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ABSTRACT
The Maximum Entropy Theory of Ecology (METE) predicts a universal species–area
relationship (SAR) that can be fully characterized using only the total abundance
(N) and species richness (S) at a single spatial scale. This theory has shown promise
for characterizing scale dependence in the SAR. However, there are currently four
different approaches to applying METE to predict the SAR and it is unclear which
approach should be used due to a lack of empirical comparison. Specifically, METE
can be applied recursively or non-recursively and can use either a theoretical or
observed species-abundance distribution (SAD). We compared the four different
combinations of approaches using empirical data from 16 datasets containing over
1000 species and 300,000 individual trees and herbs. In general, METE accurately
downscaled the SAR (R2 > 0.94), but the recursive approach consistently under-
predicted richness. METE’s accuracy did not depend strongly on using the observed
or predicted SAD. This suggests that the best approach to scaling diversity using
METE is to use a combination of non-recursive scaling and the theoretical abundance
distribution, which allows predictions to be made across a broad range of spatial
scales with only knowledge of the species richness and total abundance at a single
scale.

Subjects Biodiversity, Ecology
Keywords Abundance, Biodiversity, Species richness, Entropy, Information theory, Scaling

INTRODUCTION
The species–area relationship (SAR) is a fundamental ecological pattern that characterizes

the change in species richness as a function of spatial scale. The SAR plays a central role in

predicting the diversity of unsampled areas (Palmer, 1990), reserve design (Whittaker et al.,

2005), and estimating extinction rates due to habitat loss (Brooks, da Fonseca & Rodrigues,

2004). Applications involving the SAR depend strongly on the form of the relationship

(Guilhaumon et al., 2008) which is known to change with spatial scale (Palmer & White,

1994; McGlinn & Hurlbert, 2012). Despite the scale-dependence of the SAR, a simple

non-scale dependent model (the power-law) is still the most commonly used model for the

SAR (Tjørve, 2003).

The Maximum Entropy Theory of Ecology (METE) is a unified theory that shows

promise for characterizing a variety of macroecological patterns including the species-

abundance distribution, a suite of relationships between body-size and abundance, and

a number of spatial patterns including the species–area relationship (Harte et al., 2008;
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Harte, Smith & Storch, 2009; Harte, 2011). METE adopts the inferential machinery

of Maximum Entropy (MaxEnt; Jaynes, 2003) to solve for the most likely state of an

ecological community (Haegeman & Loreau, 2008; Haegeman & Loreau, 2009) using only

information on the total number of species, the total number of individuals, the total

metabolic rate of all the individuals, and the area of the community.

METE predicts that all SARs follow a universal relationship between the exponent

of a power-law characterizing the SAR at a particular scale and the ratio of richness

and community abundance. The exponent of the SAR is scale dependent, decreasing

with increasing spatial scale. Empirical evaluation of the theory suggests that METE is a

promising model for the SAR (Harte et al., 2008; Harte, Smith & Storch, 2009); however,

there are currently four different approaches to applying METE to predict the SAR and it is

unclear which approach should be used due to a lack of empirical comparison.

There are two distinct versions of METE, recursive (where richness at different scales

is obtained by consecutively halving or doubling of area; Harte, Smith & Storch, 2009)

and non-recursive (where richness at different scales is obtained directly; Harte et al.,

2008). These two versions predict somewhat different SARs. It is not clear a priori which

of these versions of METE should be more accurate, and it has been suggested that the

best approach should be based on empirical comparisons (Harte, 2011). In addition, the

METE-SAR is derived using the species-abundance distribution (SAD). The SAD can

either be predicted from N and S or the empirical distribution can be used. The most

general use of METE for predicting diversity across scales relies on the use of the theoretical

abundance distribution, but there have been no comparisons of METE-SAR predictions

using theoretical and empirical SADs.

To understand which approach to METE is best for characterizing diversity across

scales we conducted a thorough empirical comparison of the four different variants of the

METE-SAR prediction: (1) recursive with predicted SAD, (2) recursive with observed SAD,

(3) non-recursive with predicted SAD, and (4) non-recursive with observed SAD. Using 16

spatially explicit plant datasets we compared the form and accuracy of the predicted SAR

across the four variations of METE at a wide-range of spatial scales and across a diverse set

of plant communities with over 1000 species and 300,000 individual trees and herbs.

METHODS
Downscaling richness
The METE approach to predicting the SAR is a two-step application of the maximum

entropy formalism (MaxEnt): (1) MaxEnt is first used to predict the SAD which represents

the probability that a species has abundance n0 in a community of area A0 with S0

species and N0 individuals, 8(n0|N0,S0,A0), and (2) MaxEnt is then used to predict

the intra-specific, spatial-abundance distribution which represents the probability that n

out of n0 individuals of a species are located in a random quadrat of area A drawn from a

total area A0,5(n|A,n0,A0). The5 distribution is spatially implicit and does not contain

information on the spatial correlation between cells. If the observed species abundance
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Figure 1 An illustration of the process for downscaling species richness from A0 to A0/4 across the
four variants of METE. The recursive approach uses either (A) the theoretical SAD (inset curve) or
(B) the observed SAD (inset points) to predict richness at A0/2 and then the process is repeated to
generate a prediction at A0/4. In contrast, the non-recursive approach uses either (C) the theoretical
SAD or (D) the observed SAD to predict richness at A0/4 directly. S0 is the total number of species, N0 is
the total number of individuals, and n0 is the vector of species abundances at the community scale (A0)

abundance.

distribution is used instead of the METE distribution, then only the 5 distribution is

solved for using MaxEnt.

There are no adjustable parameters in METE, and the solutions to5 and8 only depend

on the empirical constraints and possible system configurations (Haegeman & Loreau,

2008; Haegeman & Loreau, 2009; Haegeman & Etienne, 2010). If the observed SAD is not

used then constraints on the average number of individuals per species (N0/S0) and on the

upper bound of the number of individuals N0 can be used to yield a truncated log-series

abundance distribution (Fig. 1, Harte et al., 2008; Harte, 2011). To predict5, METE places

constraints on the average number of individuals per unit area (n0A/A0) and on the upper

bound of the total abundance of a species n0. Although METE requires total metabolic rate

to derive its predictions, this variable can be ignored when solving for the METE SAD or

SAR (Harte et al., 2008; Harte, Smith & Storch, 2009; Harte, 2011).

There are two ways to downscale (and upscale) the5 distribution (Fig. 1). There is a

recursive approach (Figs. 1A and 1B) in which the constraints at A0 are used to solve for

5 at A0/2, which provides new constraints (i.e., predicted SA0/2 and NA0/2) for solving

5 at A0/4 and so on until richness is computed at every bisection of the total area A0/2i

where i is a positive integer (Harte, Smith & Storch, 2009; Harte, 2011, p 159). The recursive

approach continually updates its prior information as it downscales richness. Alternatively

we can use a non-recursive approach (Figs. 1C and 1D) in which we solve for5 at any area

based only on the constraints at A0 (Harte et al., 2008; Harte, 2011, p 243). The recursive

approach may be more accurate because it continually upgrades its prior information or
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less accurate due to error propagation thus only empirical comparisons can determine

which approach is best used for prediction (Harte, 2011, p 160).

Harte (2011) provides the derivations for the 5 and 8 distributions, so here we will

only highlight the most relevant equations for differentiating the four METE variants.

The MaxEnt solution to maximizing entropy for5 is:

5(n|A,n0,A0)=
1

Z5
e−λ5n (1)

where λ5 is the Lagrange multiplier and Z5 is the partition function (Harte, 2011,

Eq. 7.48). The partition function ensures normalization and it is defined as:

Z5 =
n0∑

n=0

e−λ5n
=

1− e−λ5(n0+1)

1− e−λ5
. (2)

The Lagrange multiplier can be solved for by defining5 in terms of its constraints which

yields:

n̄=
n0A

A0
=

∑n0
n=0nxn∑n0
n=0xn

(
x

1− x
−
(n0+ 1) · xn0+1

1− xn0+1

)
(3)

where x = e−λ5 to simplify notation. Although the METE prediction for5 can be solved

numerically for any area, it is only known analytically for a special case in which the area A

is half the total area A0 (Harte, 2011, Eq. 7.51):

5

(
n

∣∣∣∣A0

2
,n0,A0

)
=

1

1+ n0
. (4)

Equation (4) shows that METE predicts that all possible arrangements of n0 individuals are

equally likely across two equal area quadrats. The flat distribution characterized by Eq. (4)

is identical to the prediction offered by the Hypothesis of Equal Allocation Probability

(HEAP) model and therefore the recursive application of Eq. (4) to downscale5 generates

the same set of5 distributions as the HEAP model (Harte et al., 2005; Harte, 2007; Harte,

2011):

5

(
n

∣∣∣∣A0

2i
,n0,A0

)
=

n0∑
q=n

5
(

q
∣∣∣ A0

2i−1 ,n0,A0

)
(q+ 1)

, i= 1,2,3,.... (5)

Thus for a given bisection of the total area (i.e., A = A0/2i) we can either use the recursive

approach (Eq. (5)) or the non-recursive approach (Eq. (1)) to compute the5 distribution.

Expected richness is simply the sum of the individual probabilities of species occupancy.

Table 1 gives the expressions for expected richness at A0/2 given the four possible

combinations of the choice of the downscaling approach and the choice of SAD to use. The

equations in Table 1 will also hold for finer spatial scales except for the recursive, theoretical

SAD approach which requires downscaling the SAD as well (Harte, 2011, Eq. 7.63).
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Empirical comparison
Testing METE’s predictions requires spatially explicit, contiguous data from a single

trophic level. We carried out an extensive search for data that met these requirements.

This search resulted in a database of 16 communities (Table 2; see Table S1 for additional

details). All of the datasets are terrestrial, woody plant communities with the exception of

the serpentine grassland which is herbaceous. In the woody plant surveys, the minimum

diameter at breast height (i.e., 1.4 m from the ground) that a tree must be to be included in

the census was 10 mm with the exception of the Cross Timbers and Oosting sites where the

minimum diameter was 25 and 20 mm respectively. Where datasets contained time-series

information we selected a single census year from each dataset to analyze. Harte (2011)

suggested that MaxEnt models will perform best when a single process such as the presence

of a past disturbance is not dominating the system and rather a multitude of different

interacting processes are operating. With this in mind, we attempted to choose the

survey years that were the longest amount of time from known stand-scale disturbances

(e.g., hurricane events).

For each dataset we constructed fully-nested, spatially-explicit SARs (Type IIA, Scheiner,

2003). Recursive METE only makes predictions for bisected areas so we restricted our

datasets to areas that were square or rectangular with the dimensional ratio of 2:1. Due to

the irregular shape of the Sherman and Cocoli sites we defined two separate 200× 100 m

subplots within each site (Fig. S1). We then calculated the results for each of the two

subplots and reported the average.

To assess the accuracy of METE’s predictions for the SAD and the four downscaling

algorithms of the SAR, we computed the coefficient of determination about the one-to-one

line: R2
= 1 −

∑
i(obsi − predi)

2/
∑

i(obsi − obsi)
2 where obsi and predi are the ith

log-transformed observed and METE-predicted values (abundance for the SAD, richness

for the SAR) respectively. Log transformed richness was used to minimize the influence of

the few very large richness values and because relative deviations are of greater interest in

evaluating SARs than absolute differences. We used the python package METE (White et

al., 2013), as well as a suite of project specific R and python scripts for our analysis. All R

and Python code used to generate these analyses is archived in the supplemental materials

and also available on GitHub (http://github.com/weecology/mete-spatial).

RESULTS
The four versions of METE all produced reasonable estimates of downscaled richness

(Fig. 1). The R2 values ranged from 0.944 for the recursive, observed-SAD model up

to 0.997 for the non-recursive, observed-SAD (Fig. 2). Despite the high coefficient of

determination, the recursive approach deviated systematically from the empirical data

by underpredicting richness (Figs. 2 and 3). This deviation became larger at finer scales

(Fig. 2). In contrast, the non-recursive approach showed no systemic deviations. The

SAD was well characterized by the METE predictions (R2
= 0.95); however, METE

did on average predict slightly more uneven communities (i.e., predicted abundance

was too low for rare species and too high for abundant species, Fig. S2). Overall, the
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Table 2 Summary of the habitat type and state variables of the vegetation datasets analyzed. The state
variables are total area (A0), total abundance (N0) and total number of species (S0).

Site names Habitat type Ref. A0 (ha) N0 S0

BCI Tropical forest a,b,c 50 205096 301

Sherman Tropical forest d 2 7622.5 174.5

Cocoli Tropical forest d 2 4326 138.5

Luquillo Tropical forest e 12.5 32320 124

Bryan Oak-hickory forest f,g,h 1.7113 3394 48

Big Oak Oak-hickory forest f,g,h 2 5469 40

Oosting Oak-hickory forest i 6.5536 8892 39

Rocky Oak-hickory forest f,g,h 1.44 3383 37

Bormann Oak-hickory forest f,g,h 1.96 3879 30

Wood Bridge Oak-hickory forest f,g,h 0.5041 758 19

Bald Mtn. Oak-hickory forest f,g,h 0.5 669 17

Landsend Old field, pine forest f,g,h 0.845 2139 41

Graveyard Old field, pine forest f,g,h 1 2584 36

UCSC Mixed evergreen forest j 4.5 5885 31

Serpentine Serpentine grassland k 0.0064 37182 24

Cross Timbers Oak woodland l 4 7625 7

Ranges 0.0064–50 669–205096 7–301

Notes.
a Condit (1998).
b Hubbell et al. (1999).
c Hubbell, Condit & Foster (2005).
d Condit et al. (2004).
e Zimmerman et al. (1994).
f Peet & Christensen (1987).
g McDonald, Peet & Urban (2002).
h Xi et al. (2008).
i Palmer et al. (2007).
j Gilbert et al. (2010).

k Green, Harte & Ostling (2003).
l Arévalo (2013).

inclusion of the observed SAD did not strongly improve the prediction of the SAR.

For the non-recursive approach including the observed SAD improved the overall

R2 from 0.984 to 0.997 (Figs. 3C and 3D), but the accuracy of the recursive model

actually decreased with the inclusion of the observed SAD (R2 from 0.976 to 0.944,

Figs. 3A and 3B).

Results were broadly consistent across datasets, with the exception of the serpentine

grassland and Cross Timbers oak woodland. The serpentine community displayed a

steeper non-saturating SAR in contrast to the other datasets, and was the only dataset

where the recursive downscaling approach was more accurate (Fig. 2O). The oak

community displayed a sigmoidal SAR, and in contrast to the other study sites the

inclusion of the observed SAD for the oak community resulted in a large improvement

in the predicted SAR (Fig. 2P).
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Figure 2 Empirical species–area relationships and the four versions of the METE model across the 16 sites. The habitat type of each site is given
above each panel. The empirical averages are the open circles, the recursive approach is the red lines, the non-recursive approach is the blue lines,
the curves using the observed SAD are dashed and those using the METE-SAD are solid.
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Figure 3 Observed vs predicted richness across datasets and spatial scales for the four METE SAR
models. The R2-value is computed with respect to the one-to-one line (diagonal).

DISCUSSION
All four variations of METE performed well at predicting species richness across scales

(all R2 > 0.94); however, some versions performed consistently better than others.

The non-recursive approach outperformed the recursive version of METE in all but

one dataset (the serpentine grassland). The recursive approach also showed small,

but consistent, under-predictions for species richness. This means that the recursive

approach predicted stronger intra-specific spatial aggregation than observed in the data.

This finding is consistent with Harte’s (2011) comparisons of the species-level spatial

abundance distribution in which the recursive approach predicted greater aggregation

than the non-recursive approach. Given that the recursive approach provides a poorer

fit to empirical data and can only be applied at particular scales (i.e., A0/2,A0/4,...), we

recommend the use of the non-recursive approach for downscaling the SAR. However,
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the recursive approach is currently the only means of providing a METE-based prediction

for the distance decay relationship via the hypothesis of equal allocation probabilities

approach in Harte (2007), and the universal relationship between S/N and the slope of the

SAR is currently only known for the recursive approach (Harte, Smith & Storch, 2009).

The SAR predictions were generally robust to using the predicted rather than observed

SAD. Including the observed SAD increases the amount of information used to constrain

the predictions, but it did not substantially increase the overall accuracy of the SAR

predictions. This was primarily because the empirical SAD was well characterized by

the METE-SAD, consistent with several other studies (Harte et al., 2008; Harte, 2011;

White, Thibault & Xiao, 2012). Models in general, and MaxEnt models in particular,

typically match empirical data better as increasing numbers of parameters or constraints

are included in the analysis (Haegeman & Loreau, 2008; Roxburgh & Mokany, 2010; Harte,

2011). Therefore the naı̈ve expectation for using the observed SAD is that the accuracy of

the prediction should increase. However, this was generally only true for the non-recursive

approach. This occurred because rarity and intraspecific aggregation interact in subtle

ways to determine the shape of the SAR (He & Legendre, 2002; McGlinn & Palmer,

2009), and simply fixing one of these pieces of information does not guarantee improved

predictive power. While using the observed SAD does improve the R2 for the non-recursive

form of METE, it only does so by ∼1%. Therefore N and S are generally sufficient to

accurately downscale richness using METE across a wide range of habitat types. This is

important because it should be possible to model geographic patterns of richness and

abundance at a single scale to predict the SAD (White, Thibault & Xiao, 2012) and then use

those modeled values to predict richness across scales.

Although METE yields accurate predictions for the SAR, its current form has limitations

with respect to its extent of applicability and its ability to tie in more broadly with

species–time and species–time–area relationships (Rosenzweig, 1995; White et al., 2010).

Specifically, METE predictions are thought to be most relevant for single trophic level

datasets that are spatially contiguous and relatively environmentally homogenous (Harte,

2011), thus constraining the applicability of METE. At the large spatial scales that are

often of interest in conservation planning it is likely that a standard application of METE

will fail once species ranges do not occupy all of A0. These are also the scales at which the

third phase of the triphasic SAR is expected to occur (Allen & White, 2003; Storch, Keil &

Jetz, 2012), and METE does not predict this accelerating phase. However, McGill (2010)

suggested that METE’s local predictions could be connected with a broad-scale theory to

predict a triphasic SAR. Additionally, METE does not currently make predictions through

time; however, Harte (2011) suggests using Maximum Entropy Production (Dewar, 2005).

It should be possible to extend METE to predict the species–time–area relationship (White

et al., 2010) because this pattern, like the SAR, can be modeled in terms of the number of

unique individuals sampled per unit area and time (McGlinn & Palmer, 2009).

Recently there have been two critiques of the METE spatial predictions. The universality

of the relationship between the slope of the recursive METE-SAR and the ratio of N/S was

questioned on the basis that the predicted METE-SAR for subsets of a community cannot
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be added to yield the community based prediction (Šizling et al., 2011; Šizling, Kunin &

Storch, 2013). However, Harte et al. (2013) argue that it is not a flaw of METE or a strong

argument against universality.

Additionally, Haegeman & Etienne (2010) argued that a multivariate, spatially implicit

analog of the univariate 5 distribution that is derived using the non-recursive METE

approach makes different predictions at different spatial scales (i.e., it is not scale

consistent); however, they recognize that a spatially-explicit, scale-consistent version of

this distribution may still exist. This critique does not apply to the recursive approach

(DJ McGlinn, X Xiao, J Kitzes & EP White, unpublished data), but it may apply in other

contexts such as the scaling of the SAD. The lack of scale-consistency in some of METE’s

predictions suggests that the choice of the anchor scale (A0) may influence the theory’s

predictions; however, our results, which spanned a range of anchor scales (0.0064 to 50 ha),

did not appear to change systematically with scale. Furthermore, White, Thibault & Xiao

(2012) demonstrated that the METE-SAD accurately characterized empirical SADs across

studies with a wide range of anchor scales. Although METE may not provide a universally

applicable model of spatial structure in ecological systems and some of its predictions will

depend on the anchor scale, our results as well as others suggest that METE can be used

as a practical tool for inferring patterns of diversity and abundance from relatively little

information.

We examined the down-scaling of richness; however, many conservation applications

are interested in up-scaling richness or predicting diversity at a coarse unsampled

scale using information at a fine scale. Harte, Smith & Storch (2009) demonstrated

that recursive-METE accurately up-scaled tropical tree richness. Currently a formal

examination of upscaling using the non-recursive approach is lacking. Thus, future

investigations should examine the ability of different variants of METE to upscale richness

across a range of spatial scales and ecological systems.

METE represents a useful practical tool for accurately predicting species richness across

spatial scales. Among METE’s four different approaches to predict the SAR, our analysis

demonstrates that the non-recursive approach outperforms the recursive approach,

and that using the observed rather than predicted SAD does not substantially improve

accuracy. Therefore the METE prediction derived using the non-recursive approach and

the predicted SAD will likely be the most useful for future applications involving the SAR.
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Šizling AL, Kunin WE, Šizlingová E, Reif J, Storch D. 2011. Between geometry and biology: the
problem of universality of the species–area relationship. The American Naturalist 178:602–611
DOI 10.1086/662176.
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