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 Background: Despite the promising results of immunotherapy in cancer treatment, new response patterns, including pseu-
doprogression and hyperprogression, have been observed. Radiomics is the automated extraction of high-fi-
delity, high-dimensional imaging features from standard medical images, allowing comprehensive visualiza-
tion and characterization of the tissue of interest and corresponding microenvironment. This study assessed 
whether radiomics can predict response to immunotherapy in patients with malignant tumors of the digestive 
system.

 Material/Methods: Computed tomography (CT) images of patients with malignant tumors of the digestive system obtained at 
baseline and after immunotherapy were subjected to radiomics analyses. Radiomics features were extracted 
from each image. The formula of the screened features and the final predictive model were obtained using the 
Least Absolute Shrinkage and Selection Operator (LASSO) algorithm.

 Results: Imaging analysis was feasible in 87 patients, including 3 with pseudoprogression and 7 with hyperprogres-
sion. One hundred ten radiomics features were obtained before and after treatment, including 109 features of 
the target lesions and 1 of the aorta. Four models were constructed, with the model constructed from base-
line and post-treatment CT features having the best classification performance, with a sensitivity, specificity, 
and AUC of 83.3%, 88.9%, and 0.806, respectively.

 Conclusions: Radiomics can predict the response of patients with malignant tumors of the digestive system to immunother-
apy and can supplement conventional evaluations of response.
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Background

Immunotherapy has become a treatment of choice for pa-
tients with refractory or recurrent tumors. Unlike cytotoxic 
drugs, immunotherapeutic agents activate the anti-tumor ac-
tivities of the immune system [1–4]. Immune checkpoint an-
tibodies identified to date include antibodies to cytotoxic T 
lymphocyte-associated antigen-4 (CTLA-4) and programmed 
cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1). 
These antibodies have shown efficacy in the treatment of pa-
tients with melanoma, non-small cell lung cancer, renal can-
cer, and head and neck squamous cell carcinoma, as well as 
in microsatellite instability high (MSI-H) and mismatch repair 
deficient (dMMR) solid tumors.

Immunotherapeutic agents, however, can affect the immune 
system and alter anti-tumor responses, giving rise to unique 
response patterns, including pseudoprogression [5] and hy-
perprogression [6,7]. Pseudoprogression is defined as a re-
duction in tumor burden after its increase or the appearance 
of new lesions [8,9], whereas hyperprogression is defined as 
a tumor growth rate >2-fold higher after than before immu-
notherapy [6,7]. These response patterns make the evaluation 
of immunotherapy more complicated. For sample, some pa-
tients with increased tumor burdens or new lesions may bene-
fit from continued immunotherapy, whereas others experience 
progressive disease (PD), even hyperprogression, suggesting 
that they should be switched to alternative treatments. It is 
difficult to distinguish between patients who do and do not 
benefit from immunotherapy, including those patients who 
experience exacerbation of their condition while on immuno-
therapy, based on current response criteria.

The rapid development of medical informatics technology 
has given rise to radiomics, a method involving the automat-
ed extraction and analysis of a large number of high fidelity, 
advanced quantitative imaging features from medical imag-
es [10]. These medical images are used to comprehensively 
and non-invasively monitor tumor development and respons-
es to treatment, providing a reliable solution to the problem 
of tumor heterogeneity [10,11]. Radiomics has been applied 
to the diagnosis and clinical staging of various types of tu-
mors, including lung, colorectal, breast cancers, and gliomas, 
as well as to evaluating responses to treatment and predic-
tion of patient prognosis [12]. Radiomics is especially impor-
tant in patients receiving targeted therapy and immunothera-
py, as necrosis of tumor cells may not occur during the course 
of treatment. Thus, evaluating response based on tumor diam-
eter likely will not accurately reflect the therapeutic efficacy 
of these treatments. The present study assessed whether ra-
diomics could predict response to immunotherapy in patients 
with malignant tumors of the digestive system.

Material and Methods

Data were retrospectively collected from patients with malig-
nant tumors of the digestive system who had been treated 
with anti-PD-1/PD-L1 antibody, alone or in combination with 
anti-CTLA-4 antibody, in the Department of Gastrointestinal 
Oncology of Peking University Cancer Hospital from July 2016 
to November 2017. All patients were evaluated by enhanced 
computed tomography (CT) scans of the chest, abdomen, and 
pelvis. The responses of tumors were evaluated by irRECIST. 
Newly diagnosed lesions (£2 lesions per organ, £5 lesions in to-
tal) were included in the total measured tumor burden (TMTB).

Pseudoprogression was defined as irPD during evaluation, fol-
lowed subsequently by irCR, irPR, or irSD. The dynamic growth 
of tumors was evaluated by tumor growth kinetics (TGK). 
TPRE, T0, and TPOST represent scanning times before baseline, 
at baseline, and at the first evaluation after baseline, respec-
tively. TMTBPRE, TMTB0, and TMTBPOST represent TMTB before 
baseline, at baseline, and at the first evaluation after base-
line, respectively. TGKPRE was defined as the change in TMTB 
per unit time before immunotherapy and was calculated as 
(TMTB0–TMTBPRE)/(T0–TPRE). Similarly, TGKPOST was defined 
as the change in TMTB per unit time after immunotherapy 
and was calculated as (TMTBPOST–TMTB0)/(TPOST–T0). The ra-
tio of TGKPOST to TGKPRE was defined as the TGK ratio (TGKR). 
Hyperprogression was defined as a TGKR ³2 or a ³50% in-
crease in TMPBPOST from baseline.

Imaging data were retrospectively collected through the pic-
ture archiving and communication system (PACS) of Peking 
University Cancer Hospital. All patients had undergone en-
hanced and unenhanced CT scanning of the chest and abdomen 
at baseline and after treatment. CT scanning was performed 
using a GE Discovery 750HD, GE Lightspeed VCT, or Philips iCT 
scanner, with a tube voltage of 120 kV, an automatic current, a 
tube speed of 0.8–1.0 s/r, and a collimation of 64*0.625 mm, 
with reconstruction layer thickness of 5 mm and layer spac-
ing of 5 mm. Patients were injected with 80–100 ml of the 
contrast agent iohexol (300 mg/ml) through the cubital vein 
at a flow rate of 3.0 ml/s. Abdominal and pelvic enhanced CT 
scans were taken in the hepatic arterial phase at 25–30 s, the 
portal venous phase at 60–70 s, and the equilibrium phase at 
90-100 s, whereas chest enhanced scans were taken 25-30 s 
after administration of contrast agent. Patients missing im-
aging data at the corresponding time points and those eval-
uated by other imaging methods (e.g., MRI) were excluded.

Regions of interest (ROIs) of target lesions in portal venous 
phase CT images were delineated along the outline of the tar-
get lesion at the maximum level using ITK-SNAP software. For 
reference, the aorta was delineated at the same time. Each 
ROI was manually segmented by an experienced radiographer. 
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The digital images and sketched ROIs were subsequently up-
loaded to MATLAB software for feature extraction. The image 
features extracted in this study were divided into 3 categories 
with a total of 109 features, including 15 first-order gray-lev-
el statistical features, 16 geometric features, and 78 second-
order texture features (Table 1).

Feature screening involved 3 steps. In the first step, significant 
screening, t values between positive and negative samples were 
calculated for each feature using the equation:

𝑡𝑡 𝑡 𝑋𝑋� − 𝑋𝑋��

�(𝑛𝑛� − 1)𝑆𝑆�� + (𝑛𝑛� − 1)𝑆𝑆��𝑛𝑛� + 𝑛𝑛� − 2 ( 1𝑛𝑛� +
1
𝑛𝑛�)

 

 
where c

_
 indicates the mean, S2 indicates the sample variance, 

and n indicates the sample size. The t values were arranged 
from the largest to the smallest. The feature with the larger 
t value was selected, and the feature with the smaller t val-
ue was discarded.

In the second step, colinearity screening, the covariance be-
tween features was calculated by correlation coefficients, with 
colinearity defined as features with a correlation coefficient 
>0.9. Correlation coefficients were calculated using the formula:

𝑟𝑟 𝑟 𝑆𝑆��
𝑆𝑆�𝑆𝑆� 

where S indicates the standard deviation. If 2 features showed 
collinearity, the feature with the larger t value was retained 
and the feature with the smaller t value was rejected.

In the third step, collaborative screening features were screened 
and a final linear prediction model constructed using the Least 
Absolute Shrinkage and Selection Operator (LASSO) [13]. The 
LASSO algorithm suppresses the coefficients of some features 
by adjusting their weight parameters l using the formula:

𝑙𝑙�𝛽𝛽� ���−𝑦𝑦�𝛽𝛽�𝑥𝑥� + ���1 + 𝑒𝑒������ + 𝜆𝜆‖𝛽𝛽‖�
�

���
 

where bTĉ is the abbreviated form of wTc+b, and the linear re-
gression model predicts z=wTc+b.

For model establishment and verification, the LASSO algorithm 
provided the linear combination formula of the screened fea-
tures and the final predictive model. The predictive model 
was trained by a logistic regression model, followed by 5-fold 
cross-validation of the data set to verify the predictive ability 
of the model. Receiver operating characteristic (ROC) curves 
were constructed, and the performance of the model was as-
sessed by determining its sensitivity, specificity, and the area 
under the ROC curve (AUC).

Results

During the study period, 112 patients with malignant tumors 
of the digestive system were treated with anti-PD-1/PD-L1 an-
tibody; the characteristics of these patients are summarized 
in Table 2. First response was evaluated in 97 patients by ir-
RECIST, with 24 achieving irPR, 26 having irSD, and 47 having 
irPD. No patient achieved irCR. Four patients were identified 
with pseudoprogression during follow-up, and 8 had hyper-
progression, defined as a TGKR ³2 and a >50% increase in 
TMTBPOST. The patient flowchart is shown in Figure 1.

Of the 97 patients evaluated for first response, 10 were ex-
cluded because they were analyzed by other imaging meth-
ods (such as MRI) or there were no imaging data in the PACS. 
Of the 87 patients with feasible imaging analysis, 3 had pseu-
doprogression and 7 had hyperprogression. First responses in-
cluded iPR in 17 patients, irSD in 24, and irPD, in 36. The pa-
tients were divided into 2 groups, those who benefitted from 
treatment (defined as those with pseudoprogression, irPR, and 
irSD) and those who did not (defined as those with hyperpro-
gression and irPD).

First-order gray-level statistical 
features (n=15)

Geometric features 
(n=16)

Second-order texture features 
(n=78)

Maximum gray value
Minimum gray value
Median
Sum
Average value
Standard deviation
Variance
Kurtosis
Skewness etc.

Volume
Long axis length
Short axis length
Surface area
Eccentricity
Extension
Volume of the cuboid
Maximum perimeter
Direction etc.

Gray-level co-occurrence matrix (glcm) (n=16)
Gray-level run-length matrix (glrlm) (n=26)
Gray-level size zone matrix (glszm) (n=26)
Neighborhood gray-tone difference matrix 
(ngtdm) (n=10)

Table 1. Classification of the extracted imaging features.
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The features of CT images at baseline and at first response 
evaluation were extracted and normalized relative to the mean 
signal of the aorta. A total of 110 features were obtained be-
fore and after treatment, including 109 features of the target 
lesions and 1 feature of the aortas.

Model 1 was established using the baseline CT features, as 
screened by the LASSO method (Figure 2A). Of the 110 fea-
tures identified, 30 were selected (Table 3). The sensitivity, 
specificity, and AUC of model 1 were 64.3%, 39.5%, and 0.646, 
respectively (Table 4). Similarly, model 2 was established us-
ing the CT features screened at first evaluation. One of the 
110 features was selected (Figure 2B). The sensitivity, speci-
ficity, and AUC of model 2 were 43.2%, 81.0%, and 0.750, re-
spectively. Model 3 was established using the CT features at 
baseline and at first evaluation of response. Three of the 220 
features were selected (Figure 2C). The sensitivity, specificity, 
and AUC of model 3 were 83.3%, 88.9%, and 0.806, respec-
tively. Finally model 4 was established using the difference 

between CT features at baseline and at first evaluation of re-
sponse. Ten of the 110 features were selected (Figure 2D). The 
sensitivity, specificity, and AUC of model 4 were 83.4%, 66.7%, 
and 0.806, respectively.

Of these 4 models, model 1 had the lowest specificity and mod-
el 2 had the lowest sensitivity. Although the AUCs of models 
3 and 4 were identical, 0.806, the specificity of model 4 was 
slightly lower. Therefore, of these 4 models, model 3 showed 
the best classification performance for predicting patient re-
sponse to immunotherapy.

Only 3 patients with feasible imaging analysis had pseudopro-
gression, a number too small to construct a model. The findings 
in these 3 patients were therefore used to test the 4 models. 
Model 3 had an AUC of 0.736 and was correct in predicting re-
sponses in 2 of 3 patients. In comparison, model 4 had an AUC 
of 0.760 and was also correct in predicting responses in 2 of 
3 patients. The patients who experienced tumor progression 

Patients	(N=112)

Sex

 Male  69 (71.1%)

 Female  28 (28.9%)

Location

 Stomach  34 (35.1%)

 Esophagus  21 (21.6%)

 Colorectum  20 (20.6%)

 Pancreas  12 (12.4%)

 Hepatobiliary  8 (8.2%)

 Intestine  2 (2.1%)

Histological type

 Adenocarcinoma  51 (52.6%)

 Squamous carcinoma  20 (20.6%)

 Neuroendocrine carcinoma  20 (20.6%)

 Hepatocellular carcinoma  4 (4.1%)

 Cholangiocarcinoma  2 (2.1%)

Radical operation

 No  44 (45.4%)

 Yes  53 (54.6%)

Table 2. Demographic and clinical characteristics of patients treated with immunotherapy.

Patients	(N=112)

Radiotherapy

 No  69 (71.1%)

 Yes  28 (28.9%)

Targeted therapy

 No  82 (84.5%)

 Yes  15 (15.5%)

ECOG performance status

 0  48 (49.5%)

 1  49 (50.5%)

PD-L1 status

 Negative  21 (42.0%)

 Positive  29 (58.0%)

MMR status

 pMMR  37 (63.8%)

 dMMR  21 (36.2%)

Immunotherapy type

 PD-1  65 (67.0%)

 PD-1+CTLA-4  3 (3.1%)

 PD-L1  24 (24.7%)

 PD-L1+CTLA-4  5 (5.2%)

ECOG – Eastern Cooperative Oncology Group; MMR – mismatch repair protein; pMMR – proficient MMR; dMMR – deficient MMR.
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on treatment were further divided into 2 subgroups, one with 
hyperprogression and the other with irPD. A model was estab-
lished using CT features at baseline and during initial evalu-
ation of responses. Of the 220 features identified, 3 were se-
lected (Table 5). The AUC for the prediction model was 0.877. 
A second model was formulated based on the difference be-
tween CT features at baseline and at first evaluation of re-
sponse. One of the 110 features was selected (Table 5), and 
the AUC for the prediction model was 0.774. The features of 
the 2 models indicate that the maximum gray value has great 
significance for the determination of hyperprogression. This 
factor belongs to the first-order gray-level statistics feature, 
reflecting the distribution of individual pixel values without 
considering the spatial relationship.

The Kaplan-Meier survival curves generated using the 4 mod-
els are shown in Figure 3. Median overall survival was signifi-
cantly lower in patients who progressed on treatment than in 
those who benefitted from treatment as shown using models 
1 (8.7 vs. 25.5 months, p=0.005) (Figure 3A) and 2 (7.4 vs. 25.5 
months (p=0.006) (Figure 3B). Models 3 (6.2 vs. 13.8 months; 
p<0.001) (Figure 3C) and 4 (6.2 vs. 13.8 months (p=0.001) 
(Figure 3D) also showed that median overall survival was sig-
nificantly lower in patients who progressed than in those who 
benefitted from treatment.

Discussion

This study explored the usefulness of radiomics in evaluating 
the responses of tumors to immunotherapy. Four predictive 
models were constructed. Model 1 was constructed from CT 
features at baseline, whereas model 2 was constructed from 
CT features at first evaluation, with model 2 having fewer CT 
features and a higher AUC. The selected feature in the latter 
model was the heterogeneity of the gray-level of the co-oc-
currence matrix (2D_GLCM_Homogeneity), which has an un-
evenness of texture that reflects the efficacy of immunother-
apy. However, its sensitivity was only 43.2%, indicating that 
the rate of missed diagnoses by model 2 was high. Model 3, 
constructed from CT features at baseline and at first evalu-
ation, resulted in the extraction of 3 features. The sensitivi-
ty, specificity, and AUC of model 3 were 83.3%, 88.9%, and 
0.806, respectively, with the sensitivity and AUC being supe-
rior to those of model 2. Model 4 was constructed from the 
difference between CT features at baseline and at first eval-
uation. One feature, variation in 3D long axis length, was se-
lected. The AUC of this model was identical to that of model 
3, but its specificity was slightly lower, 66.7%. Thus, of the 4 
models tested, model 3 showed the optimal classification per-
formance for predicting patient responses to immunotherapy.

To assess the prognostic value of these models, Kaplan-Meier 
survival curves were determined for each. Median overall sur-
vival differed significantly in patients who progressed on treat-
ment and those who benefitted from treatment according to 
all 4 models. The difference between the 2 groups was largest 
in model 1 (8.7 vs. 25.5 months). Thus, the models construct-
ed by radiomics could separate patients who did and did not 
benefit from immunotherapy.

Only 3 patients in this cohort had both pseudoprogression and 
feasible imaging analysis, a number too small to construct a 
model. Testing of these patients with models 3 and 4 yield-
ed AUCs of 0.736 and 0.760, respectively. Of these 3 patients, 
2 could be assigned to the group that benefitted from treat-
ment. Testing of patients with hyperprogression using mod-
els 3 and 4 yielded AUCs of 0.877 and 0.774, respectively, with 
maximum gray value having great significance for the identi-
fication of hyperprogression.

At present, 3 methods are generally used to identify pseudo-
progression and hyperprogression. The first method is biopsy 
of lesions. T cell recruitment and inflammatory cell infiltration 
have been confirmed as causes of pseudoprogression [8,9]. 
However, biopsy is an invasive procedure and it may be difficult 
to biopsy some deep lesions. The second method is response 
evaluation criteria for immunotherapy, including immune-re-
lated response criteria (irRC) [5]. and immune-related response 
evaluation criteria in solid tumors (irRECIST) [14]. These criteria 

Patients with malignant tumor of digestive system
treated with PD-1/PD-L1 antibody in XX Hospital

between Jul. 2016 and Nov. 2017
n=112

CT scan evaluation after baseline
available

n=97

Clinical progression or toxicity before
the �rst evaluation

n=15

No image data in the PACS or other
imaging methods

n=10

Patients with feasible imaging
analysis

n=87

Treatment-bene�t group
• irPR (n=17)
• irSD (n=24)
• Pseudoprogression (n=3)

Treatment-progressive group
• irPD (n=36)
• Hyperprogression (n=7)

Figure 1. Patient flowchart of the selection process.
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allow PD patients who are generally eligible to continue immu-
notherapy and re-evaluate their responses at prescribed times 
(4 weeks or 4–8 weeks). The third method is tumor dynamic 
growth index. At present, however, definitions and diagnostic 
criteria have not been standardized. Indices used to evaluate 

tumor dynamic growth include tumor growth rate (TGR) [6], 
progress pace [7], and tumor growth kinetics (TGK) [15]. Each 
of these methods has limitations, making it impossible to ac-
curately identify patients with pseudoprogression and hyper-
progression. Using several filtered CT textures, entropy and 

Degrees of freedom

0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
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0.45
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C

–11 –10 –9 –8 –7 –6 –5 –4 –3 –2 –1

40 40 39 40 32 29 31 22 16 10 3 0

log(Lambda)

Degrees of freedom

0.90
0.85
0.80
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0.70
0.65
0.60
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0.45
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C

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1
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log(Lambda)

Degrees of freedom
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0.85
0.80
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0.65
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0.55
0.50
0.45
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C

–9 –8 –7 –6 –5 –4 –3 –2 –1

12 12 12 12 10 8 9 6 5 4 2 0

log(Lambda)

Degrees of freedom

0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45

AU
C

–11 –10 –9 –8 –7 –6 –5 –4 –3 –2 –1

47 46 47 45 43 38 34 29 24 15 4 0

log(Lambda)

A

C

B

D

Figure 2.  Screening of features using the LASSO method: (A) CT features at baseline; (B) CT features at first evaluation; (C) CT features 
at baseline and first evaluation; (D) difference between CT features at baseline and at first evaluation. The x-axis shows the 
parameter l and the corresponding number of features (degrees of freedom), and the y-axis shows the average AUC values. 
The dotted line corresponds to l at the maximum AUC and the number of features.

Model
First-order gray-level 
statistical features

Geometric features Second-order texture features

1 Minimum gray value
Mean
Variance
Gray histogram features (n=3)

2D_eccentricity
3D_surface area

GLCM (n=4)
GLRLM (n=6)
GLSZM (n=9)
NGTDM (n=3)

2 – – GLCM (n=1)

3 – 3D_short axis length GLCM (n=1)
GLRLM (n=1)

4 – 3D_long axis length –

Table 3. Constructed models and their extracted CT features.

e924671-6
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Ji Z. et al.:  
Use of radiomics to predict response to immunotherapy

© Med Sci Monit, 2020; 26: e924671
CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



consistency were found to be reduced after neoadjuvant che-
motherapy for esophageal cancer, with the change in skew-
ness being related to survival [16]. Moreover, 24 textures were 
found to predict lymph node metastasis in patients with colon 
cancer [17], and voxel heterogeneity analysis was better able 
to predict the curative effect of treatment in patients with rec-
tal cancer than the traditional average volume analysis [18].

Radiomics has also shown promise in tumor diagnosis, clinical 
staging, response evaluation and prognosis prediction in pa-
tients with malignant tumors of the digestive system, including 
in patients receiving immunotherapy. For example, radiomics 
was able to predict response to immunotherapy by assessing 
tumor-infiltrating CD8 cells [19]. Moreover, 1860 radiomics 
features extracted at baseline could be used in patient clas-
sification and to predict those who will subsequently devel-
op immunotherapy-induced pneumonitis [20]. Another study 
demonstrated that a CT-determined radiomics signature could 
identify tumors with increased lymphocyte infiltration and dis-
tinguish between pseudoprogression and true progression [21].

Radiomics has important advantages, including use of results 
of non-invasive imaging examinations. This allows tumors to 
be comprehensively and repeatedly evaluated. Imaging exam-
inations provide not only general anatomical information but 
also functional information about the organ. Second, imaging 
results are traditionally interpreted by individual physicians, 
relying mainly on their subjective judgment. Thus, predictive 
ability is related to physician experience. In contrast, radiomics 
evaluates imaging results objectively and quantitatively, with-
out the need for subjective determinations. Finally, research on 

the molecular mechanism of tumors has led to new treatment 
methods, such as targeted therapy and immunotherapy, which 
have greatly changed the prognosis of cancer patients. However, 
unlike traditional cytotoxic drugs, targeted therapy and immu-
notherapy may not induce tumor cell necrosis. Therefore, eval-
uations based on traditional measurements may not accurate-
ly reflect the anti-tumor effects of these agents. Appropriate 
screening of massive amounts of information is a key step in 
radiomics. Using the selected features to construct a model may 
allow multidimensional evaluation of tumor tissue.

The diagnostic ability of radiomics in patients with colorectal 
cancer and lung cancer may be improved by the inclusion of 
traditional clinical indicators, such as age, sex, and laborato-
ry results, in the constructed model [22]. In practice, the lat-
ter factors, including demographic characteristics and the re-
sults of laboratory and pathological examinations, have great 
value in determining disease stage and predicting response to 
treatment. Therefore, the integration of multidimensional in-
formation into radiomics models could further improve their 
accuracy and efficiency.

Because radiomics is at the intersection between medicine 
and engineering, it requires collaborations among clinicians, 
imaging physicians, and data analysis professionals. Thus, use 
of radiomics in patient evaluation will require the participa-
tion of experts in these fields. Finally, radiomics is currently in 
the preclinical research stage, with most studies to date be-
ing single-center retrospective evaluations. Use of radiomics 
in clinical practice will require confirmation of the accuracy of 
radiomics models in large, multi-center studies.

Model Number	of	features AUC Sensitivity (%) Specificity (%)

1 30 0.646 64.3 39.5

2 1 0.750 43.2 81.0

3 3 0.806 83.3 88.9

4 1 0.806 83.4 66.7

Table 4. Statistical results of the constructed models.

Model
First-order gray-level 
statistical features

Geometric 
features

Second-order texture 
features

CT features at baseline and first 
evaluation

Maximum gray value
(Baseline)
Maximum gray value
(Evaluation)

– NGTDM (n=1)

Difference between CT features at 
baseline and first evaluation 

Maximum gray value – –

Table 5. Models for hyperprogression and their extracted CT features.
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Conclusion

This study explored the potential of radiomics in evaluating 
patient response to immunotherapy. The model constructed 
from CT features at baseline and first evaluation had the best 
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Figure 3.  Kaplan-Meier curves of patient overall survival based on the 4 models: (A) model 1, constructed from baseline CT features; 
(B) model 2, constructed from CT features at first evaluation; (C) model 3, constructed from CT features at baseline and at 
first evaluation; (D) model 4, constructed from the difference in CT features at baseline and at first evaluation.
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