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In recent years, artificial intelligence (AI)/machine learning (ML; a subset of AI)

have become increasingly important to the biomedical research community. These

technologies, coupled to big data and cheminformatics, have tremendous potential

to improve the design of novel therapeutics and to provide safe and effective drugs

to patients. A National Center for Advancing Translational Sciences (NCATS) program

called A Specialized Platform for Innovative Research Exploration (ASPIRE) leverages

advances in AI/ML, automated synthetic chemistry, and high-throughput biology, and

seeks to enable translation and drug development by catalyzing exploration of biologically

active chemical space. Here we discuss the opportunities and challenges surrounding

the application of AI/ML to the exploration of novel biologically relevant chemical space

as part of ASPIRE.

Keywords: artificial intelligence, machine learning, drug discovery, pharmaceutical development, biomedical

research, cheminformatics, translational science

INTRODUCTION

Chemical space is incredibly vast; estimates place the number of potential “drug-like” organic
molecules between 1023 and 1060 (Polishchuk et al., 2013). In comparison, the biological space
for drug targets is relatively small; the number of protein-coding genes is estimated to be ∼20,000
(Pertea et al., 2018). In order to provide treatments or cures for human diseases, we need to identify
novel therapeutics that can modulate the approximately 90% of biological space that is currently
undrugged or inaccessible (Barker et al., 2013). However, the current approach to exploring
chemical space is extremely limited, requiring manual and labor-intensive synthesis leading to a
slow and iterative design-make-test cycles.

Recent innovations in automation and AI/ML create an opportunity for a breakthrough in drug
discovery, bringing the goal of a streamlined process for identifying new chemical entities ever
closer to becoming reality. To date, scientists have limited ability to predict chemical reactions a
priori or which molecules will modulate any desired target ab initio. Artificial intelligence/machine
learning has the potential to allow researchers to uncover areas of chemical space that were
previously inaccessible; for example—through the discovery of novel reactions or previously
unknown scaffolds. The primary focus of this perspective will be on ways that a recently launched
NCATS ASPIRE program seeks to leverage AI/ML to facilitate the exploration of biologically-
relevant chemical space. The perspective is not meant to serve as a detailed review of different
AI/ML approaches in drug discovery, but to briefly discuss the state of the art in AI/ML,
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as well as discuss the challenges to the widespread adoption
and use of these new technologies as it applies to the NCATS
ASPIRE program.

NCATS ASPIRE PROGRAM: AN OVERVIEW

The National Center for Advancing Translational Sciences
recently launched the development of A Specialized Platform
for Innovative Research Exploration (ASPIRE) program to
capitalize on the recent technological innovations in AI/ML, and
potentially disrupt the field of drug discovery (Sittampalam et al.,
2018). The NCATS ASPIRE program aims to make the process
of exploring chemical space faster, more efficient, and more
cost-effective by integrating advances in computer-aided drug
design, automated synthetic chemistry, and high-throughput
biological screening. This platform will build on the current
state of the art to develop innovative algorithms that can predict
novel structures capable of modulating specific targets; enable
the small-scale synthesis of the suggested molecules; and test
these molecules in physiologically relevant biological assays. New
data generated through this cycle will then be fed back into
the system to help guide the design and synthesis of additional
molecules. The NCATS ASPIRE program seeks to move beyond
known chemical reactions toward the execution and analysis of
novel chemistries. Harnessing advances in chemical laboratory
automation, AI/ML, and high-throughput screening, ASPIRE
aims to help transform chemistry from an artisanal, empirical
practice into a more predictive science. This initiative, in order to
be transformational, will require multidisciplinary collaborations
among researchers in academic, industrial, and government
settings, scientific publishers, funders, and professional societies.
NCATS ASPIRE platform and the accompanying tools and
technologies, including AI/ML algorithms, chemical laboratory
automation, microfluidic flow chemistry, and high throughput
screening, will provide a new opportunity to break the
translational bottlenecks in chemistry and benefit many areas of
science and human health.

The recent launch of National Institutes of Health HEAL
(Helping to End Addiction Long-Term) InitiativeSM provided
the opportunity to serve as a pilot for the ASPIRE through prizing
competitions via the NCATS ASPIRE Design Challenges1,2.
Launched in December 2018, these challenges focus on the
chemistry and biology of pain, opioid use disorder (OUD), and
opioid addiction as a test bed for ASPIRE (Figure 1). Based on
the input from scientist and other stakeholders, the challenges
were design to initially address four major areas of greatest need:
(1) Integrated Chemistry Database for Translational Innovation
in Pain, OUD and Overdose; (2) Electronic Synthetic Chemistry
Portal for Translational Innovation in Pain, OUD and Overdose;
(3) Predictive Algorithms for Translational Innovation in Pain,
OUD and Overdose; and (4) Biological Assays for Translational
Innovation in Pain, OUD and Overdose. In addition, a fifth
challenge was conceived for an Integrated Solution where
innovators could propose a more comprehensive, single platform

1HEAL Initiative: heal.nih.gov
2NCATS Challenges: ncats.nih.gov/aspire/challenges/

solution that combines at least two of the above challenge
areas. Readers are directed to 2018 NCATS ASPIRE Design
Challenges web page https://ncats.nih.gov/aspire/challenges that
contains more detail on how these challenges were structured,
and which specific problems they aim to address. It is anticipated
that the 2018 NCATS Design Challenges will be followed
by a distinct, reduction-to-practice phase in which innovators
will build working prototypes from the winning designs of a
platform that integrates a chemistry database, electronic synthetic
chemistry portal, predictive algorithms, and biological assays.
While this initial pilot application for ASPIRE focuses on
opioids and the quest for novel treatments for pain, OUD, and
overdose, it is anticipated that the developed technologies will
be broadly applicable to drug discovery in general and will
in the future include additional areas of development such as
automated small-scale synthesis. While ambitious, we believe
that ASPIRE will enable the next generation of drug developers
and medicinal chemists, and produce solutions to previously
intractable challenges in medicine.

APPLICATION OF AI TO DE NOVO

MOLECULAR DESIGN

Researchers have applied AI/ML approaches to many stages
of the drug discovery process, from hit identification to lead
optimization. Indeed, there has been an explosion in research
around the application of these techniques to the problem
of chemical synthesis and molecular optimization: a recent
review noted 45 papers on molecular optimization in the
last 2 years alone (Elton et al., 2019). As stated above, it is
beyond the scope of this perspective to recapitulate and discuss
the multitude of algorithms and approaches to AI/ML in the
literature. Readers are directed toward excellent recent reviews
for additional background information on leading AI/ML
models, architectures, and techniques as applied to molecular
design and optimization (Carpenter et al., 2018; Chen et al., 2018;
Engkvist et al., 2018; Lo et al., 2018; Elton et al., 2019; Vamathevan
et al., 2019).

One area of focus for researchers is de novo molecular
design, the computational technique that aims to design
novel compounds with a given set of properties such as,
for example, high-affinity for a target of interest, or ability
to cross the blood-brain barrier. In principle, these de novo
design algorithms can explore the full span of chemical
space and help identify and prioritize molecules that meet
a diverse set of criteria (Brown et al., 2019). AI/ML can
find patterns and connections within vast data sets, a task
too time-consuming for human researchers. AI/ML models
continue to improve with larger and robust training sets
with which to train and fine-tune the system. The creation
and maintenance of robust databases and training sets is
therefore crucial to the development of AI/ML models to
identify and design new compounds. To date, there are
no commonly-accepted training datasets to train models
on generating chemical species or for optimizing biological
properties (Polykovskiy et al., 2019). Datasets are often pulled
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FIGURE 1 | Graphic representation of the ASPIRE platform workflow. Better therapeutics will be delivered to patients through the effective exploration of chemical

space through the application of predictive algorithms, electronic laboratory notebook, integrated database, and biological assays.

from public sources including ChEMBL (Gaulton et al., 2011),
ZINC (Sterling and Irwin, 2015), PubChem (Kim et al., 2019),
or commercial platforms such as SciFinder3 and Reaxys4. As
databases of chemical space grow ever larger, data mining
techniques and algorithms to enable chemists to efficiently
explore this space are crucial; for example, algorithms to assess

synthetic tractability or analyze structural properties would
be tremendously valuable (Hoffmann and Gastreich, 2019).
Ideal databases for drug discovery include those that are
properly curated, complete with positive and negative data, and
replete with examples to capture a wide breadth of existing
chemical space. When paired with strong design algorithms,
such databases can help researchers identify areas of chemical
space yet to be explored and quickly sift through what has
already been synthesized and tested. Below, we will detail
the limitations of existing databases and the difficulties in
evaluating the strengths and weaknesses of existing molecular
generation algorithms.

Despite the importance of reaction discovery to modern
synthetic organic chemistry, less attention has been paid to
the application of AI/ML methods to the identification of
novel reactions or the optimization of existing reactions.
Researchers have demonstrated that AI/ML methods can predict
the performance of a synthetic reaction using data from high-
throughput experimentation (Ahneman et al., 2018) as well as
suitable reaction conditions (Gao et al., 2018). AI/ML methods
have been extensively applied to retrosynthesis and computer-
aided synthesis planning (Coley et al., 2018; Schwaller et al.,
2018; Segler et al., 2018; Baylon et al., 2019). Advantages
of such efforts include enabling fully autonomous synthesis
and prioritizing of routes with the highest probability of

3https://sso.cas.org/as/2bj74/resume/as/authorization.ping
4https://www.reaxys.com/#/search/quick

success. Indeed, advances in reaction miniaturization and high
throughput experimentation have facilitated the exploration of a
larger portion of chemical space (Santanilla et al., 2015). With the
capacity to screen ever larger numbers of conditions, researchers
need the cheminformatics tools and AI/ML algorithms to
make use of the multitude of data. The rate of discovery will
further increase when these AI/ML methods are combined with
automated experimentation (Häse et al., 2019). Assisting in
the optimization and discovery of new reactions, automated
platforms will accelerate the synthesis and biological testing of

novel compounds (Schneider, 2018). For example, Lilly Research
Laboratories recently published a platform called Idea2Data
which integrates ML, automated synthesis and high-throughput
screening (Nicolaou et al., 2019). Automated synthetic chemistry

will play a large role in the further advancement of AI in drug
discovery as such closed-loop systems feed an increasing amount
of synthetic and biological data back into the system.

CHALLENGES

Despite the many opportunities present in the application of
AI/ML to drug discovery, there are several barriers to its
widespread acceptance and adoption. These challenges include
deficiencies within existing datasets, a lack of interpretability
of AI/ML models, potential for models to be self-reinforcing,
the need for benchmarks, and the need to increase engagement
within the chemistry community.

Need for Improved Synthetic Chemistry
and Biological Data Collection/
Dissemination
Central to the development of successful AI/ML models are
high-quality data and training sets. Currently, the field of
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synthetic chemistry is limited by inconsistent use of electronic
laboratory notebooks or automated systems that might facilitate
the capture of a multitude of additional reaction parameters
and conditions. Data concerning failed reactions is often absent
from published journal articles and conference presentations.
The NCATS ASPIRE program seeks to enable and support the
capture and sharing of both positive and negative reaction data,
through the development of an electronic synthetic chemistry
portal and an integrated chemical database.

Because algorithms require both positive and negative data
under a variety of conditions to learn and predict possible
reaction outcomes and routes, existing data repositories are
severely limited. Widespread adoption and use of electronic
laboratory notebooks will improve the quality of databases
and training data sets. There is an abundance of chemistry
databases, both from commercial and open sources. However,
this very abundance of data resources is problematic since there
is currently no data standardization, no centralization, and no
assurance of quality control. Many available databases are hand-
curated, given the current lack of sophisticated machine reading
or text extraction capabilities. Coming from multiple different
laboratories, the biological activity data is often not comparable
or easily correlated with values from other publications (Casciuc
et al., 2019). Further, the sparse, heterogeneous nature of these
public databases makes it difficult to create single, rigorously
defined training sets (Casciuc et al., 2019). Data-reporting
standards, including the types of data to be included and specific
formats, are needed to facilitate data capture and machine
reading, which will in turn help to produce higher-quality
datasets to inform ML models. While it is beyond the scope of
this perspective to detail what these standards should entail, it
is clear that consensus between groups from academia, industry,
funders, and publishers is critical for their widespread adoption
and acceptance by researchers.

Need for Increased Interpretability and
Reliability of Models
The NCATS ASPIRE program seeks to support the development
of novel AI/ML algorithms that would aid in the discovery
of novel analgesics and treatments for pain, opioid addiction,
and overdoses. One challenge to the application of AI
algorithms is the lack of interpretability of these models.
Many chemists currently perceive these algorithms as a
“black box,” making it difficult to ascertain how the model
arrives at its conclusion(s). Researchers must ensure that
AI models derive meaningful conclusions from the data by
investigating alternative models to detect potential confounding
variables (Chuang and Keiser, 2018).

Need to Address Potentially
Self-Reinforcing Nature of Ml Models
Further, AI algorithms have the potential to be self-reinforcing:
existing systems often prioritize routes based on frequency of
appearance in the literature, and not necessarily because they are
the best possible routes (Jordan, 2018). As models suggest these
common transformations and are increasingly used by chemists,

they become more likely to be suggested by the same AI systems.
This feedback loop could then lead to an overreliance on certain
reactions and reduce synthetic creativity.

Need for Benchmarks
With the recent proliferation of papers and approaches
describing the application of deep learning techniques to drug
discovery, the challenge becomes how best to evaluate and
compare them and to discern their relative strengths and
weaknesses. A series of standard metrics and benchmarks
that would facilitate the evaluation and comparison of new
and existing models was proposed recently (Wu et al., 2018;
Brown et al., 2019; Polykovskiy et al., 2019). Suggested metrics
include fragment similarity, scaffold similarity, nearest neighbor
similarity, internal diversity, and Frechnet ChemNet Distance
(Polykovskiy et al., 2019). Researchers have also proposed
dividing benchmarks into distribution-learning benchmarks,
including validity and novelty, and goal-directed benchmarks
(Brown et al., 2019). It is also important to note that benchmarks
for molecular optimization have different demands and these
need to be addressed. AI researchers should strive to make their
codes and datasets widely accessible to the larger community to
facilitate comparison and evaluation by others. These proposed
benchmarking standards and open sharing will provide the
framework and means to evaluate the quality and diversity
of the molecules generated by the models. While the current
NCATS ASPIRE program does not directly address the need for
benchmarking, we recognize its importance for the success of the
program and the field.

Need to Encourage Engagement by
Chemists
Some scientists are skeptical that a machine can learn and execute
on the nuances of medicinal and organic chemistries and believe
that the power of AI/ML is overestimated (Lemonick, 2018).
As with any new technology, this skepticism naturally leads to
a reluctance to engage with or adopt AI models. Even if AI
is “overhyped,” as most respondents to a recent C&EN survey
indicated (Lemonick, 2018), it does offer some opportunities
and advantages that warrant attention from synthetic and
medicinal chemists. Increasing engagement with and use of
AI/ML by chemists depends on increased education around these
advantages and opportunities, particularly with regard to how
these new technologies might make enhance the day to day
activities of chemists. De novomolecule generation and synthetic
route planning will assist chemists in prioritizing analogs to
synthesize and thus shorten the lead optimization process.
Further, these innovations will provide the basis for AI-enabled
automated laboratories (Sanchez-Lengeling and Aspuru-Guzik,
2018). Automated chemistry laboratories would liberate chemists
from much of the mundane, physical burden of weighing out
reagents, setting up reactions, and purifying final products. With
human error minimized, chemical reactions should be more
reproducible and efficient. Untethered to the bench, chemists
would be available to spend time on more difficult synthetic
challenges or novel intellectual pursuits. Automated laboratories
would also make areas of research more accessible to individuals

Frontiers in Robotics and AI | www.frontiersin.org 4 January 2020 | Volume 6 | Article 143

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Duncan et al. Accelerating Drug Discovery Through AI

with disabilities (Lemonick, 2019). Increased data sharing, as
discussed above, would reduce the duplication of efforts and
facilitate the adoption of novel methods and reactions in
the laboratory. Together, these benefits would transform the
practice of medicinal chemistry and reduce the time and cost of
bringing new chemical probes, to sciences and new therapeutics
to patients.

CONCLUSIONS AND FUTURE OUTLOOK

The application of AI to the design of novel molecules
and reaction conditions has the power to transform many
aspects of drug discovery, including the identification of new
biological targets, novel scaffolds, and improved synthetic
routes. The NCATS ASPIRE program will utilize the power
of emerging technologies, including AI, recent innovations in
automated synthesis, liquid handling and microfluidics, and
high-throughput screening to effectively assay chemical space
and identify novel biologically active small molecules. By
accelerating the design-make-test cycle and delivering novel
molecules more efficiently, ASPIRE has the potential to reduce or
eliminate the bottlenecks in chemical biology and pharmaceutical
development. The ASPIRE Design Challenges are an important
first step in implementing the ASPIRE program, addressing
the current need for improved chemical databases, electronic
laboratory notebooks, biological assays, and algorithms. The
implementation of ASPIRE through prizing competition allows
for future expansion of the program in response to the need
for new tools and technology during the program’s course,
as well as newly identified scientific roadblock that may need
to be addressed in the future to achieve the goals of the
ASPIRE. Some of the components that we currently see as being
important to be included in the program and assure its success
include data standardization, consensus on descriptors and

metadata needed to enable automated synthetic technologies, and
improved laboratory automation equipment with user-friendly
interfaces. The tools and technologies developed as part of the
NCATS ASPIRE Design Challenges will initially be focused on
analgesics with minimal addictive properties, as part of the NIH
HEAL InitiativeSM. However, we anticipate that the developed
and eventually widely disseminated tools and technologies will
be transferable to other diseases and disorders in the future.

Further technological advances in AI will require a concerted
effort across the chemistry community, involving funders,
academic institutions, and industry to bring the field fully into
the twenty first century. From software to hardware developers
to the next generation of bench scientists, the field needs to
collaborate on the best ways to capture and utilize the data
of chemical reactions and facilitate the identification of new
chemistries and the discovery of novel therapeutics. These “labs
of the future” will harness the power of automated synthesis
platforms, AI, and high-throughput biological assays to increase
the speed and safety, while reducing the time and cost, required
to bring new therapies to patients. Once widely available and
utilized, these platforms will help make the dream of precision
medicine, medications tailored to a particular patient with a
particular disease state, a reality.
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