang and colleagues in epithelial cells
in vitro underlines the anti-inflammatory effects of the LA once more [61]. It could also be
shown that lidocaine and bupivacaine, another amide LA, are able to inhibit the release of
leukotriene B4, IL-1 [62], and IL-8 [63] in vitro. Lan and colleagues could even demonstrate
an attenuation of IL-1β, IL-6, and IL-8 by lidocaine in activated human umbilical vein en-
dothelial cells after TNF-α stimulation under ischemia/reperfusion-injury conditions [64].
Similar results could be observed in a recent clinical study evaluating patients undergoing
laparoscopic cholecystectomy; patients who had received an intravenous lidocaine infusion
had decreased postoperative serum levels of IL-1, IL-6, interferon γ. and TNF-α when
compared to an infusion with normal saline [65].

Most of these effects were observed at clinically relevant, non-toxic concentrations
of the drugs. However, although these concentrations might also be reached in plasma
via absorption of LA after a regional anesthesia procedure, the experimental data suggest
that the systemic use of the drugs might be favorable in terms of the anti-inflammatory
properties of the drugs [2,58].

4. Local Anesthetics and Cancer–What Do We Know So Far?
4.1. Historic Clinical Data

Several retrospective studies reported a possible beneficial effect of LA on the outcome,
i.e., the overall or recurrence-free survival of patients after tumor surgery. One of the first
reports from Exadaktylos and colleagues retrospectively analyzed metastasis-free-survival
of 129 women with breast cancer undergoing mastectomy and axillary clearance [66].
Patients treated with paravertebral anesthesia plus general anesthesia had a significant
advantage regarding their recurrence-free survival at 12 months compared to women
who received general anesthesia only (94% vs. 82%) [66]. This particular study gave rise
to several further retrospective analyses. Biki and colleagues focused their analysis on
prostate cancer; they compared patients with invasive prostatic carcinoma undergoing
surgery between 1994 and 2003 receiving either general anesthesia plus epidural analgesia
or general anesthesia with opioid analgesia only and were able to show that the epidural
group had an 57% lower risk of recurrence compared with general anesthesia and opioids,
even after adjusting the groups towards tumor size, Gleason Score. and prostate-specific
antigene [67]. However, after these first encouraging results, there were also several studies
reporting no effect; Cummings and colleagues, for example, could not show a difference
between patients receiving an epidural analgesia in addition to general anesthesia or not
regarding recurrence or survival after resection of gastric cancer [68]. A large randomized
trial by Myles and colleagues also concluded that there was no association by the use
of epidural anesthesia and cancer-free survival in 503 patients undergoing abdominal
surgery [69]. It has to be noted, however, that this particular study was not powered to
detect a difference regarding cancer recurrence. Additionally, most studies evaluated cancer
recurrence after regional anesthesia. In accordance with the pre-clinical data outlined above,
it might be reasonable to hypothesize that the systemic use and application of the LA might
be able to exert more pronounced effects.

Several theories regarding possible mechanisms of the observed potential beneficial
effects of the LA results have been stated:

(1) It is well-known that the use of regional anesthesia and LA might lower the use of
opioids or volatile anesthetics during general anesthesia [70]. Several studies also
suggested that these drugs and anesthetics might promote cancer progression and
reduce long-term survival [71], maybe by promoting tumor angiogenesis [72,73].
However, a more recent experimental study evaluating the effect of opioids in a
mouse model of breast cancer surgery reported no negative impact of morphine on
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the progression of the disease [74]. Negative effects of opioids and volatile anesthetics
on the NKA have also been observed and might, therefore, also be important in this
regard [30,75]. The reduction in opioids and volatile anesthetics was one of the first
possible explanations of the observed beneficial clinical effects of the perioperative
use of LA in patients undergoing surgery. However, given the more recent evidence—
including studies evaluating the effects of sevoflurane, e.g., in breast cancer [76]—this
hypothesis is more likely to be incorrect.

(2) As outlined above, there is strong evidence that LA and regional anesthesia might
be able to reduce perioperative inflammation and the stress response as induced
by surgery [65,77], and also preserve NKA as one of the most important factors
for the detection and destruction of CTCs [78,79]. This systemic effect of the LA
might, therefore, have a possible positive impact on perioperative processes lead-
ing to new micro-metastases, e.g., by CTCs, thus allowing a prolonged (at least
recurrence-free) survival.

(3) As the theories regarding the indirect effects, induced by a reduction of potentially
harmful circumstances as presented above are not able to completely explain the
observed effects in cancer patients, several—mostly experimental—studies examined
potential direct effects of LA on malignant cells and CTCs as outlined in the next
chapter of this article.

4.2. First Experimental Data

After the first encouraging results from the retrospective analyses had been published,
researchers tried to provide evidence for potential beneficial (direct) effects on malignant
cells and CTCs. Most of these observed effects were—at least in part—due to the already
mentioned anti-inflammatory effects of LA and suggested that a systemic administration
would be much more important than a local effect at the site of injection. Lidocaine and
ropivacaine, for example, inhibited TNF-α-induced Src activation independent of sodium
channel blockade in non-small cell lung cancer cells in vitro, thus also reducing tumor
cell migration [80]. Further downstream of these signaling events, it appears that both
drugs are also be able to inhibit TNF-α-induced signaling events involving focal adhesion
kinase and caveolin-1, which explained an also observed reduction in the release of matrix-
metalloproteinase (MMP)-9 [81]. MMPs are enzymes utilized by the tumor cells to break
up the extracellular matrix in order to invade the surrounding tissue [82]. The inhibition
of these signal transduction events ultimately leads to a reduction in the TNF-α-induced
invasiveness of the tumor cells in this study [81].

Tumor growth and apoptosis might also be affected by LA. Treatment of human breast
cancer cell lines MCF-7 and MCF-10A with lidocaine and bupivacaine in clinically relevant
concentrations revealed an inhibition of cell viability and an induction of apoptosis-related
proteins in vitro [83]. Potentially beneficial actions were examined in various different
tumors. Xuan and colleagues investigated that bupivacaine possesses an anti-metastatic
and anti-proliferative effect on human ovarian and prostate cancer cell lines [84]. There is
also experimental data underlining that LA can inhibit the growth of human hepatocellular
carcinoma cells [85]. Both lidocaine and ropivacaine can affect the expression of cell-cycle-
related genes and induce apoptosis in these cells [85]. It has also been demonstrated that
LA might slow down cancer cell growth in vitro and induce cell death at the same time
in pancreatic [86] and colon cancer cells [87]. The drugs might be able to directly induce
apoptosis via the mitochondrial and p38 mitogen-activate protein kinase MAP-kinase-
dependent pathways as Lu and colleagues found out after incubating a neuroblastoma cell
line with bupivacaine [88].

5. Recent and Current Data
5.1. Experimental Studies

Several research groups have put a lot of effort into a further exploration of these
initially presented mechanisms by which the LA might exert their beneficial effects.
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Most interestingly, newer evidence points towards a possible synergistic effect of the
LA together with chemotherapy; in vitro, lidocaine appears to have an enhancing effect on
the chemotoxicity of cisplatin via the demethylation of retinoic acid receptor beta 2 (RARβ2)
located in the cell nucleus and tumor suppressor Ras association domain-containing protein
1 (RASSF1) in breast cancer cells [89]. Following these in vitro results, it has subsequently
also been shown that lidocaine alone can reduce the tumor size of hepatocellular carcinoma
and, moreover, it enhances the sensitivity of the tumor cells against cisplatin in an in vivo
murine model [90]. A study from Freeman and colleagues also found a potential metastasis-
inhibiting effect of perioperative systemic lidocaine combined with cisplatin in another
murine model of triple negative breast cancer with a Stage IV metastatic burden [91]. In
this study, 50 animals were treated with cisplatin only or with cisplatin plus lidocaine at
clinically relevant concentrations (bolus of 1.5 mg/kg plus 2 mg/kg x h−1 during surgery)
and lidocaine treatment lead to fewer metastatic lesions in the animals’ lungs [91]. The
same scientific research group published a study in 2019 focusing on a four-branched
murine 4T1 model on the influence of lidocaine, methylprednisolone, and propofol in
combination with general anesthesia with sevoflurane on pulmonary metastasis after
14 days after surgery of the primary breast cancer tumor [92]. Here, the hepatic metastasis
load was equal in all groups. However, lidocaine and propofol each reduced the post-
mortem in vitro cultured pulmonary metastasis colonies [92]. These findings are consistent
with another study comparing the influence of lidocaine in dependency of sevoflurane
compared to ketamine/xylazine anesthesia on pulmonary metastasis in a 4T1 mouse model
of breast cancer [93]. Of note, the administration of high dose steroids in the 2019 study
by Freeman and colleagues [92] even enhanced the pulmonary metastasis burden. The
authors hypothesized that these results might be due to a facilitation of the dispersion and
metastasis of CTCs by the drug [94].

In another recent study by Chamaraux-Tran and colleagues, the effect of a lidocaine
treatment was tested in breast cancer cells in vitro and in an in vivo mouse model [95]. In
accordance with earlier results, there was a direct cytotoxic effect on the tumor cells. The
triple-negative cell lines especially were more sensitive to the treatment with lidocaine.
Lidocaine had an inhibitory effect on breast cancer cell migration with a predominant
effect (again) on the triple-negative cell line. In the mouse experiments, the lidocaine
group showed a delay in the development of peritoneal carcinomatosis after injection
of MDA-MB-231 cells and repeated injections of the drug into the peritoneal cavity. Of
note, no intravenous administration has been examined, but instead, the authors claim a
potential beneficial peritoneal administration (in a dose already used for shoulder pain
after laparoscopy) to also use the direct cytotoxic effects of lidocaine in case of peritoneal
dissemination of tumor cells [95].

Following the data showing that LA are able to induce apoptosis in (for example breast
and thyroid) cancer cells by activating caspases and regulating the mitogen-activated pro-
tein kinase signaling pathway [96], the apoptosis-inducing effect has also been shown
in hepatocellular cancer cells [90]. In a recent study also in lung cancer cells, a poten-
tially beneficial effect of lidocaine treatment on cell viability and proliferation has been
shown [97]. Here, the authors hypothesized that the mechanism of the lidocaine-anti-
tumor-effect might be based on an up-regulation of miR-539 microRNA, which inhibits
signaling of the epidermal growth factor receptor (EGFR) through direct binding, thus
regulating downstream signaling via extracellular-signal regulated kinase (ERK) and the
phosphatidyl-inositol 3-kinases (PI3K)/AKT pathway [97]. The activation of the latter has
been found in melanoma cells [98,99] and is known to be blocked by amide LA [58,80].
Another recent study evaluating cell viability of breast cancer cells also found an inhibitory
effect of different LA [100]. However, most of the effects in this particular study were only
observed at concentrations ten times higher than the clinically relevant plasma concentra-
tion. The observed cell alterations might, therefore, be considered to be due to toxic rather
than pro-apoptotic effects of the LA in this setting.
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The inhibiting effect of lidocaine on Src tyrosine protein kinase (Src) [101–103] indicates
that systemically administered local anesthetics might potentially be able to inhibit cancer
cell metastasis [26,96,104,105]. A recent study by Wall and colleagues in 2019 supported
this hypothesis by measuring the metastatic burden in lung and liver as well as MMP-2
levels in dependency of the treatment with lidocaine and the Src-inhibitor bosutinib in
a 4T1 mouse tumor model [106]. Bosutinib neutralized the protecting effect of lidocaine
regarding lung metastasis and levels of MMP-2. However, the authors claimed that it
remains unclear if the findings are due to a direct Src effect or another pathway [106].

It has also been shown that lidocaine at clinically relevant doses might have demethy-
lating effects on breast cancer cell lines [107,108], while at the same time enhancing the
effect of the deoxycytidine analog chemotherapeutic decitabine [108]. Besides the thera-
peutic effects in acute myeloid leukemia, decitabine is a possible agent in the therapy of
breast cancer as well and could be used as a second line therapy in chemotherapy-resistant
patients [109,110]. Thus—at least based on the results of these experimental studies—the
additional administration of intravenous lidocaine might be able to enhance its therapeutic
effect and might be of interest for future studies.

Most of the outlined anti-inflammatory and potentially anti-metastatic effects of the
LA are mediated independent of sodium channel blockade [80]. However, it has also been
observed that lidocaine (in clinically relevant doses) is able to block cancer-associated
and prognostic relevant variants of voltage-activated sodium channels like Nav1.5 [111].
Interestingly, a recent animal study detected chronic electric activity in solid breast tumor
masses in mice [112]. This activity is supposedly of neuronal origin, as it has a connection
to the parasympathetic nervous system, which disrupts on injection of lidocaine and
chemical sympathectomy [112]. With these neuronal networks, systemically administered
lidocaine could, therefore, have a new target in its first described mechanism of action,
thus disrupting the neuronal membrane potential and neural activity during tumor growth
and metastasis.

5.2. Clinical Studies–Systemic Use of Local Anesthetics

Clinical studies examining the short- and long-term effects of (amide) LA on perioper-
ative pain und its chronification continued to increase in number over the past few years.
The authors of a recently updated Cochrane analysis, however, were uncertain whether
intravenous lidocaine might have beneficial effects on postoperative pain, nausea, or opioid
consumption [113].

As the use of intravenous lidocaine is still considered an off-label use in most countries,
concerns regarding the risk of intoxications after systemic administration of the drug have
been raised repeatedly and were also addressed in a very recent consensus paper [114]; here,
the authors provided evidence for the fact that intravenous lidocaine might be considered
safe, if clinicians followed several precautions, including correct dosage and a 24 h limit
for the duration of the drug infusion, as well as close post-operative monitoring [114],
the latter possibly bearing the potential to collide with enhanced recovery after surgery
(ERAS) programs, in which intravenous lidocaine has already been established as part of
the multimodal analgesic regimen [115,116].

Due to these concerns raised by clinicians, the perioperative systemic use of LA
should always be a “risk-benefit” decision depending on the individual patient, her/his
co-morbidities, the surgical procedure, and, of course, the available evidence [114].

5.3. Clinical Studies–Local Anesthetics and Cancer Recurrence

A very recent RCT compared the rate of breast cancer recurrence after curative surgery
in more than 2000 patients receiving either a propofol-based anesthesia in combination with
a paravertebral nerve block or a general anesthesia with sevoflurane and an opioid-based
analgesic regimen. Unfortunately, there was no difference regarding the primary outcome
between these two groups [117]. However, this particular and well-executed study once
more underlines the importance for more clinical studies evaluating the potential impact
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of the systemic use of the drugs in terms of their anti-inflammatory or even anti-metastatic
effects. These prospective clinical trials focusing on the outcome of patients undergoing can-
cer surgery with or without systemic administration of LA are still lacking. Not only, since
the 2014 Cochrane review [118], are we aware of the conflicting—and not very convincing—
data regarding the impact of the perioperative use of regional anesthesia in cancer patients,
but some studies have found an effect in some types of cancer [66,67,119–122], and some
studies have not [69,123–126] or only in certain cancers in subpopulations [127]. In various
articles, the urgent need for clinical trials evaluating the effects of perioperative, systemic
administration of LA, e.g., of lidocaine during the perioperative period of cancer patients,
is stressed [26,128,129].

Following this call, there are several clinical trials currently investigating a potentially
beneficial effect of lidocaine in cancer patients. However, unfortunately, some of these
studies do not focus on the anti-metastatic effect of systemically administered lidocaine
and follow a more clinical approach and outcome protocol (NCT00938171, NCT03824808,
NCT03530033) or do not compare LA vs. placebo (NCT03134430). Some of the studies
are still promising though; a currently recruiting double blinded randomized placebo-
controlled clinical trial (NCT04048278) is designed to compare the effects of lidocaine
infusions on Src activity in CTCs during the perioperative period in patients undergoing
robotic surgery for pancreatic cancer. Another clinical trial (NCT04162535) is recruiting
40 patients and focuses on the secondary end points on the survival comparison of intra-
venous lidocaine in combination with a propofol-based total intravenous anesthesia (TIVA)
compared to standard treatment (TIVA without lidocaine or sevoflurane-based general
anesthesia) in colorectal cancer surgery. Planned in much larger (n = 450) dimensions is a
quadruple-blinded and randomized clinical trial (NCT02786329) in colorectal cancer, again
comparing intravenous lidocaine in combination with TIVA, sevoflurane versus TIVA, or
sevoflurane alone. This particular trial mainly aims to investigate survival after surgery
and the incidence of recurrence within the first 5 years following surgery. A clinical trial
(NCT02839668) in breast cancer patients has already completed the recruitment phase
and investigates the use of intravenous lidocaine (1.5 mg/kg) in addition to either TIVA
or sevoflurane. This study focuses on the levels of vascular endothelial growth factor A
(VEGF-A) and postoperative pain, as well as patients’ survival and VEGF-receptor density.

In addition, several clinical trials are planned and registered but currently not yet re-
cruiting, including the VAPOR-C trial (NCT04316013); here, the investigators are planning
to include a total of 5736 participants with colorectal or non-small cell lung cancer. The
four different treatment arms of the study will hopefully be able to assess the effect of the
choice of anesthetic (sevoflurane vs. propofol) and the impact of perioperative lidocaine
infusions (versus placebo).

6. Conclusions

Although a large amount of experimental evidence points towards a potential benefi-
cial effect of the perioperative use of regional anesthesia and local anesthetics—preferably
administered systemically—the exact role and impact of the use of these substances in
the setting of cancer surgery is still unclear, mostly due to the lack of clinical data coming
from randomized controlled trials. As several clinical trials evaluating the effect of local
anesthetics in patients undergoing cancer surgery are currently recruiting patients, we are
eagerly awaiting these results in order to answer this important research question in the
field of anesthesia.
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