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SUMMARY

A disclosed technique employs electrochemical dehydrogenative cross-coupling to create organophos-
phates, utilizing phosphites compounds with arenols. Inorganic iodide salts serve dual roles as redox cat-
alysts and electrolytes in an undivided cell, omitting the need for external oxidants or bases. Initial mech-
anistic investigations indicate the reaction unfolds via an electro-oxidative radical pathway, facilitating the
formation of P–O bonds, leading to the generation of oxygen radicals in the formation of acetylaminophe-
nol. This environmentally friendly approach offers excellent tolerance to various functional groups,
achieves high yields (up to 95% isolated yield), and accommodates awide range of substrates, showcasing
its utility for practical synthesis applications.

INTRODUCTION

Organophosphorus compounds, marked by their oxygen-phosphoryl (O-P) bond, are crucial across a wide spectrum of applications, ranging

from medicinal to agricultural chemistry.1 These compounds, including fosfomycin, a clinically used antibiotic, and the widely produced her-

bicides glyphosate and glufosinate, play a significant role in healthcare and food production.2 Their use also extends to organic synthesis and

catalysis, as demonstrated by their involvement in Horner-Wadsworth-Emmons reactions, which underlines their essentiality in chemical

manufacturing.2,3

The application of organophosphorus compounds extends to material chemistry, where their effectiveness in metal extraction is well

recognized. Additionally, their unique properties are leveraged in the development of eco-friendly fire retardants, reflecting a commitment

to safer, and more sustainable chemical practices.4,5 This wide-ranging utility highlights the critical need for advancing synthesis methods for

organophosphorus compounds, particularly those that are environmentally considerate and efficient.

Historically, the synthesis of organophosphates and phosphoramidates-key subclasses of these compounds has depended on conven-

tional methods like direct esterification/amidation. These techniques, often requiring the use of toxic and moisture-sensitive phosphoryl ha-

lides, present notable safety, and environmental hazards. Moreover, the Michaelis-Arbuzov reaction, despite its popularity, faces limitations

such as the employment of toxic alkyl halides and the production of environmentally unfriendly side products, exacerbating concerns over

sustainability and efficiency. In 2018, Prof. Han Li-Biao’s team reported an efficient and environmentally friendly alcohol-based Michaelis-

Arbuzov reaction.5 Subsequent years saw further innovations, including Prof. Han Jianlin’s team’s 2019 report on the electrochemical dehy-

drogenative phosphorylation of alcohols,6 and Prof. Wang Jianbo’s 2019 report on catalyst-free phosphorylation of aryl halides through elec-

trochemical reduction.7 In 2021, Prof. Zhou Aihua’s team reported on the electrochemical phosphorylation of arenols and anilines, leading to

the synthesis of organophosphates and phosphoramidates (Scheme 1).4

Recently, electrochemical synthesis has gained traction as an innovative alternative, offering a cleaner, more efficient, and greener

approach to complexmolecule synthesis, including organophosphorus compounds.8–10 Thismethod eliminates the necessity for startingma-

terial pre-functionalization and the extensive use of toxic oxidants, offering a more streamlined, oxidant-free process.

The introduction of electrochemical techniques for forming P(O)-O bondsmarks a significant leap forward in the synthesis of organophos-

phates. This strategy not only adheres to the principles of green chemistry by minimizing the environmental footprint of chemical processes

but also broadens the efficiency and versatility of organophosphorus compound synthesis.11–20 Considering their widespread applications in

areas such as flame retardancy, pest control, pharmaceuticals, materials science, and semiconductor technology, developing more efficient

and eco-friendly synthesis methods is crucial.
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RESULTS AND DISCUSSION

Here in, our study aims to establish an innovative, effective, and green electrochemical technique for producing organophosphates and apply

it to the post modification of peptides. By applying electrochemical oxidative cross-coupling protocols, we utilize diethyl phosphite and are-

nols/tyrosine residue in the presence of potassium iodide, serving both as electrolyte and catalyst, to synthesize the desired products under

gentle conditions. This method underscores the potential of electrochemical strategies to propel organophosphorus chemistry forward.

Through our research, we contribute to the ongoing pursuit of sustainable and new synthetic strategies, ensuring the enduring significance

and practicality of organophosphorus compounds in meeting the challenges of contemporary science and technology.

In order to explore the applicability of phenol derivatives, a diverse array of substituted phenols was subjected to reaction with triethyl

phosphite under optimized conditions (Scheme 2). Initially, arenols featuring electron-donating or electron-withdrawing groups at the

para-position underwent phosphoesterification, resulting in the formation of corresponding phosphates products (3aa-3a.m.) with yields

ranging from 31% to 95%, indicating both excellent and good outcomes. Moreover, it was noted that modification of Aromatic ring com-

pounds possessing phenolic hydroxyl groups with triethyl phosphite (3an-3ar) achieved moderate yields, specifically between 65% and

76%. In instances where ortho substituents presented slight steric hindrance to the dehydroesterification process, the resultant products

(3as-3av) were still obtained with commendable yields of 71%–80%. Findings revealed that the reaction accommodated phosphites with

diverse alkyl lengths, such as triisopropyl phosphite P(OiPr)3 and tributyl phosphite P(OnBu)3, both of which were suited for the reaction, pro-

ducing the desired outcomes with moderate yields. However, when employing substrates with significant steric bulk like triphenyl phosphite

P(OPh)3, the efficiency in achieving the targeted product yields was observed to decrease.

Following the exploration of the scope of phenol and phosphite derivatives, the selectivity and tolerance of other amino acids containing

tyrosine residueswere subsequently investigated. Dipeptides incorporating tyrosinewere subjected to the reaction, demonstrating favorable

selectivity toward modification (Scheme 3). Notably, di-peptides synthesized with inert amino acids such as glycine (7a), alanine (7b), leucine

(7c), isoleucine (7d), and valine (7e) yielded positive results.

Moreover, under electrochemical conditions, compatibility was extended to other oligopeptides, including phenylalanine with its aro-

matic ring, Boc-protected glutamic acid, Boc-protected aspartic acid, methionine containing a thiol group. This highlights the excellent toler-

ance and specificity of functional groups under electrochemical conditions. Furthermore, amino acids other than tyrosine were not modified,

indicating that the electrosynthesis bioconjugation reaction proceeds with selective, clean, and efficient outcomes, achieving good separa-

tion yields.

To achieve modification of biomacromolecules, we investigated the application of electrochemical methods for peptide modification

(Scheme 3). Our initial experiments employed the tyrosine-containing pentapeptide YAGFL as a substrate, which, upon reaction with phos-

phite, was fully converted to the phosphite-labeled product 7a. Subsequently, we explored the suitability of this electrolytic approach for

other tyrosine-containing peptide drugs, including b-endorphin, b-endorphin (1–5) amide, conotoxin, thyrotropin-releasing hormone, angio-

tensin II, enkephalin, and the anticancer agent-2 (MP-2). These peptides, each possessing at least one tyrosine residue at the N-terminal,

C-terminal, or within a loop structure, were found to be successfully labeled with phosphite within 20 min at room temperature for all cases

(9b–9h).

For further demonstrate the practicality and industrial applicability of the reaction, operations were scaled up to the gram level (Scheme 4).

A reaction involving 6.0 mmol of 1a and 20mmol of 2a was conducted with a current of 10 mA for a duration of 22 h. The outcomewas notably

Scheme 1. Reaction design

(A) Methods for organophosphonate synthesis.

(B) Electrochemically induced phosphorylation method.
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favorable, yielding 1.2 g of the cross-coupling product with a yield of 68%. The experimental results clearly indicate that the reactionmaintains

a relatively high efficiency even when scaled up to the gram level.

To investigate the reaction mechanism of interest, a series of control experiments were designed (Scheme 5). Initially, acetylaminophenol

and triethyl phosphite P(OEt)3 were employed as reactants under standard conditions, with the addition of radical scavengers DMPO and

TEMPO. It was observed that the inclusion of these scavengers significantly reduced the yield, thereby substantiating the radical nature of

the reaction. Subsequently, the reaction was conducted in the absence of electricity with iodine I2 as an additive, yet the desired product

was not obtained (iv). This indicates that the oxidation of KI to form iodine does not facilitate the reaction. Furthermore, when diethyl

Scheme 2. Substrate scope and survey of chemo-selective and functional group tolerance
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phosphite HPO(OEt)2 containing pentavalent phosphorus was reacted with acetylaminophenol under standard conditions, the anticipated

phosphoesterification product was not formed (v). This suggests that the reaction does not proceed via oxidation of triethyl phosphite fol-

lowed by a coupling reaction.

Moreover, cyclic voltammetry (CV) was employed to study the redox potentials of acetylaminophenol 1a, triethyl phosphite 2a, and po-

tassium iodide (KI) as detailed in (Figure 1A). CV shows that potassium iodide presents double oxidation peaks at 0.934V and 1.46V relative

to Ag/Ag+. The first oxidation potential of KI is lower than that of acetaminophen. The results show that potassium iodide is first anodized to

form free radical intermediates. Consequently, we hypothesize that the iodide ion is oxidized first, which then activates the phenolic hydroxyl

group of the acetylamino phenol, leading to the generation of oxygen radicals in the formation of acetylaminophenol.

Based on the results of these mechanistic experiments, a plausible electrooxidative radical reaction pathway was proposed (Figure 1B).

Iodide ions are oxidized at the anode to form high-valent iodine species, which activate the phenolic hydroxyl group on tetraacetamide

phenol, leading to the formation of the iodo-oxygen intermediate A. Intermediate A then undergoes a reversible homolytic cleavage to pro-

duce the oxygen radical intermediate B, which is captured by phosphite, yielding intermediate C. Finally, intermediate C eliminates an alkyl

radical to form the target product.

Scheme 3. Substrate scope and survey of oligopeptides

(1) reaction condition of di-peptides: constant current = 10 mA, tyrosine dipeptide 7 (0.20 mmol), triethyl phosphite 2a (1.00 mmol), electrolyte KI (0.4 mmol),

reaction solvent MeCN (7.0 mL), non-separation cell, air, room temperature reaction for 2 h, (2) reaction condition of polypeptides: constant current = 10 mA,

polypeptide 9 (5mg), triethyl phosphite 2a (30ml), electrolyte KI (20mg), reaction solvent MeCN (3.0 mL), non-separation cell, air, room temperature reaction

for 15 min. The conversion rate was quantitatively analyzed using Thermo Proteome Discoverer 2.5 based on the data obtained from mass spectrometry.
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Conclusions

In summary, we have crafted an innovative and environmentally friendly method for producing organophosphates. This method employs an

electrochemical oxidative cross-coupling technique, utilizing dialkyl phosphite alongside arenols and tyrosine-containing biomolecules. By

incorporating iodide salts as both redox catalysts and electrolytes within acetonitrile, we achieve notable yields of the desired products. Our

mechanistic analysis indicates that this reaction unfolds via an electro-oxidative radical pathway, facilitating the formation of P–O bonds. Key

advantages of our approach include its rapid execution, the use of gentle conditions, a high tolerance for various functional groups, and a

wide applicability to different substrates. Our team is actively pursuing further research into electrochemical transformations to expand

upon these findings.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Yue Weng (wengyue@hubu.

edu.cn).

Materials availability

‘‘This study did not generate new unique reagents.’’

Data and code availability

� Data: Data reported in this paper will be shared by the lead contact upon request.

� Code: This paper does not report original code.
� Additional: Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

METHOD DETAILS

Reaction optimization

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, Paracetanol (0.20 mmol), Triethyl phosphite (1.00 mmol), KI

(0.40 mmol) and solvent (7 mL) were combined and added.The bottle was equipped Platinum Plate (15 mm3 15 mm3 0.3mm,about 15 mm

immersion depth in solution) as the anode and Platinum Plate(15mm3 15mm3 0.3mm) as the cathode.The reactionmixture was stirred and

electrolyzed at constant current under room temperature. When the reaction finished, the reaction mixture was concentrated.The pure prod-

uct was obtained by flash column chromatography on silica gel (dichloromethane: methanol = 80:1).

Paracetanol scope and characterization

General Procedure for BioconJugation of Paracetanol and Triethyl phosphite:In an oven-dried undivided three-necked bottle (25 mL) equip-

ped with a stir bar, protected Paracetanol(0.20 mmol), Triethyl phosphite(1.00 mmol), KI(0.40 mmol)and MeCN (7 mL) were combined and

added. The bottle was equipped Platinum Plate (15 mm 3 15 mm30.3 mm immersion depth in solution) as the anode and Platinum

Plate(15 mm 3 15 mm30.3 mm) as the cathode. The reaction mixture was stirred and electrolyzed at constant current under room temper-

ature. When the reaction finished, the reaction mixture was concentrated. The pure product was obtained by flash column chromatography

on silica gel (dichloromethane: methanol = 80:1).

Triethyl phosphite scope and characterization

General Procedure for BioconJugation of Paracetanol and Triethyl phosphite:In an oven-dried undivided three-necked bottle (25 mL) equip-

ped with a stir bar, protected Paracetanol(0.20 mmol), Triethyl phosphite(1.00 mmol), KI(0.40 mmol)and MeCN (7 mL) were combined and

added. The bottle was equipped Platinum Plate (15 mm 3 15 mm30.3 mm immersion depth in solution) as the anode and Platinum

Plate(15 mm 3 15 mm30.3 mm) as the cathode. The reaction mixture was stirred and electrolyzed at constant current under room temper-

ature. When the reaction finished, the reaction mixture was concentrated. The pure product was obtained by flash column chromatography

on silica gel (dichloromethane: methanol = 100:1).

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Polypeptide drug

triethyl phosphite titanci-group 122-52-1

Acetonitrile titanci-group 75-05-8

KI titanci-group 7681-11-0
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Dipeptide scope and characterization

General Procedure for BioconJugation of dipeptide and Triethyl phosphite:In an oven-dried undivided three-necked bottle (25mL) equipped

with a stir bar, dipeptides(0.20 mmol), Triethyl phosphite(1.00 mmol), KI(0.40 mmol)and MeCN (7 mL) were combined and added. The bottle

was equipped Platinum Plate (15 mm 3 15 mm30.3 mm immersion depth in solution) as the anode and Platinum Plate(15 mm 3 15 mm3

0.3 mm) as the cathode. The reaction mixture was stirred and electrolyzed at constant current under room temperature. When the reaction

finished, the reaction mixture was concentrated. The pure product was obtained by flash column chromatography on silica gel (dichlorome-

thane: methanol = 60:1).

Polypeptide scope and characterization

General Procedure for BioconJugation of polypeptides and Triethyl phosphite: In an oven-dried undivided three-necked bottle (25 mL)

equipped with a stir bar, dipeptides(5mg), Triethyl phosphite(20ml), KI(20mg)and MeCN (3mL) were combined and added. The bottle was

equipped Platinum Plate (10 mm3 10mm30.3 mm) as the anode and Platinum Plate(10mm3 10mm30.3 mm) as the cathode. The reaction

mixture was stirred and electrolyzed at constant current of 10 mA under room temperature for 15 min. After completion of the reaction, the

solution was analyzed by MALDI-TOF-MS spectroscopy.The reaction was analyzed by reversed-phase HPLC on a 250 mm long ChromCore

C18 5mm column using a gradient of 5%–50% buffer B within 30 min. HPLC analysis used buffers A (water +0.1% TFA) and B (9:1 acetonitrile:

water +0.1% TFA). Conversion reported as a % conversion as determined.
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