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ABSTRACT

Comparative time series transcriptome analysis is a
powerful tool to study development, evolution, aging,
disease progression and cancer prognosis. We de-
velop TimeMeter, a statistical method and tool to as-
sess temporal gene expression similarity, and iden-
tify differentially progressing genes where one pat-
tern is more temporally advanced than the other.
We apply TimeMeter to several datasets, and show
that TimeMeter is capable of characterizing compli-
cated temporal gene expression associations. Inter-
estingly, we find: (i) the measurement of differen-
tial progression provides a novel feature in addi-
tion to pattern similarity that can characterize early
developmental divergence between two species; (ii)
genes exhibiting similar temporal patterns between
human and mouse during neural differentiation are
under strong negative (purifying) selection during
evolution; (iii) analysis of genes with similar tem-
poral patterns in mouse digit regeneration and ax-
olotl blastema differentiation reveals common gene
groups for appendage regeneration with potential im-
plications in regenerative medicine.

INTRODUCTION

With the advance of high throughput methods, such as
RNA-seq, the amount of time series gene expression data
has grown rapidly, providing an unprecedented opportu-
nity for comparative time series gene expression analysis.
Although many studies are aimed at identifying differen-
tially expressed genes (DEGs) (1,2) either between differ-
ent time points along a time series (3–5) or between two

conditions at the same time point (6,7), DEGs only signify
snapshots of each individual time point comparison, and do
not consider temporal dynamic change information. Hence
one of the fundamental problems in time series gene expres-
sion data analysis is how to characterize time series gene ex-
pression dynamic changes, and capture temporal pattern as-
sociations. Although several methods have been developed
to address this issue, they are mostly limited to either us-
ing correlation analysis by requiring gene expression val-
ues measured at the same time for both conditions (8), or
aiming at identifying linear associations (e.g. similar pat-
terns but patterns shifts overtime (‘time shift pattern’) (9–
11)). Emerging evidence suggests that the majority of simi-
lar gene expression patterns are far more complicated than
linearly associated patterns (12,13). For example, compar-
ing human embryonic stem (ES) cells and mouse epiblast
stem (EpiS) cells during neural differentiation, many genes
in mouse EpiS cells exhibit nonlinearly faster dynamical
changes when compared to human ES cells (13). The pat-
terns can be even more complicated if they are a mixture of
dynamical speed difference (e.g. faster or slower dynamical
changes), time shifts, and dissimilar patterns over time.

Comparing time series gene expression data from differ-
ent experiments requires computational methods that can
handle sequences of different length and sampling density.
Although studies using coarse-grained associations (sim-
plifying dynamical changes to a few features, such as ex-
pression peaks (14)) can potentially solve some of these
problems, and partially model complex temporal gene ex-
pression patterns, they may sacrifice temporal resolution.
Hence, there is a pressing need to develop computational
methods that allow the comparison of time series gene ex-
pression data with different length and sampling density,
and have the capability to characterize more complicated
temporal gene expression associations.
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In this study, we developed TimeMeter, a statistical
method and R package to assess temporal gene expression
pattern similarity, and identify differentially progressing
genes. TimeMeter uses the dynamic time warping (DTW)
algorithm (15) to align two temporal sequences. Previous
studies have shown that the DTW algorithm, which was
originally designed for speech recognition, can be used to
align gene pairs with nonlinearly related gene expression
patterns which are sampled with different length and den-
sity (11,16–20). However, there are two shortcomings of
using DTW to assess temporal similarity: (i) DTW gives
optimal matches between two given time series sequences,
regardless whether the temporal gene expression patterns
are similar or not. Even for dissimilar patterns or patterns
which are not comparable (e.g. one pattern only resembles
a small fraction of another pattern), DTW still can return
a best match by warping temporal sequences (10); (ii) when
the number of time points is small, the likelihood of align-
ment arising by chance is high. To solve these problems,
TimeMeter first post-processes a DTW alignment by trun-
cating certain start or end points based on alignment pat-
terns. This will result in a truncated alignment which repre-
sents the time frames from each time series that are compa-
rable. Then it calculates four measurements that jointly as-
sess gene pair temporal similarity: percentage of alignment
for (i) query and for (ii) reference, respectively; (iii) aligned
gene expression correlation; (iv) likelihood of alignment
arising by chance. These four novel metrics in TimeMeter
give temporal similarity assessments on different aspects,
and the joint requirement of these four metrics will give a
an assessment of the temporal pattern similarity.

For gene pairs with similar temporal patterns, TimeMeter
partitions the temporal associations into separate segments
via piecewise regression (21). The differential progression
between gene pairs is calculated by aggregation of progres-
sion difference in each segment.

The axolotl, which is an important tetrapod model for
research owing to its outstanding regenerative capabilities,
is often compared with Xenopus, a tetrapod species with
limited regenerative capabilities (22,23). These two species
have already developed many unique genomic features dur-
ing evolution (22,24). However, very little is known about
their transcriptomic conservation in early embryonic devel-
opment. In this study, we applied TimeMeter to two pub-
lished datasets (25,26) to compare early embryonic develop-
ment gene expression patterns (form stage 1 to stage 24) of
these two species. We identified genes with similar temporal
patterns (STP) between these two species in early embry-
onic development. Interestingly, we find a fraction of these
STP genes undergo different progressions (one pattern is
more advanced than the other in developmental progres-
sion from stage 1 to stage 24 which can be a result of dy-
namical speed differences, time shifts, or both), and they are
enriched in functional groups, such as neural development,
and smooth muscle cell proliferation. These results suggest
that the measurement of differential progression (DP) may
provide a novel feature that can characterize early develop-
mental divergence between two species.

We next re-analyzed our previous study for comparing
time series gene expressions of human embryonic stem (ES)
cells and mouse epiblast stem (EpiS) cells during neural dif-

ferentiation (13). We showed that TimeMeter significantly
outperformed our previous method (13) for detecting STP
genes. Further analysis suggests that these TimeMeter de-
tected STP genes are naturally selected (under strong nega-
tive selection) during evolution, if compared to genes with
dissimilar temporal patterns.

Finally, we used TimeMeter to detect STP genes between
mouse digit regeneration and axolotl blastema differenti-
ation. It is known that full appendage regeneration in the
axolotl is due to the formation and differentiation of a
heterogeneous pool of progenitor cells (blastema) at the
site of amputation (27). The regeneration capability in hu-
man and mouse is mostly relegated to digit tips (28). Al-
though studies suggest that blastema-like cells could be re-
sponsible for human/mouse limb regeneration (29), it is
still largely unknown whether the limb regeneration process
in human/mouse is similar to axolotl blastema differenti-
ation. In this study, to examine the common mechanisms
of limb regeneration, we amputated mouse digits and com-
pared the post-amputation digit time series gene expression
data with a published axolotl time series blastema differ-
entiation RNA-seq dataset (30) via TimeMeter. Analysis of
genes with similar temporal patterns in mouse digit regener-
ation and axolotl blastema differentiation reveals common
gene groups for appendage regeneration which have poten-
tial implications in regenerative medicine.

MATERIALS AND METHODS

TimeMeter Algorithm: assessing temporal similarity

TimeMeter first uses the dynamic time warping (DTW) al-
gorithm to align two time series gene expression vectors (a
query and a reference; length may vary) via the R package
(‘dtw’). However, one of the pre-assumptions of DTW al-
gorithm is that the two sequences are comparable. For ex-
ample, DTW assumes that (a) every aligned index from the
first sequence must be matched with one or more indices
from the other sequence, and vice versa; (b) the first and the
last aligned indices from the first sequence must be matched
with the first and the last indices from the other sequence,
respectively (but it does not have to be its only match). These
assumptions do not hold true for certain patterns, such as
dissimilar patterns or patterns where one series only resem-
bles a small fraction of another. For instance, if two tempo-
ral similar genes exhibit differential progression (e.g. time
shift or different speed of dynamical change), when we use
the same time window to compare gene expression patterns,
certain time points (e.g. at start or at end) will be out of the
matched time points boundary. DTW will make the start or
the end points in one gene excessively duplicate to match
the out of boundary time points in another gene. TimeMe-
ter corrects the DTW aligned indices by truncating the first
(m − 1) start time points in one gene if the first m time points
can be aligned to the same start points in another gene, and
terminating alignment (truncating the rest of time points) if
DTW matches the last elements in any of the genes. This will
exclude certain time points from alignment, and result in a
truncated alignment. TimeMeter then calculates four mea-
surements on the truncated alignment that jointly assess
gene pair temporal similarity: percentage of alignment for
(i) query and for (ii) reference, respectively; (iii) aligned gene
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expression correlation; (iv) likelihood of alignment arising
by chance:

1. Percentage of alignment for query: the length of aligned
time interval (after truncation) in query divided by total
length of query time interval.

2. Percentage of alignment for reference: the length of
aligned time interval (after truncation) in reference di-
vided by total length of reference time interval.

3. Aligned gene expression correlation (Rho): it is cal-
culated by the Spearman’s rank correlation coefficient
(Rho) for aligned gene expressions (after truncation).
This measures how well the gene expression patterns cor-
relate after alignment and truncation.

4. Likelihood of alignment arising by chance (P-value):
To further rule out that the alignment is not due to a
product of random chance, for each gene pair, TimeMe-
ter shuffles the gene expression values of both query
and reference separately 100 times. For each shuffling,
the aligned gene expression Spearman correlation coef-
ficient (Rho) (measurement 3) is calculated. TimeMeter
assumes that the Rho from shuffling follows a Gaussian
distribution with mean (μ) and standard deviation (σ ).
It calculates the P-value of likelihood of alignment aris-
ing by chance by lower-tail probability of Gaussian dis-
tribution (μ, σ 2), assuming the aligned gene expression
correlations between query and reference should be sig-
nificantly higher than these shuffled temporal gene ex-
pressions.

These four metrics will give temporal similarity assess-
ments on different aspects. In this study, we define similar
temporal patterns (STP) as gene pairs where: (a) at least one
temporal sequence (query or reference) has percentage of
alignment >80%, and (b) no temporal sequence (query and
reference) has percentage of alignment <50%. These two
criteria assume that in the case that one pattern only resem-
ble a fraction of another, the longer matched pattern should
represent at least 80% of its original data, and the shorter
matched pattern should represent at least half of its original
data; and (c) Rho > 0.9 (the aligned gene expression val-
ues should be highly correlated) and (d) P-value < 0.05 (the
likelihood of gene expression associations arising by chance
should be <5%). These thresholds are used for identifying
STP genes throughout this study.

TimeMeter Algorithm: identifies differentially progressing
genes

Given a STP gene pair (identified by previous step),
TimeMeter scores the progression difference based on trun-
cated alignment. For each query time point within a trun-
cated alignment, TimeMeter groups and calculates the aver-
age corresponding aligned reference time. This will result in
two variables: aligned query time as the independent vari-
able and average aligned reference time as the dependent
variable. Next, TimeMeter applies piecewise (segmented)
regression to these two variables, and partitions them into
separate segments. The breakpoints in piecewise regression
are determined by the lowest Bayesian Information Crite-
rion (BIC) via enumerating all K (K ≤ N) possible number

of breakpoints (N = 10 in this study). For each segment,
the slope of the regression measures the fold-change of the
speed (query versus reference). A slope being greater or less
than 1, indicates faster or slower dynamical changes, respec-
tively. A slope equivalent or close to 1 is a special case in
which the speed of dynamical change is the same or simi-
lar (time shift pattern). TimeMeter further merges adjacent
segments if the absolute slope difference less than deltaS-
lope (we set deltaSlope = 0.1 for this study) by a linear re-
gression, and recalculates the slope. This process is repeated
until no adjacent segments have absolute slope difference
less than deltaSlope. Then for each segment, TimeMeter
calculates the area difference between under the segmented
regression line and under the diagonal line, assuming that
if the query and reference have no progression difference
along time points, the aligned time points should follow the
diagonal line (the aligned query time equals the aligned ref-
erence time). The extent of deviation from the diagonal line
can be used to measure the progression difference. A pro-
gression advance score (PAS) is calculated by aggregation
of area difference in each segment and normalized by total
aligned time length (after truncation) in the query.

The PAS measures the absolute progression difference be-
tween two similar temporal pattern (STP) genes. For species
with different paces of development (e.g. human versus
mouse), the PAS may reflect the difference in development
pace between the organisms. To investigate genes with ‘rel-
ative’ (‘unexpected’) progression difference (the differential
progressions that cannot be explained by species-specific
developmental paces), TimeMeter calculates the adjusted
PAS. For each query time point, TimeMeter groups and
calculates the median corresponding aligned reference time
(after truncation) of all STP genes. This will result in two
variables: the query time as the independent variable and
the median aligned reference time of all STP genes as the de-
pendent variable. Similar to calculating PAS for each gene
pair, TimeMeter calculates a condition-specific progression
advance score (c-PAS) that represent the overall progres-
sion difference between two conditions (e.g. species). For
each STP gene, an adjusted PAS is calculated by PAS mi-
nus c-PAS, which represents the ‘unexpected’ progression
difference (e.g., the differential progressions that cannot be
explained by species-specific developmental paces) between
two species.

Data normalization and scaling

All gene expression values in this study were normalized
and scaled from 0 to 1 using the following procedure: The
normalization was performed by median-by-ratio normal-
ization method (31). In case samples containing replicates,
we merged replicates by calculating the average normalized
gene expression values. Then we calculated log-transformed
expression value as ‘log10 (normalized gene expression value
+ 1)’. We only included genes with significant changes in
time series with at least 2-fold expression changes in time
series, and scaled them from 0 to 1:

xi, scaled = xi − xmin

xmax − xmin
(1)
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where xmin and xmax are minimal and maximal ‘log10 (nor-
malized gene expression value + 1)’ of a gene in all condi-
tions (e.g. time series).

Adding noise in simulated data

To investigate how the data noise affects the P-values, we
add different levels (K) of Gaussian noise N(0, 1) in the sim-
ulated data:

Query(with noise) = Query(original) + K∗N(0, 1) (2)

Reference (with noise) = Reference(original) + K∗N(0, 1)

(3)

Gene ontology analysis

Gene ontology (GO) enrichment analysis was performed
using the R package (‘allez’) (32). For each GO enrichment
analysis, the background (control) genes are matched with
the target gene list using the same gene expression require-
ment (e.g. significant changes in time series) to avoid poten-
tial bias arises by gene expression difference. The P-values
are further adjusted by Benjamini–Hochberg (BH) multiple
test correction.

Nonsynonymous substitution rate (dN) and the synonymous
substitution rate (dS)

The dN and dS values between human and mouse protein
coding genes were downloaded from Ensembl (v93) (33).
We removed transcripts which have either dN or dS >1 to
avoid potential paralogous transcript pairs (transcripts are
duplicated after speciation, and the duplicated ones devel-
oped functions other than their ancestral one). These par-
alogous transcript pairs should be excluded for any natural
selection analysis, because they are not comparable (34,35).
For a gene with multiple transcripts, we selected the tran-
script with the smallest dS (36).

Axolotl and Xenopus early developmental gene expression
data

The axolotl early developmental gene expression data (tran-
scripts per million (TPM)) were obtained from our previous
study (26). The developmental stages were based on upon
morphological staging (37). We excluded stage 40 from our
analysis. This is because there is no data from stage 24 to
stage 40 (a large sampling gap in time). Hence, we obtained
TPMs from stage 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14,
16, 19 and 24. We performed normalization and scaling on
TPMs.

The Xenopus early development developmental gene ex-
pression data (Gaussian process lower median of ‘Tran-
scripts per Embryo’, from stage 1 to stage 24) were obtained
from the publication (25). This is a high sampling density
dataset with 229 time points evenly distributed from stage
1 to stage 24. We divided the ‘Transcripts per Embryo’ by
a factor of 1000 to match the magnitude change of TPMs
(0–106), and then performed normalization and scaling.

Human embryonic stem (ES) cells and mouse epiblast stem
(EpiS) cells differentiation gene expression data

The RNA-seq measured time series gene expression data
(TPMs) on human embryonic stem (ES) cells and mouse
epiblast stem (EpiS) cells during neural differentiation were
obtained from our previous study (13). Human ES cells dif-
ferentiation data contains 26 time points (from day 0 to
day 42), and mouse EpiS cells differentiation contains 16
time points (from day 0 to day 21). Gene expression values
(TPMs) were normalized and scaled from 0 to 1.

Mouse digits regeneration data

(1) Surgical procedure: All experiments were approved by
the University of Wisconsin-Madison Institutional An-
imal Care and Use Committee. A total of 47 adult male
C57Bl/6 mice (9–10 weeks old) were used for the study.
Mice were subjected to hindlimb distal phalanx am-
putation to digit 3 (P3). For each amputation, mice
were anesthetized, the hindlimb claw was extended,
and the distal phalanx and footpad was sharply dis-
sected. A regenerating distal phalanx was generated
by amputating ≤33% of the P3. Skin wounds were al-
lowed to heal without suturing. Mice were subjected to
micro-computed tomography (microCT) one day prior
to surgery and immediately after amputation to con-
firm ≤ 33% removal of the P3. Any digit that did not
fall within the ≤ 33% amputation guideline was omitted
from the study. Based on our criteria, 17 animals were
removed from the study resulting in a final total of 30
mice. P3 mice were collected at 0, 3, 6, 12, 24 h, 3, 7, 14,
21 days. Each time point contained three mice, except
day 7 (six mice). At the time of P3 collection, samples
were immediately immersed in RNA later for 24 h at
4◦C. The digits were then removed from RNAlater and
stored at −80◦C until performing RNA sequencing.

(2) MicroCT analysis: Mice hindlimb paws were longitu-
dinally imaged using microCT to assess digit regener-
ation. MicroCT provides the necessary resolution and
contrast to measure digit length and volume used in
the analysis. Imaging was performed using a Siemens
Inveon microCT scanner, and analysis was conducted
using Inveon Research Workplace General and 3D Vi-
sualization software (Siemens Medical Solutions USA,
Inc., Knoxville, TN). All scans were acquired with the
following parameters: 80 kVp, exposure time, 900 �A
current, 220 rotation steps with 441 projections, ∼16.5-
min scan time, bin by 2, 50 �m focal spot size, and
medium magnification that yielded an overall recon-
structed isotropic voxel size of 46.6 um3. Raw data
were reconstructed with filtered back-projection and no
down-sampling using integrated high-speed COBRA
reconstruction software (Exxim Computing Corpora-
tion, Pleasanton, CA, USA). Hounsfield units (HU),
a scalar linear attenuation coefficient, was applied to
each reconstruction to permit inter-subject compar-
isons. Three-dimensional images were segmented using
a minimum pixel intensity of 300 HU, and a maximum
intensity of 3168 HU to represent bone density. After
the region of interest was defined, the P3 volume was
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calculated. Sagittal length of the digits was also ob-
tained by measuring twice from the distal tip to prox-
imal edge of the P3 bone. Two researchers who were
blinded to one another’s measurements independently
conducted analyses, and their results were averaged.

(3) RNA-seq: Total RNAs were isolated from tissues us-
ing trizol (ThermoFisher #15596018) and chloroform
phase separations followed by the RNeasy mini proto-
col (Qiagen #74106) with optional on-column DNase
digestion (Qiagen #79254). One hundred nanograms of
total RNA was used to prepare sequencing libraries us-
ing the LM-Seq (Ligation Mediated Sequencing) proto-
col (38). RNAs was selected using the NEB Next Poly
A+ Isolation Kit (NEB #E7490S/L). Poly A+ frac-
tions were eluted, primed, and fragmented for 7 min
at 85◦C. First stand cDNA synthesis was performed
using SmartScribe Reverse Transcriptase (Takara Bio
USA #639538) and RNA is then removed. cDNA frag-
ments were purified with AMpure XP beads (Beck-
man Coulter #A63881). The 5′ adapter was ligated and
18 cycles of amplification were performed. These final
indexed cDNA libraries were quantified, normalized,
multiplexed, and run as single-end reads for 65 bp on
the HiSeq 2500 (Illumina, San Diego, CA, USA).

(4) Mapping RNA-seq reads and calculating gene expres-
sions: Reads were mapped to the mouse genes (Ensembl
v75) using Bowtie (v0.12.8) (39) allowing up to two
mismatches and a maximum of 200 multiple hits. The
gene expected read counts and TPMs were estimated by
RSEM (v1.2.3) (40). TPMs were median-by-ratio nor-
malized (31), and replicates were merged via calculating
average normalized TPMs.

(5) Data access: The RNA-seq raw data (fastq files) and
the processed data (TPMs and expected counts) for the
mouse digit regeneration data have been submitted to
GEO with accession number GSE130438.

Axolotl blastema cell differentiation data

The raw axolotl blastema cell differentiation RNA-seq
reads were obtained from the previous study (30). To com-
pare with mouse digit regeneration data, we re-processed
axolotl raw reads via mapping axolotl contigs to mouse
gene annotations. We obtained axolotl transcriptome as-
sembled contigs from a prior study (41). We used cd-hit-est
(v4.6) (42) with parameter ‘-c 1’ to remove shorter contigs
with 100% identity with aligned longer contigs. These non-
redundant contigs were mapped to Ensembl mouse pro-
teins (v85) by BLASTX (v2.2.18). Contigs were assigned
to mouse proteins by taking the best BLASTX hit with E-
value < 10−5.

We used Bowtie (v0.12.1) (39) to map the axolotl
blastema cell differentiation RNA-seq reads against all non-
redundant contigs. Quantification of each contig was per-
formed by RSEM (v1.2.3) (40). For each sample, the ex-
pected fragment counts for each contig (as computed by
RSEM), were then converted to comparative transcript
counts by summing the fragment counts of contigs mapped
to the same transcript. Similarly, gene-level counts were ob-
tained by summing the fragment counts of transcripts that
were annotated with the same gene symbol. Relative abun-

dances, in terms of TPMs, for genes were computed by first
normalizing each gene’s fragment count by the sum of the
‘effective lengths’ (weighted average of contigs length based
on contigs abundance) of the contigs mapped to that gene
and then scaling the resulting values such that they summed
to one million over all genes. TPMs were normalized and
scaled from 0 to 1.

RESULTS

Overview of TimeMeter method and simulation studies

Figure 1 shows the simulated data. Given a pair of time se-
ries gene expression data (Figure 1A, E and I), TimeMeter
uses the DTW algorithm to align them (Figure 1B, F and
J; gray lines indicate aligned indices). TimeMeter then post-
processes the DTW alignment by truncating certain start or
end points based on alignment patterns (Figure 1C, G and
K; dashed lines indicate time points removed by truncation;
see Materials and Methods). After truncating the temporal
pattern (Figure 1C, G and K; solid lines), TimeMeter cal-
culates four metrics that jointly assess gene pair temporal
similarity: percentage of alignment for (i) query and for (ii)
reference, respectively; (iii) aligned gene expression corre-
lation; (iv) likelihood of alignment arising by chance (see
Materials and Methods).

In the example shown in Supplementary Figure S1A, the
temporal pattern of the query is delayed by 5 days (a time
shift pattern) with respect to the reference. If we use dif-
ferent time windows, aligning days 5 through 100 of the
query to days 0 through 95 of the reference, the query and
the reference will be perfectly matched. However, since our
data comprises the same observation window (from day 0
to day 100) for both the query and the reference, certain
time points (e.g. the first 5 days in the query and the last 5
days in the reference) fall outside the shifted time interval
overlap. TimeMeter corrects this by analyzing the aligned
indices at the start and the end of the alignment, and remov-
ing the first 5 days from the query (Supplementary Figure
S1C; red dashed lines) and the last 5 days from the reference
(Supplementary Figure S1C; black dashed lines). Hence,
the percentage of alignment for both query and reference
is 95%. After truncation, TimeMeter calculates the Spear-
man’s rank correlation coefficient (Rho) of the remaining
aligned (matched) gene expression values. In this case, the
Rho is 1, indicating the query and reference patterns are
perfectly matched (after truncation). TimeMeter then es-
timates the likelihood of alignment arising by chance (P-
value = 3.5e–18) based on shuffling of the original temporal
gene expression data (see Materials and Methods). Given
the same time window, if the query and the reference are
shifted by a longer time (e.g. 15 days or 30 days) (Supple-
mentary Figure S1e and i), more time points will be trun-
cated, resulting in a lower percentage of alignment for both
the query and the reference (Supplementary Figure S1G
and K).

When we use the same time window to compare two tem-
poral patterns with different dynamical speed (one is faster
in dynamical changes than the other, rather than simply off-
set by a specific time interval) (Supplementary Figure S2),
TimeMeter will truncate the dynamically faster pattern, in-
dicating that the dynamically slower pattern only resem-
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Figure 1. Illustration of TimeMeter by simulated high density discrete data. (A–D) Time shift pattern. (E–H) Different speed of dynamical change pattern.
(I–L) Mixed pattern: the query has a 2-fold faster in dynamical change compared to the reference for the first 50 days, but after the first 50 days, the query
has the same speed of dynamical change with the reference. TimeMeter uses DTW to align gene expression values, and then prunes excessively duplicated
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to aligned time points (after truncation), and partitions them into separate segments if more than one pattern is detected, such as figure (I). A progression
advance score (PAS) is calculated by aggregation of area difference in each segment and normalized by total aligned time length (after truncation) in query.

bles a fraction of the dynamically faster pattern. Given the
same time window, an increase of the difference of dynami-
cal speed between the query and the reference will result in
more truncation for the dynamical faster pattern (Supple-
mentary Figure S2C, G and K).

We further investigated how the data noise and the sam-
pling density affect the P-values. As shown in Figure 2,
given a truly correlated time shift pattern, a rising in noise
level will decrease the power to detect the pattern associa-
tions (Figure 2A) while a higher sampling density will in-
crease the power to detect the pattern associations (Fig-
ure 2B). The same trend can also be seen in simulations on
different dynamical speed patterns (Supplementary Figure
S3).

For gene pairs with similar temporal patterns (STP) (Ma-
terials and Methods), TimeMeter applies piecewise (seg-
mented) regression to aligned time points (after truncation),
and partition them into separate segments. For example, as
shown in Figure 1i, the query and reference exhibit a mixed
pattern of matching where the query has a 2-fold faster dy-
namical change compared to the reference for the first 50

days, but after the first 50 days, the query has the same
speed of dynamical change with the reference. TimeMeter
partitions the aligned time points (after truncation) (Fig-
ure 1K) into two segments (Figure 1l) with slope = 2 and
slope = 1, respectively. In segment 1 (slope = 2), the first
50 days in query are aligned to the first 100 days in ref-
erence, indicating a 2-fold faster dynamical change in the
query. In segment 2 (slope = 1), the days (51–100) in query
are aligned to the days (101–150) in reference, indicating
that the query and reference have the same speed of dy-
namical change (slope = 1). Segment 2 represents a time
shift in this case owing to the prior difference of speed in
dynamical change in segment 1. For each segment, we as-
sume that if the query and the reference have no progres-
sion difference, the aligned time points should follow the
diagonal line (the aligned query time equals the aligned ref-
erence time). Hence, for each segment, TimeMeter calcu-
lates the area difference between the segmented regression
line and the diagonal line, assuming that the area difference
measures the progression difference. A progression advance
score (PAS) is calculated by aggregation of area difference
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Figure 2. Simulation study of how the data noise and sampling density will affect P-values in TimeMeter. The query and the reference have a time shift
pattern (simulated discrete time series data). (A) Increasing the noise level will decrease the power to detect the pattern associations. (B) A higher sampling
density will increase the power to detect the pattern associations.

in each segment and normalized by total aligned time length
(after truncation) in query (see Materials and Methods).
The time shift pattern is a special case where the PAS equals
the shifted time in query (Figure 1D and Supplementary
Figure S1). For other patterns, such as different speed of dy-
namical change (Figure 1E and Supplementary Figure S2)
and mixed pattern (e.g. a mixture of time shift and different
speed of dynamical change patterns) (Figure 1I), PAS mea-
sures the overall progression difference between the query
and the reference overtime.

Comparison of axolotl and Xenopus during early embryonic
development

To compare temporal gene expression patterns in early em-
bryonic development between axolotl and Xenopus, we ob-
tained time series gene expression values (from stage 1 to
stage 24 based upon morphological staging) from two publi-
cations (25,26). After data normalization, filtering and scal-
ing (Materials and Methods), we obtained 10 252 genes for
downstream analysis. We applied TimeMeter to these genes,
and detected 2493 (24.31%) STP genes between these two
species (Supplementary Table S1). These STP genes are en-
riched in a broad spectrum of gene ontology (GO) terms
(BH adjusted P-value (P.adj) < 0.05) (Supplementary Ta-
ble S2) (e.g. nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, rRNA processing, translational
initiation and others). Interestingly, among enriched GO
terms, there are 17 terms related to development (e.g. blood
vessel development) and 10 terms related to morphogene-
sis terms (e.g. embryonic organ morphogenesis) (Table 1).
We further calculated the PAS for each STP gene to inves-
tigate developmental progression differences (Figure 3A).
As shown in Figure 3B, the PAS distribution is symmetric
centering close to 0. Furthermore, the axolotl developmen-
tal stages are highly correlated with the temporal aligned
Xenopus stages (R = 0.99, Pearson correlation coefficient;
Figure 3C). This suggest that although the divergence time
between axolotl and Xenopus was around 290 million years

ago (MYA) (43), the dynamical change patterns of the tran-
scriptome in early developmental stages is highly conserved.

PAS measures the overall progression difference between
the axolotl and the Xenopus during development. Visu-
ally, one can observe a noticeable progression difference if
|PAS > 2| (Figure 3A). Actually, if the progression difference
is only due to a time shift, the PAS equals the shifted time
in query (Figure 1D and Supplementary Figure S1, simu-
lated data). If we use a more stringent PAS cutoff (|PAS|
> 4), there are 126 axolotl advanced genes (PAS>4) and
192 Xenopus advanced genes (PAS←4), respectively. Inter-
estingly, for axolotl advanced genes (PAS > 4), several well-
known key neural development genes are in list, such as
C1QL1 (44), EPHA8 (45), OGDH (46) and SLC4A10 (47)
(Figure 4C–F). For Xenopus advanced genes (PAS < −4),
several well-known muscle or smooth muscle cell prolifera-
tion genes are in the list, such as COMT (48), ILK (49) and
PDGFD (50) (Figure 4G–I). We performed GO enrichment
analysis for axolotl and Xenopus advanced genes, respec-
tively (Supplementary Table S3). Among the 11 enriched
GO terms (P.adj < 0.05) in axolotl advanced genes (e.g. bi-
carbonate transport, forebrain neuron development, one-
carbon metabolic process, and others), four neural devel-
opment related terms are enriched (Figure 4A). Among the
14 enriched GO terms (P.adj < 0.05) in Xenopus advanced
genes (e.g. regulation of protein sumoylation, regulation of
endoplasmic reticulum unfolded protein response, and oth-
ers), two muscle cell proliferation related terms are enriched
(Figure 4b). If we use an even more stringent cutoff (|PAS|
> 5) to define differentially progressing genes, three out of
four neural development related terms in genes with PAS
> 4 cutoff are also enriched in genes with PAS > 5 cutoff
(Supplementary Figure S4A). The two enriched muscle cell
proliferation related terms in genes with PAS < −4 cutoff
are also enriched in genes with PAS < −5 cutoff (Supple-
mentary Figure S4B). These results suggest that a fraction
of functional distinct temporal similar genes undergo differ-
ent progressions in the axolotl compared to Xenopus during
early embryo development.



e51 Nucleic Acids Research, 2020, Vol. 48, No. 9 PAGE 8 OF 16

PAS = -5.39

Axolotl advancedXenopus advanced

Developmental Stages

G
en

e 
E

xp
re

ss
io

n 
(S

ca
le

d)

Axolotl advancedXenopus advanced

Similar Pattern (2493 genes)Xenopus
A

B C

Axolotl

Examples

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HS3ST3A1

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PAS = -2.11
C13ORF34

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PAS = -0.62
A1CF

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PAS = 2.02
ABHD2

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PAS = 5.59
PLIN2

0.
00

0.
05

0.
10

0.
15

Distribution of PAS

D
en

si
ty

−8 −4 0 4 8
PAS ( Bandwidth = 0.5) Axolotl (Developmental Stages)

 A
lig

ne
d 

X
en

op
us

 S
ta

ge
s 

(M
ed

ia
n)

1 3 5 7 9 12 14 16 19 24

1
3

5
7

9
12

14
16

19
24

Pearson correlation (R=0.99)
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Reanalysis of human and mouse time series gene expression
comparison during neural differentiation

Our previous study compared the transcriptomic dynamical
changes between human embryonic stem (ES) cells (from
day 0 to day 42) and mouse epiblast stem (EpiS) cells (from
day 0 to day 21) during neural differentiation (13). In Barry
et al., a DTW algorithm coupled with a set of statistical
methods (13) was used to detect 3544 STP genes between
the human and mouse time series. We used TimeMeter to
reanalyze this dataset (Materials and Methods). As shown
in Figure 5A, TimeMeter detects 1461 STP genes between
human and mouse (Supplementary Table S4). The majority
of TimeMeter detected STP genes (1260, 86.24%) can also
be detected by our previous study (13). Figure 5C–E are ex-
amples of STP genes which are detected by both TimeMe-
ter and Barry et al. However, a large portion of Barry et al.

detected STP genes (2284, 64.45%) cannot be detected by
TimeMeter.

To investigate whether TimeMeter substantially in-
creased the specificity for detecting STP genes, we decom-
posed the Barry et al. detected 3544 STP genes into two lists:
(i) 1260 STP genes, which are also detected by TimeMe-
ter (referred as ‘Both’) and (2) 2,284 STP genes, which are
only detected by Barry et al. (not by TimeMeter; referred as
‘Barry et al. only’), and performed the following analysis:

Firstly, we performed GO enrichment analysis on ‘Both’
and ‘Barry et al. only’ STP genes, respectively. There are
more enriched GO terms in ‘Both’ than in ‘Barry et al.
only’ STP genes. As shown in Supplementary Figure S5,
1,260 ‘Both’ STP genes are enriched in 474 GO terms (P.adj
< 0.05), while 2284 ‘Barry et al. only’ STP genes are only
enriched in 108 GO terms. The ‘Both’ STP genes enriched
GO terms covers the majority of ‘Barry et al. only’ enriched
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Table 1. Enriched development and morphogenesis related GO terms (P.adj < 0.05) for genes with similar temporal patterns during early embryonic
development between axolotl and Xenopus.

ID Term (BP) P.adj

Enriched Development Related Terms
GO:0001568 Blood vessel development 4.60e–03
GO:0048568 Embryonic organ development 5.37e–03
GO:0060065 Uterus development 1.06e–02
GO:0009790 Embryo development 1.29e–02
GO:0043009 Chordate embryonic development 1.51e–02
GO:0001944 Vasculature development 1.72e–02
GO:0048565 Digestive tract development 1.72e–02
GO:0048566 Embryonic digestive tract development 1.72e–02
GO:0001823 Mesonephros development 1.98e–02
GO:0009792 Embryo development ending in birth or egg hatching 1.98e–02
GO:0072358 Cardiovascular system development 2.30e–02
GO:0021954 Central nervous system neuron development 2.55e–02
GO:0001656 Metanephros development 2.79e–02
GO:0001945 Lymph vessel development 3.13e–02
GO:0048706 Embryonic skeletal system development 3.13e–02
GO:0055123 Digestive system development 3.13e–02
GO:0021884 Forebrain neuron development 4.21e–02
Enriched Morphogenesis Related Terms
GO:0035239 Tube morphogenesis 1.63e–03
GO:0048562 Embryonic organ morphogenesis 2.17e–03
GO:0048598 Embryonic morphogenesis 2.58e–03
GO:0009887 Animal organ morphogenesis 4.56e–03
GO:0048514 Blood vessel morphogenesis 1.46e–02
GO:0061138 Morphogenesis of a branching epithelium 2.55e–02
GO:0048754 Branching morphogenesis of an epithelial tube 3.54e–02
GO:0001763 Morphogenesis of a branching structure 3.83e–02
GO:0048646 Anatomical structure formation involved in morphogenesis 3.90e–02
GO:0048557 Embryonic digestive tract morphogenesis 4.21e–02

GO terms but not vice versa. As shown in Supplemen-
tary Figure S5, a large portion (60.2%, 65/108) of ‘Barry
et al. only’ enriched GO terms are also enriched in ‘Both’
STP gene sets. However, only 13.7% (65/474) of ‘Both’ STP
gene sets enriched GO terms are also enriched in ‘Barry
et al. only’ STP gene sets. For enriched GO terms, the ma-
jority of ‘Both’ STP genes (73.4%, 925/1260) are driving
genes (genes that drive the enrichment GO terms) while only
around half (49.9%, 1139/2248) of ‘Barry et al. only’ STP
genes are GO driving genes. The GO enrichment analysis
suggests that TimeMeter did not randomly pick up a sub-
set of STP genes from the Barry et al. STP gene sets (Fig-
ure 5a). Instead, TimeMeter detected STP genes that tend
to be associated with specific biological functions. In con-
trast, the ‘Barry et al. only’ STP gene sets are more ran-
domly distributed to all GO terms (e.g., less enriched GO
terms, smaller percentage of GO driving genes).

Secondly, the neuron or morphogenesis development re-
lated GO terms are top enriched specifically in ‘Both’ gene
sets (enriched in ‘Both’ but not in ‘Barry et al. only’). The
STP genes are based on comparing mouse epiblast stem
(EpiS) cells differentiated to neural cells with human em-
bryonic stem (ES) cells differentiated to neural cells, and
thus it would be expected to find neuron morphogenesis and
neuron development terms to be enriched. The ‘Barry et al.
only’ top 5 enriched GO terms are not directly related to
neural development.

Thirdly, we investigated whether our previous reported
development related functions of STP genes were in fact
driven by a subset of ‘real STP genes’. We recalculated the
GO enrichments in the Barry et al. STP gene set. Among the

enriched (P.adj < 0.05) GO terms for the 3544 STP genes
from Barry et al., there are 24 terms related to development
(Figure 5B). As shown in Figure 5B, none of the original en-
riched development related GO terms are enriched (P.adj
< 0.05) in the Barry et al. only gene list. In contrast, 20
out of 24 development related GO terms showed noticeably
higher statistical significance for 1260 STP genes identified
by both methods (Figure 5B). This suggests that TimeMe-
ter significantly increased the specificity for detecting STP
genes.

Fourthly, we integrated the knowledge of human-mouse
Carnegie stage equivalents (in utero) to evaluate TimeMe-
ter and Barry et al. methods. It is technically chal-
lenging to directly use traditional correlation analysis
to evaluate TimeMeter and Barry et al. methods, be-
cause these two datasets have different numbers of time
points. However, it is a widely accepted notion that the
Carnegie stage progression (developmental chronology)
during gestation can be directly comparable between hu-
man and mouse (51,52). For example, the human em-
bryonic day 14 is equivalent to mouse embryonic day 6
in utero based on the external and/or internal morpho-
logical development of the embryo (UNSW Embryology
website: https://embryology.med.unsw.edu.au/embryology/
index.php/Carnegie Stage Comparison). Hence, if we use a
subset of time points to reconstruct a human-mouse time
points pair in vitro (Barry et al. datasets) (e.g. human day 16
matches to mouse day 7, human day 22 matches to mouse
day 10) that resemble human-mouse Carnegie stage equiv-
alents (in utero), the newly constructed gene expression pair
will not only have the same number of time points but also

https://embryology.med.unsw.edu.au/embryology/index.php/Carnegie_Stage_Comparison
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Figure 4. Differential progression genes (|PAS| > 4) between axolotl and Xenopus during early embryo development. (A) Enriched neural development
related GO terms in Axolotl advanced genes. (B) Enriched muscle or smooth muscle related GO terms in Xenopus advanced genes. (C–F) Examples of
Axolotl advanced neural development/maturation markers. (G–I) Examples of Xenopus advanced muscle or smooth muscle markers.

will have been adjusted by the differentially developmen-
tal paces, since the time points in human and mouse are
matched to Carnegie stage equivalents. Therefore, we can
apply traditional correlation analysis to evaluate TimeMe-
ter and Barry et al. methods. We transposed Barry et al.
(in vitro) days to embryonic day equivalents (in utero) (a
detailed explanation for this transposition can be found
in Barry et al. (13)), and selected a subset of time points,
and then reconstructed the human-mouse time points pair
that can match human-mouse Carnegie stage equivalents
(in utero) (Supplementary Figure S6a). As shown in Supple-
mentary Figure S6B, the ‘Both’ STP gene pairs have overall
better correlations than the ‘Barry et al. only’ STP genes
(P = 9.67e–47, 1-sided Kolmogorov–Smirnov test). This
analysis suggests that TimeMeter significantly increases the
specificity for detecting STP genes.

Figure 5F and G shows expression patterns for two STP
genes that were detected only by Barry et al. but not by
TimeMeter. Figure 5F is an example where one temporal
pattern only matches a small fraction of another pattern.
Hence, after truncation, the percentage of alignment is very
low (Figure 5F, dashed lines indicate removed time point
by truncation). Figure 5G is an example with a high likeli-
hood of a comparable temporal pattern association arising
by chance.

Only 201 STP genes were detected by TimeMeter but not
by Barry et al. (Figure 5A). On inspection, we found that
TimeMeter’s truncation feature appears to increase the sen-
sitivity for detecting temporal associations (e.g. Figure 5H

and I) while the thresholding metrics, such as the percentage
of alignment, maintain specificity.

To further investigate whether the increased specificity of
TimeMeter is at the cost of decreased sensitivity, we per-
formed separate GO enrichment analysis on the STP gene
sets from TimeMeter and from Barry et al., respectively. As
shown in Figure 6, 32 development related GO terms are
enriched (P.adj < 0.05) in either the TimeMeter list or in
the Barry et al. list. Of the 23 terms found in both lists, 19
are more significantly enriched in the TimeMeter list than
in the Barry et al. list. Another eight terms are specifically
enriched in TimeMeter STP gene list, while only one term
(hindbrain development) is close to the level of significance
(P.adj = 0.07) only in Barry et al. list. These results suggest
that TimeMeter’s increased specificity is not at the cost of
decreased sensitivity.

We next calculated the PAS distribution for TimeMe-
ter detected STP genes. As shown in Figure 7, the me-
dian PAS is −13.33, and 99.79% of PAS are <0. These re-
sults indicate that most of the mouse genes have more ad-
vanced progressions than human during neural cell differ-
entiation, which is consistent with our previous study (13).
The PAS measures the ‘absolute’ progression difference be-
tween two STP genes. It is an unbiased way to compare the
progression difference for species of unknown developmen-
tal paces. However, the human and the mouse have differ-
ent speed of developmental paces. To measure the ‘relative’
(‘unexpected’) progression difference (the differential pro-
gressions that cannot be explained by species-specific devel-
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Figure 5. Comparison of TimeMeter and Barry et al. for detecting genes with similar temporal patterns (STP) between human ES (from day 0 to day
42) and mouse EpiS cells (from day 0 to day 21) during neural differentiation. (A) Overlap of STP genes detected by Barry et al. and TimeMeter. (B)
TimeMeter significantly increases the specificity for detecting STP genes. Barry et al. detected STP genes are enriched in 24 development related GO terms
(P.adj < 0.05) (black triangle). None of these development related GO terms is enriched (P.adj < 0.05) in Barry et al. only gene list. In contrast, 20 out of
24 development related GO terms showed noticeable increased statistical significance for 1260 STP genes which were also detected by TimeMeter. (C–E)
Examples of STP genes detected by both TimeMeter and Barry et al. (F, G) Examples of STP genes which were detected only by Barry et al. but not by
TimeMeter. (H, I) STP genes which were detected only by TimeMeter but not by Barry et al.

opmental paces), we also calculated an adjusted PAS value
(Materials and Methods) for each STP gene (Supplemen-
tary Table S4). As shown in Supplementary Figure S7, the
adjusted PAS distribution is symmetric centering close to 0.
The unadjusted PAS (representing the absolute progression
differences) and the adjusted PAS (representing the relative
progression differences) in TimeMeter provide two separate
measurements to characterize the progression difference for
a STP pair.

During evolution, the ratio of the nonsynonymous sub-
stitution rate (dN) and the synonymous substitution rate
(dS) estimates the balance between neutral mutations, pu-
rifying selection and beneficial mutations. A dN/dS ra-
tio is significantly <1 indicates that the gene is under
strong purifying selection (acting against change). We asked
whether the genes, which have conserved (similar) tem-

poral patterns between human and mouse during neural
development, are naturally selected. We examined this by
comparing the dN/dS ratio between genes identified by
TimeMeter with similar and dissimilar temporal patterns.
As shown in Figure 8, the dN/dS ratio is significantly lower
in STP genes than in dissimilar genes (P = 6.08e–29, 1-sided
Kolmogorov–Smirnov test), indicating that the STP genes
are naturally selected (against protein functional changes)
during evolution.

Identification of genes with similar temporal patterns during
mouse digit regeneration and axolotl blastema differentiation

Full appendage regeneration in the axolotl is due to the for-
mation and differentiation of blastema cells at the site of
amputation (27). However, regeneration capability in hu-
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Figure 6. The increased specificity for detecting genes with similar temporal pattern (STP) of TimeMeter is not at the cost of losing sensitivity. There are
32 development related GO terms are enriched (P.adj < 0.05) in either TimeMeter or Barry et al. detected STP genes between human ES and mouse EpiS
during neural differentiation. There are eight terms specifically enriched in TimeMeter detected STP genes (but not enriched in Barry et al. list) while there
is only one term marginally enriched in Barry et al. list (but not enriched in TimeMeter list).

man and mouse is mostly relegated to digit tips (28). To
investigate any similarity between the human/mouse dig-
its regeneration and the axolotl blastema differentiation,
we produced a mouse digit regeneration RNA-seq time se-
ries dataset (Methods), and compared it with an axolotl
blastema differentiation RNA-seq time series dataset (30).
We reprocessed the axolotl RNA-seq data via mapping as-
sembly contigs to mouse annotations to compare with our
mouse post-amputation digit gene expression data (Meth-
ods). Due to experimental limitations (e.g. cost), both our
mouse limb regeneration data and the published axolotl

blastema differentiation data contained large sampling gaps
between certain time points (uneven sampling). TimeMeter
can be applied to scenarios with different sampling densi-
ties, but not uneven sampling in time (Supplementary Fig-
ure S5; see Discussions). To solve this problem, we replaced
the real time (hours, days) with the pseudo-time (time or-
der), aiming to detect temporally similar genes in time or-
der. TimeMeter detects 38 STP genes during mouse limb
regeneration and axolotl blastema differentiation (Supple-
mentary Table S5). GO analysis indicates that these STP
genes are enriched in 11 terms (P.adj < 0.05; Figure 9A),
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Figure 7. PAS distribution of genes with similar temporal patterns (STP) between human ES and mouse EpiS during neural differentiation.

Figure 8. Nonsynonymous and synonymous substitution rates for temporally similar and dissimilar genes between human ES and mouse EpiS during
neural differentiation. (A) Nonsynonymous substitution rate (dN). (B) Synonymous substitution rate (dS). (C) dN/dS ratio.

and most of them have relationship to ‘growth factor’,
‘telomere’, ‘wound healing’ etc. It is known that platelet-
derived growth factor (PDGF) plays a pivotal role in bone
and vascular smooth muscle formation via increasing the
healing cell populations, facilitating to develop new blood
vessels, and debriding the wound site for continued repair
and bone regeneration (53). As shown in Figure 9B, Pdgfd
(platelet-derived growth factor D) gene, which is a mem-
ber of PDGF family, has similar patterns in mouse limb
regeneration and axolotl blastema differentiation. Among
the enriched GO terms, telomere maintenance and organi-
zation terms are particular interesting (Figure 9A). Several
studies have shown that telomeres are critical for cardiovas-
cular (54) and kidney (55) tissue repair and regeneration.

Our study further highlights the potential general role of
telomeres for regeneration. Examples of STP genes related
to telomere maintenance, response to wounding, blastocyst
development, mechanoreceptor differentiation and regula-
tion of epithelial cell migration are shown in Figure 9C–G,
respectively.

DISCUSSION

Comparative time series gene expression analysis is a pow-
erful tool that allows us to characterize time dependent
changes of development, evolution, aging, disease progres-
sion, and cancer prognosis. While existing studies largely
focused on identifying time dependent differentially ex-
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Figure 9. Genes with similar time-order patterns (STP) during mouse limb regeneration and axolotl blastema differentiation. (A) Enriched GO terms.
(B–G) Examples of STP genes.

pressed genes (1–7,56–58) and characterizing time shift pat-
terns (9–11), additional computational tools are needed
to enhance our capability to capture more complicated
temporal gene expression associations. The DTW algo-
rithm, which was originally designed for speech recognition
(e.g. coping with different speaking speeds), has been used
to align non-linearly associated temporal gene expression
patterns (12,13,17,19,20). However, DTW will give an opti-
mal match between two given time series sequences, regard-
less of whether the temporal gene expression patterns are
similar or not (10). Although the distance or correlations
calculated by DTW aligned sequences can partially mea-
sure the pattern similarity (17), the alignment could contain
errors for dissimilar patterns or patterns where one resem-
bles only a small fraction of the other. Moreover, for genes
pairs with limited temporal sampling density or contain-

ing a high amount of noise, the likelihood of DTW align-
ment arising by chance is very high. To solve these issues,
TimeMeter post-processed DTW aligned indices, and cal-
culated four metrics that jointly assess gene pair temporal
similarity. TimeMeter significantly outperformed our pre-
vious method (13) which was based on standard DTW to
detect STP genes.

We have developed an R package (‘TimeMeter’).
TimeMeter can be applied to compare time series gene ex-
pression data allowing query and reference samples to be in
different time windows (Supplementary Figure S8A–E) and
different sampling densities (Supplementary Figure S8B).
TimeMeter does not allow uneven sampling (large gaps in
time). Large sampling gaps within experimental data may
potentially cause bias in several steps, such as DTW align-
ment (e.g. duplicated alignment due to missing data) and
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segmented regression (e.g. confounding break point deter-
mination). An alternative approach is to transform real time
(e.g. 0, 3, 6, 12, 24 h, 3, 7, 14, 21 days) to pseudo-time (time
order) (e.g. 0, 1, 2, 3, 4, 5, 6, 7, 8). The pseudo-time is evenly
distributed (each is separated by 1 unit) (Supplementary
Figure S8F). In this scenario, TimeMeter will aim to detect
‘time-order similar genes’ (Figure 9B–G).

Axolotl and Xenopus diverged about 290 million years
ago (MYA) (43), and very little is known about their tran-
scriptomic conservation in early embryo development. We
found 2493 (24.31%) variant genes showed similar temporal
patterns between these two species. These STP genes are en-
riched in a broad spectrum of functional groups important
for development and morphogenesis (Table 1 and Supple-
mentary Table S1). These findings suggest that a substan-
tial number of developmental related genes are transcrip-
tionally conserved in early embryonic development between
these two species across 290 million years of evolution. We
further characterized these STP genes by calculating the
progression advance scores (PAS). Interestingly, the genes
showed different progressions between Axolotl and Xeno-
pus (e.g. |PAS| > 4) are enriched in function groups which
are important for neural and muscle development, indicat-
ing that the measurement of differential progression pro-
vides a novel feature in addition to pattern similarity that
can help characterize early developmental divergence be-
tween two species.

Applying TimeMeter to human ES cells and mouse EpiS
time series gene expression datasets during neural differen-
tiation, we found that the dN/dS ratio is significantly lower
in STP genes than in genes with dissimilar temporal pat-
terns. The results suggest that STP genes involved in neural
differentiation in mice and humans are under strong nega-
tive selection during evolution.

We compared mouse limb regeneration with axolotl
blastema differentiation, and detected 38 STP genes be-
tween these two processes. Among the enriched GO terms,
telomere maintenance and organization terms are partic-
ular interesting. In vertebrates, regenerative abilities de-
cline with aging (59), and telomere length is known to be
associated with aging. Although studies have shown that
telomerase is essential for certain tissues (e.g. cardiovascular
(54) and kidney (55)) repairing and regeneration, the gen-
eral role of telomere in regeneration is largely unknown.
The enriched telomere related GO terms in STP genes of
mouse limb regeneration and axolotl blastema differentia-
tion highlight the potential general role of telomeres in re-
generation.
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Koskenvuo,M., Kaprio,J., Rantanen,T., Sipilä,S. and Kovanen,V.
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