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On detour index 
of cycloparaphenylene 
and polyphenylene molecular 
structures
S. Prabhu1*, Y. Sherlin Nisha2, M. Arulperumjothi3, D. Sagaya Rani Jeba4 & V. Manimozhi4

Cycloparaphenylene is a particle that comprises a few benzene rings associated with covalent bonds in 
the para positions to frame a ring-like structure. Similarly, poly (para-phenylenes) are macromolecules 
that include benzenoid compounds straightforwardly joined to each other by C–C bonds. Because 
of their remarkable architectural highlights, these structures have fascinated attention from 
numerous vantage focuses. Descriptors are among the most fundamental segments of prescient 
quantitative structure-activity and property relationship (QSAR/QSPR) demonstrating examination. 
They encode chemical data of particles as quantitative numbers, which are utilized to create a 
mathematical correlation. The nature of a predictive model relies upon great demonstrating insights, 
yet additionally on the extraction of compound highlights. To a great extent, Molecular topology 
has exhibited its adequacy in portraying sub-atomic structures and anticipating their properties. It 
follows a two-dimensional methodology, just thinking about the interior plan, including molecules. 
Explicit subsets speak the design of every atom of topological descriptors. When all around picked, 
these descriptors give a unique method of describing an atomic system that can represent the most 
significant highlights of the molecular structure. Detour index is one such topological descriptor 
with much application in chemistry, especially in QSAR/QSPR studies. This article presents an exact 
analytical expression for the detour index of cycloparaphenylene and poly (para-phenylene).

Nanomaterials, materials along highlights or sizes going from 10−9 m to 10−7 m in at least one  measurements1 are the 
centre of a developing scientific insurrection. The primary favourable circumstances of these materials are organic, elec-
tronic, and mechanical properties not established in traditional  materials2,3. Joining the particular interesting properties 
along their notable acknowledgment  capacities4 has brought about systems with fundamentally improved  execution5 
and major applications across  chemistry6,  physics7,  biology8,  medicine5,9, and food  technology10. Aside from huge 
mechanical quality and least weight, a large portion of nanomaterials’ remarkable attributes is connected to their surface 
 properties9, which empower improved associations with numerous biological entities. Such communications depend on 
the size, manufacture system, and explicit calculation of the nanoparticles. As anticipated, these qualities joined along 
with the capacity to shape hydrogen bonds, scattering powers, stacking, dative bonds, and hydrophobic associations 
can influence the strength and selectivity of  nanomaterials11. Subsequently, nanomaterials particular properties have 
started attention in analytical chemistry and must be utilized to create contemporary utilization in sample sensing, 
separation, and provision.

Carbon nanotubes (CNTs) promise to reform a few material science fields and are proposed to open the route 
into  nanotechnology12,13. These circular rod-shaped carbon nanostructures have novel attributes that lead them to be 
conceivably valuable in numerous applications in nanoscience and nanotechnology. CNTs have pulled in noteworthy 
consideration due to their wonderful  mechanical14, and  electronic15. Structural consistency of the CNT is fundamen-
tally significant as the sidewall structures (armchair and zigzag) decide huge numbers of the compelling properties 
of  CNTs13,16. In a perfect world, scientists would incorporate CNTs with a characterized target sidewall structure and 
diameter. However, the current engineered techniques, for example, curve release and substance fume testimony, give 
CNTs a combination of different forms. Hence, the particular and unsurprising union of basically systematic CNTs 
would speak to a fundamental development in nanocarbon science, and  chemistry17.
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There are different kinds of carbon-based nanostructures such as carbon  nanorings18,19,  nanosprings20, and 
 nanocones21, etc. Carbon nanorings have been seen in single-walled carbon nanotubes (SWCNTs) developed by laser 
 vaporization22. The diameters of these round structures range amid 300 and 500 nm and their widths somewhere in the 
range of 5 and 15 nm. There are no topological pentagon-heptagon deserts in these structures, as kinks that could be 
made by such imperfections are not watched. In this manner, they can be imaged as the bowing of a straight SWCNT 
into a ring by associating its two closures to shape the carbon nanorings. These nanoring structures might be ideal nan-
odevices because of their interesting  mechanical13, and physical  properties19. Among the most limited formed piece of 
armchair carbon nanotubes (CNTs), cycloparaphenylenes (CPPs) have as of late pulled in expanding consideration from 
scientists. CPPs have straightforward hoop-shaped structures comprising aromatic rings with para-linkage, which were 
guessed 50 years ago, yet blended distinctly in the last  decade23. Their stressed and contorted aromatic frameworks and 
radially arranged p orbitals have fascinated manufactured physicists, theoreticians, supramolecular scientific experts, and 
materials researchers the same. In spite of this boundless importance, the CPPs remain an difficult synthetic challenge. It 
is trying to make brilliant, stable CPPs with a little HOMO-LUMO gap because of restricting strain based reactivity and 
symmetry-based fluorescence extinguishing for little  CPPs24. A few exploration bunches have created combinations of 
[n] CPPs of distinctive ring sizes (here n speaks to the quantity of benzene) as depicted in Fig.  1. Different techniques 
have incredibly researched the impact of [n]CPPs on the microelectronic  stuff25. The sum of characteristic polynomial 
of [n] CPPs were reported  in26.

Linear poly(para-phenylene) (PPP) are polymeric compounds with hexagonal rings as reproducing units as shown 
in Fig. 2 and are significant polycyclic aromatic compounds that are discovered to be the fundamental units of numerous 
novel materials like graphene or related compounds. Because of these, linear PPPs have been the focal point of fascination 
for both experimentalists and  chemists27–29 since the most recent couple of many years. Linear PPPs and their derivatives 
have broadly been utilized in optoelectronic applications. Although there are a variety of linear polyaromatic  polymers30, 
linear polyphenylenes are extremely insoluble unless they have solubilizing functional groups that can form hydrogen 
bonds with water. For instance, functional groups such as OH, NH2 , and COOH.

Topological indices (TIs) of huge chemical structures, for example, metal natural systems can be amazingly valuable 
in both portrayal of structures and processing their physicochemical properties that are generally difficult to calculate for 
such enormous organizations of significance in reticular chemistry. It is a mathematical quantity which bonds molecu-
lar topology to molecular  properties31. Such entities are invariants of graph and are utilized as descriptors for QSAR/
QSPR  examinations32,33, proven to be an vigorous zone at the frontline of research. These descriptors are exceptionally 
valuable for looking through database of molecule, predicting molecular  properties34, screening of  drug5, designing of 
 drug9, complex  networks35,36 and many other procedures. The idea of this molecular descriptor came from Wiener’s 
effort in  194737. He detected that there is a high degree of correlation amid the melting point with the Wiener  index38–40.

Background
Graph theory is a field of mathematics with potential application in engineering and  science41. The theory provides a 
solid foundation for investigating topological requirements of many systems. Kaveh and  Koohestani42,43 have effectively 
applied graph theory to the optimal analysis of FEMs in the framework of the force method in structural mechanics. 
Graph theory’s practical and beneficial applications include visualisation of sparse matrices, nodal ordering, envelope 
reduction, graph partitioning, and configuration processing. The reader who is interested can search up where the 

Figure 1.  (a) [8]−CPP; (b) [9]−CPP; (c) [10]−CPP.

Figure 2.  Polyphenylene.
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majority of these applications have been recorded  in44,45. We use the theory to generate reducible representations 
of symmetry groups, taking into account the unique specifications of graphs.

Let |V(G)| and |E(G)| be the number of vertices and edges of a chemical graph G respectively. For any two 
vertices x and y are adjacent if there is an edge between them. Distance between two vertices x, y ∈ V(G) is the 
number of edges in the shortest path connecting them in a connected graph G and is denoted by dG(x, y)46,47. 
Similarly, the detour  distance48,49 among two vertices x, y ∈ V(G) is the number of edges in the longest path con-
necting them in a connected graph G and is denoted by lG(x, y) . Also with the note dG(u, u) = 0 and lG(u, u) = 0 , 
the transmission (farness or vertex Wiener value) of a vertex u ∈ V(G) defined by W(u), as the sum of the lengths 
of all shortest paths between u to all other vertices in G50–53. Following this, we define the detour transmission 
(vertex detour value) of a vertex u ∈ V(G) is denoted by ω(u) and explained as the sum of the detour lengths of 
all longest paths between u to all other vertices in G. Mathematically,

and

The Wiener index W(G) is the sum of shortest distance between every pair of vertices, where as the detour index 
ω(G) is the sum of longest distance between every pair of  vertices4854,55. Mathematically,

and

The application of detour index in QSAR considers is clarified by Lukovits  in56. Rücker57 additionally researched 
this idea as a invariant for melting points of alkanes of cyclic and acyclic nature. It is noticed that Wiener index 
and detour index are equivalent if and only if G is acyclic and there are a few research papers on Wiener index 
of trees with a given condition and those result hold for detour index. It merits researching the detour index of 
cyclic graphs. For additional details on this investigation  refer58–61.

In60 the authors derived an algorithm for recognizing the longest path among any pair of vertices of a graph 
and it was utilized to calculate an exact analytical formula for the detour index of fused bicyclic networks. Com-
puter strategies for computing the detour distances and subsequently for calculating the detour index was derived 
 in54,57. It has been demonstrated  in62, and the detour matrix is a NP-complete problem. A strategy for building 
the detour  matrix63,64 for graphs of modest sizes were introduced  in65. Inter correlation amid hyper-detour index 
and other TIs such as Wiener, Harary, hyper-Wiener, hyper-Harary, and detour index were evaluated  in60 on 
three pairs of branched and unbranched. Cycloalkanes and alkanes and with up to eight carbon particles and 
the hyper-detour index have been examined in structure-property  studies33. Ongoing applications of the hyper-
detour index discovered  in66.

The detour index has also had great success combined with the Wiener index in structure boiling point 
modelling of cyclic and acyclic hydrocarbons.  In54 the authors analyzed the importance of the detour index and 
correlated its application with the Wiener index. Also, they established that the detour index combined with the 
Wiener index is very adequate in the structure-boiling point modelling of acyclic and cyclic saturated hydro-
carbons. This achievement has prompted the advancement of related indices such as the hyper-detour  index67 
and the Cluj-detour  index59. Qi and  Zhou67 presented the hyper-detour index of unicyclic graphs and decided 
the graphs with the smallest and biggest detour indices respectively in the class of n-vertex bicyclic graphs with 
precisely two cycles for n ≥ 5 .  In68, Du decided the graphs with the second and the third smallest and biggest 
detour indices in the class of n-vertex bicyclic graphs with precisely two cycles for n ≥ 6 . Very recently Prabhu 
et al. have found the detour index for join of  graph69. This paper presents an expression for the detour index of 
cycloparaphenylene and poly (p-phenylene) using detour transmission of a vertex.

Results
In Ref.61, the experimental and calculated boiling points (°C) of 76 alkanes and cycloalkanes, as well as their 
Wiener and Detour indices, are reported. For acyclic structures, the Wiener index W and the detour index ω are, 
of course, identical. W and ω are not very intercorrelated indices for polycyclic structures. The linear correlation 
between W and ω (ω = aW + b) for a set of 37 diverse polycyclic graphs was presented with a modest correlation 
coefficient (r = 0.79) in Ref.55, while the exponential relationship between W and ω (ω = aWb) produced only a 
slightly better correlation between them (r = 0.86). With this motivation, we proceed to find the detour index 
of the CPP and PPP. In this section, we first explain the vertex set and edge set of cycloparaphenylene and poly 
(p-phenylene) before proceeding to our main results.

It is observed from the molecular structure of cycloparaphenylene [n]−CPP and polyphenylene PPP(n) the 
vertex set of these two molecular graphs remains same and is given by {ai , a′i , bi , b

′
i , ci , c

′
i : 1 ≤ i ≤ n} with cardinal-

ity as 6n. The edge set for [n]−CPP is given by {aibi , aib′i , bici , b
′
ic
′
i , cia

′
i , c

′
ia

′
i , : 1 ≤ i ≤ n} ∪ {a′iaj : 1 ≤ i < j ≤ n} 

(1)W(u) =
∑

v∈V(G)

dG(u, v),

(2)ω(u) =
∑

v∈V(G)

lG(u, v).

(3)W(G) =
∑

{u,v}⊆V(G)

dG(u, v) =
1

2

∑

u∈V(G)

W(u),

(4)ω(G) =
∑

{u,v}⊆V(G)

lG(u, v) =
1

2

∑

u∈V(G)

ω(u).
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with |j − i| = 1 or n− 1 and for PPP(n), it is {aibi , aib′i , bici , b
′
ic
′
i , cia

′
i , c

′
ia

′
i , : 1 ≤ i ≤ n} ∪ {a′iaj : 1 ≤ i < j ≤ n} 

with |j − i| = 1 . And their cardinalities are respectively given by 7n and 7n− 1 . The molecular graph of cyclo-
paraphenylene and polyphenylene were depicted in Fig. 3a,b.

Lemma 1 Let G be a molecular graph of a cycloparaphenylene and {ai , a′i , bi , b
′
i , ci , c

′
i : 1 ≤ i ≤ n} be the vertex set 

of G. Then for any vertex ai ∈ V(G),

Proof For i > ⌈ n
2
⌉ , the set {ak , bk , ck , a′k : 1 ≤ k ≤ i − 1} induces a path of length 4(i − 1) . See Fig. 4a.

Clearly Fig. 4b depicts the path of length 4(n− i + 1) for i ≤ ⌈ n
2
⌉ .   �

Lemma 2 Let G be a molecular graph of a cycloparaphenylene and {ai , a′i , bi , b
′
i , ci , c

′
i : 1 ≤ i ≤ n} be the vertex 

set of G. Then, 

 (i) lG(a1, bi) = lG(a1, b
′
i) =

{

4(n− i)+ 5 if i ≤ ⌈ n
2
⌉

4i + 1 if i > ⌈ n
2
⌉

 (ii) lG(a1, ci) = lG(a1, c
′
i) =

{

4(n− i)+ 6 if i ≤ ⌈ n
2
⌉

4i if i > ⌈ n
2
⌉

 (iii) lG(a1, a
′
i) =

{

4(n− i)+ 1 if i ≤ ⌊ n
2
⌋

4i − 1 if i > ⌊ n
2
⌋

lG(a1, ai) =

{

4(i − 1) if i > ⌈ n
2
⌉

4(n− i + 1) if i ≤ ⌈ n
2
⌉

1 2 3
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Figure 3.  (a) Cycloparaphenylene [n]−CPP; (b) polyphenylene PPP(n).
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Figure 4.  (a) Hamilton-path string of length 4(i − 1) ; (b) Hamilton-path string of length 4(n− i + 1).
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 (iv) lG(b1, a
′
i) =

{

4(n− i)+ 6 if i ≤ ⌈ n
2
⌉

4i if i > ⌈ n
2
⌉

 (v) lG(b1, bi) = lG(b1, b
′
i) =

{

4(n− i)+ 10 if i ≤ ⌈ n
2
⌉

4i + 2 if i > ⌈ n
2
⌉

 (vi) lG(b1, ai) =

{

4(n− i)+ 9 if i ≤ ⌈ n+1
2
⌉

4i − 3 if i > ⌈ n+1
2
⌉

 (vii) lG(b1, ci) = lG(b1, c
′
i) =

{

4(n− i)+ 11 if i ≤ ⌈ n+1
2
⌉

4i + 1 if i > ⌈ n+1
2
⌉

Proof 

 (i) F o r  i ≤ ⌈ n
2
⌉ ,  lG(a1, bi) = lG(a1, ai)+ lG(ai , bi) = 4(n− i)+ 5  ,  a n d  f o r  i > ⌈ n

2
⌉ , 

lG(a1, bi) = lG(a1, ai)+ lG(ai , bi) = 4i + 1 , see Fig. 5.
 (ii) F o r  i ≤ ⌈ n

2
⌉ ,  lG(a1, ci) = lG(a1, ai)+ lG(ai , ci) = 4(n− i)+ 6  ,  a n d  f o r  i > ⌈ n

2
⌉ , 

lG(a1, ci) = lG(a1, ai)+ lG(ai , ci) = 4i as shown in Fig. 6.
 (iii) For i ≤ ⌊ n

2
⌋ , lG(a1, a′i) = lG(a1, ai+1)+ lG(ai+1, a

′
i) = 4(n− i)+ 1 . For i > ⌊ n

2
⌋ , lG(a1, a′i) = lG(a1, ai)+

lG(ai , a
′
i
) = 4i − 1 . See Fig. 7.

 (iv) For  i ≤ ⌈ n
2
⌉ ,  lG(b1, a

′
i) = lG(b1, a1)+ lG(a1, ai+1)+ lG(ai+1, a

′
i) = 4(n− i)+ 6  .  For  i > ⌈ n

2
⌉ , 

lG(b1, a
′
i) = lG(b1, a1)+ lG(a1, ai)+ lG(ai , a

′
i) = 4i . See Fig. 8.

a1an'
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bi

(a)
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a1 ai-1'a2
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ai'

ci

bi' ci'
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(b)

Figure 5.  (a) Hamilton-path string of length 4(n− i)+ 5 ; (b) Hamilton-path string of length 4i + 1.
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Figure 6.  (a) Hamilton-path string of length 4(n− i)+ 6 ; (b) Hamilton-path string of length 4i.
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Figure 7.  (a) Hamilton-path string of length 4(n− i)+ 1 ; (b) Hamilton-path string of length 4i − 1.
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Figure 8.  (a) Hamilton-path string of length 4(n− i)+ 6 ; (b) Hamilton-path string of length 4i.
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 (v) F o r  i ≤ ⌈ n
2
⌉ ,  lG(b1, bi) = lG(b1, a1)+ lG(a1, ai)+ lG(ai , bi) = 4(n− i)+ 10  .  F o r  i > ⌈ n

2
⌉ , 

lG(b1, bi) = lG(b1, a1)+ lG(a1, ai)+ lG(ai , bi) = 4i + 2 . See Fig. 9.
 (vi) F o r  i ≤ ⌈ n+1

2
⌉ ,  lG(b1, ai) = lG(b1, a1)+ lG(a1, ai) = 4(n− i)+ 9  ,  a n d  f o r  i > ⌈ n+1

2
⌉ , 

lG(b1, ai) = lG(b1, a1)+ lG(a1, ai) = 4i − 3 . For details refer Fig. 10.
 (vii) For  i ≤ ⌈ n+1

2
⌉ ,  lG(b1, ci) = lG(b1, a1)+ lG(a1, ai)+ lG(ai , ci) = 4(n− i)+ 11 .  For  i > ⌈ n+1

2
⌉ , 

lG(b1, ci) = lG(b1, a1)+ lG(a1, ai)+ lG(ai , ci) = 4i + 1 . The Hamilton-path construction is depicted in 
Fig. 11.

  �

The following lemma is straight forward from the structural property of [n]-CPP and the addressing scheme 
proposed in the begening of this section.

Lemma 3 Let G be a molecular graph of a cycloparaphenylene and {ai , a′i , bi , b
′
i , ci , c

′
i : 1 ≤ i ≤ n} be the vertex 

set of G. Then, 

 (i) lG(ai , a
′
i) = 4n− 3.

 (ii) lG(ai , bi) = lG(ai , b
′
i) = lG(bi , ai) = lG(bi , ci) = lG(bi , c

′
i) = 4n− 1.

 (iii) lG(ai , ci) = lG(ai , c
′
i) = lG(bi , a

′
i) = 4n− 2.

 (iv) lG(bi , b
′
i) = 4n.

Lemma 4 Let G be a molecular graph of a cycloparaphenylene and {ai , a′i , bi , b
′
i , ci , c

′
i : 1 ≤ i ≤ n} be the vertex 

set of G. Then, 

 (i) ω(a1) =

{

18n2 + 8n− 12 if n is even

18n2 + 8n− 13 if n is odd

 (ii) ω(b1) = ω(c1) =

{

18n2 + 26n− 30 if n is even

18n2 + 26n− 29 if n is odd
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Figure 9.  (a) Hamilton-path string of length 4(n− i)+ 10 ; (b) Hamiltom-path string of length 4i + 2.
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Figure 10.  (a) Hamilton-path string of length 4(n− i)+ 9 ; (b) Hamilton-path string of length 4i − 3.
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Figure 11.  (a) Hamilton-path string of length 4(n− i)+ 11 ; (b) Hamilton-path string of length 4i + 1.
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Proof For n even, the detour transmission of a1 ∈ V(G) is given by,

For n odd,

ω(a1) =
∑

x∈V(G)

lG(a1, x)

=

n
∑

i=2

lG(a1, ai)+

n
∑

i=1

lG(a1, bi)+

n
∑

i=1

lG(a1, ci)+

n
∑

i=1

lG(a1, a
′
i)+

n
∑

i=1

lG(a1, b
′
i)+

n
∑

i=1

lG(a1, c
′
i)

=

n
∑

i=2

lG(a1, ai)+ 2

n
∑

i=2

lG(a1, bi)+ 2

n
∑

i=2

lG(a1, ci)+

n
∑

i=2

lG(a1, a
′
i)

+ lG(a1, a
′
1)+ 2lG(a1, b1)+ 2lG(a1, c1)

=

n

2
∑

i=2

lG(a1, ai)+

n
∑

i= n

2
+1

lG(a1, ai)+ 2

[

n

2
∑

i=2

lG(a1, bi)+

n
∑

i= n

2
+1

lG(a1, bi)

]

+ 2

[

n

2
∑

i=2

lG(a1, ci)

+

n
∑

i= n

2
+1

lG(a1, ci)

]

+

n

2
∑

i=2

lG(a1, a
′
i)+

n
∑

i= n

2
+1

lG(a1, a
′
i)+ lG(a1, a

′
1)+ 2lG(a1, b1)+ 2lG(a1, c1)

=

n

2
∑

i=2

4(n− i + 1)+

n
∑

i= n

2
+1

4(i − 1)+ 2

[

n

2
∑

i=2

[4(n− i)+ 5] +

n
∑

i= n

2
+1

(4i + 1)

]

+ 2

[

n

2
∑

i=2

[4(n− i)+ 6] +

n
∑

i= n

2
+1

4i

]

+

n

2
∑

i=2

[4(n− i)+ 1] +

n
∑

i= n

2
+1

(4i − 1)+ (4n− 3)+ 2(4n− 1)+ 2(4n− 2)

= 18n
2 + 8n− 12.

ω(a1) =
∑

x∈V(G)

lG(a1, x)

=

n
∑

i=2

lG(a1, ai)+

n
∑

i=1

lG(a1, bi)+

n
∑

i=1

lG(a1, ci)+

n
∑

i=1

lG(a1, a
′
i)+

n
∑

i=1

lG(a1, b
′
i)+

n
∑

i=1

lG(a1, c
′
i)

=

n
∑

i=2

lG(a1, ai)+ 2

n
∑

i=2

lG(a1, bi)+ 2

n
∑

i=2

lG(a1, ci)+

n
∑

i=2

lG(a1, a
′
i)+ lG(a1, a

′
1)

+ 2lG(a1, b1)+ 2lG(a1, c1)

=

n+1
2

∑

i=2

lG(a1, ai)+

n
∑

i= n+3
2

lG(a1, ai)+ 2

[

n+1
2

∑

i=2

lG(a1, bi)+

n
∑

i= n+3
2

lG(a1, bi)

]

+ 2

[

n+1
2

∑

i=2

lG(a1, ci)+

n
∑

i= n+3
2

lG(a1, ci)

]

+

n−1
2

∑

i=2

lG(a1, a
′
i)+

n
∑

i= n+1
2

lG(a1, a
′
i)+ lG(a1, a

′
1)+ 2lG(a1, b1)+ 2lG(a1, c1)

=

n+1
2

∑

i=2

4(n− i + 1)+

n
∑

i= n+3
2

4(i − 1)+ 2

[

n+1
2

∑

i=2

[4(n− i)+ 5] +

n
∑

i= n+3
2

(4i + 1)

]

+ 2

[

n+1
2

∑

i=2

[4(n− i)+ 6] +

n
∑

i= n+3
2

4i

]

+

n−1
2

∑

i=2

[4(n− i)+ 1] +

n
∑

i= n+1
2

(4i − 1)+ (4n− 3)+ 2(4n− 1)+ 2(4n− 2)

= 18n2 + 8n− 13.
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For n even, the detour transmission of b1 ∈ V(G)

For n is odd,

  �

ω(b1) =
∑

x∈V(G)

lG(b1, x)

=

n
∑

i=1

lG(b1, ai)+

n
∑

i=2

lG(b1, bi)+

n
∑

i=1

lG(b1, ci)+

n
∑

i=1

lG(b1, a
′
i)+

n
∑

i=1

lG(b1, b
′
i)+

n
∑

i=1

lG(b1, c
′
i)

=

n
∑

i=2

lG(b1, ai)+ 2

n
∑

i=2

lG(b1, bi)

+ 2

n
∑

i=2

lG(b1, ci)+

n
∑

i=2

lG(b1, a
′
i)+ lG(b1, a1)+ lG(b1, a

′
1)+ lG(b1, b

′
1)+ 2lG(b1, c1)

=

n

2
+1

∑

i=2

lG(b1, ai)+

n
∑

i= n

2
+2

lG(b1, ai)+ 2

[

n

2
∑

i=2

lG(b1, bi)

+

n
∑

i= n

2
+1

lG(b1, bi)

]

+ 2

[

n

2
+1

∑

i=2

lG(b1, ci)+

n
∑

i= n

2
+2

l(b1, ci)

]

+

n

2
∑

i=2

lG(b1, a
′
i)

+

n
∑

i= n

2
+1

lG(b1, a
′
i)+ lG(b1, a1)+ lG(b1, a

′
1)+ lG(b1, b

′
1)+ 2lG(b1, c1)

=

n

2
+1

∑

i=2

[4(n− i)+ 9] +

n
∑

i= n

2
+2

(4i − 3)+ 2

[

n

2
∑

i=2

[4(n− i)+ 10] +

n
∑

i= n

2
+1

(4i + 2)

]

+ 2

[

n

2
+1

∑

i=2

[4(n− i)+ 11] +

n
∑

i= n

2
+2

(4i + 1)

]

+

n

2
∑

i=2

[4(n− i)+ 6] +

n
∑

i= n

2
+1

4i + (4n− 1)+ (4n− 2)+ 4n+ 2(4n− 1)

= 18n
2 + 26n− 30.

ω(b1) =
∑

x∈V(G)

lG(b1, x)

=

n
∑

i=1

lG(b1, ai)+

n
∑

i=2

lG(b1, bi)+

n
∑

i=1

lG(b1, ci)+

n
∑

i=1

lG(b1, a
′
i)

+

n
∑

i=1

lG(b1, b
′
i)+

n
∑

i=1

lG(b1, c
′
i)

=

n
∑

i=2

lG(b1, ai)+ 2

n
∑

i=2

lG(b1, bi)+ 2

n
∑

i=2

lG(b1, ci)+

n
∑

i=2

lG(b1, a
′
i)

+ lG(b1, a1)+ lG(b1, a
′
1)+ lG(b1, b

′
1)++2lG(b1, c1)

=

n+1

2
∑

i=2

lG(b1, ai)+

n
∑

i= n+3

2

lG(b1, ai)

+ 2

[

n+1

2
∑

i=2

lG(b1, bi)+

n
∑

i= n+3

2

lG(b1, bi)

]

+ 2

[

n+1

2
∑

i=2

lG(b1, ci)+

n
∑

i= n+3

2

lG(b1, ci)

]

+

n+1

2
∑

i=2

lG(b1, a
′
i)+

n
∑

i= n+3

2

lG(b1, a
′
i)+ lG(b1, a1)+ lG(b1, a

′
1)+ lG(b1, b

′
1)+ 2lG(b1, c1)

=

n+1

2
∑

i=2

[4(n− i)+ 9] +

n
∑

i= n+3

2

(4i − 3)+ 2

[

n+1

2
∑

i=2

[4(n− i)+ 10] +

n
∑

i= n+3

2

(4i + 2)

]

+ 2

[

n+1

2
∑

i=2

[4(n− i)+ 11)] +

n
∑

i= n+3

2

(4i + 1)

]

+

n+1

2
∑

i=2

[4(n− i)+ 6] +

n
∑

i= n+3

2

4i + (4n− 1)+ (4n− 2)+ 4n+ 2(4n− 1)

= 18n
2 + 26n− 29.
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Theorem 1 Let G be a molecular graph of cycloparaphenylene of dimension n. Then

Proof Let n be even
Due to symmetry ω(x) = ω(x′) , where x ∈ {ai , bi , ci} and also ω(bi) = ω(ci) . Now,

with the similar argument along with Lemma 4, we derive the result for n odd.
  �

Lemma 5 Let G be a molecular graph of a linear polyphenylene of dimension n, and {ai , a′i , bi , b
′
i , ci , c

′
i : 1 ≤ i ≤ n} 

be the vertex set of G. Then, 

 (i) ω(ai) = 24i2 − 42i + 12n2 − 24ni + 33n+ 18.

 (ii) ω(bi) = 24i2 − 18i + 12n2 − 24ni + 39n− 12.

 (iii) ω(ci) = 24i2 − 30i + 12n2 − 24ni + 45n− 6.

 (iv) ω(a′i) = 24i2 − 6i + 12n2 − 24ni + 15n.

Proof For any n and ai ∈ V(G) , the detour transmission of ai is given by

ω(G) =

{

54n3 + 60n2 − 72n if n is even

54n3 + 60n2 − 71n if n is odd

ω(G) =
1

2

∑

u∈V(G)

ω(u)

=
1

2

[

2nω(a1)+ 4nω(b1)

]

= nω(a1)+ 2nω(b1)

= n(18n2 + 8n− 12)+ 2n(18n2 + 26n− 30)

ω(G) = 54n3 + 60n2 − 72n.

ω(ai) =
∑

x∈V(G)

lG(ai , x)

=

n
∑

j=1

lG(ai , aj)+

n
∑

j=1

lG(ai , bj)+

n
∑

j=1

lG(ai , cj)+

n
∑

j=1

lG(ai , a
′
j)+

n
∑

j=1

lG(ai , b
′
j)+

n
∑

j=1

lG(ai , c
′
j)

=

i−1
∑

j=1

lG(ai , aj)+

n
∑

j=i+1

lG(ai , aj)+

i−1
∑

j=1

lG(ai , bj)+ lG(ai , bi)+

n
∑

j=i+1

lG(ai , bj)+

i−1
∑

j=1

lG(ai , cj)+ lG(ai , ci)

+

n
∑

j=i+1

lG(ai , cj)+

i−1
∑

j=1

lG(ai , a
′
j)+ lG(ai , a

′
i)+

n
∑

j=i+1

lG(ai , a
′
j)+

i−1
∑

j=1

lG(ai , b
′
j)+ lG(ai , b

′
i)

+

n
∑

j=i+1

lG(ai , b
′
j)+

i−1
∑

j=1

lG(ai , c
′
j)+ lG(ai , c

′
i)+

n
∑

j=i+1

lG(ai , c
′
j)

=

i−1
∑

j=1

lG(ai , aj)+

n
∑

j=i+1

lG(ai , aj)+ 2

i−1
∑

j=1

lG(ai , bj)+ 2

n
∑

j=i+1

lG(ai , bj)+ 2

i−1
∑

j=1

lG(ai , cj)+ 2

n
∑

j=i+1

lG(ai , cj)

+

i−1
∑

j=1

lG(ai , a
′
j)+

n
∑

j=i+1

lG(ai , a
′
j)+ lG(ai , bi)+ lG(ai , ci)+ lG(ai , a

′
i)+ lG(ai , b

′
i)+ lG(ai , c

′
i)

=

i−1
∑

j=1

4(i − j)+

n
∑

j=i+1

4(j − i)+ 2

[ i−1
∑

j=1

[4(i − j)+ 1] +

n
∑

j=i+1

[4(j − i)+ 5]

]

+ 2

[ i−1
∑

j=1

[4(j − i)+ 2]

+

n
∑

j=i+1

[4(j − i)+ 4]

]

+

i−1
∑

j=1

[4(i − j − 1)+ 1] +

n
∑

j=i+1

[4(j − i)+ 3] + 5+ 4+ 3+ 5+ 4

=

i−1
∑

j=1

[20(i − j)+ 6] +

n
∑

j=i+1

[24(j − i)+ 21] +

i−1
∑

j=1

[4(i − j − 1)+ 1] + 21

= 24i2 − 42i + 12n2 − 24ni + 33n+ 18.
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For bi ∈ V(G) , the detour transmission of bi is given by

And for ci ∈ V(G) , the detour transmission of ci is given by

ω(bi) =
∑

x∈V(G)

lG(bi , x)

=

n
∑

j=1

lG(bi , aj)+

n
∑

j=1

lG(bi , bj)+

n
∑

j=1

lG(bi , cj)+

n
∑

j=1

lG(bi , a
′
j)+

n
∑

j=1

lG(bi , b
′
j)+

n
∑

j=1

lG(bi , c
′
j)

=

i−1
∑

j=1

lG(bi , aj)+ lG(bi , ai)+

n
∑

j=i+1

lG(bi , aj)+

i−1
∑

j=1

lG(bi , bj)+

n
∑

j=i+1

lG(bi , bj)+

i−1
∑

j=1

lG(bi , cj)+ lG(bi , ci)

+

n
∑

j=i+1

lG(bi , cj)+

i−1
∑

j=1

lG(bi , a
′
j)+ lG(bi , a

′
i)+

n
∑

j=i+1

lG(bi , a
′
j)+

i−1
∑

j=1

lG(bi , b
′
j)+ lG(bi , b

′
i)+

n
∑

j=i+1

lG(bi , b
′
j)

+

i−1
∑

j=1

lG(bi , c
′
j)+ lG(bi , c

′
i)+

n
∑

j=i+1

lG(bi , c
′
j)

=

i−1
∑

j=1

lG(bi , aj)+

n
∑

j=i+1

lG(bi , aj)+ 2

[ i−1
∑

j=1

lG(bi , bj)+

n
∑

j=i+1

lG(bi , bj)

]

+ 2

[ i−1
∑

j=1

lG(bi , cj)+ 2

n
∑

j=i+1

lG(bi , cj)

]

+

i−1
∑

j=1

lG(bi , a
′
j)+

n
∑

j=i+1

lG(bi , a
′
j)+ lG(bi , ai)+ lG(bi , ci)+ lG(bi , a

′
i)+ lG(bi , b

′
i)+ lG(bi , c

′
i)

=

i−1
∑

j=1

[4(i − j)+ 5] +

n
∑

j=i+1

[4(j − i)+ 1] + 2

[ i−1
∑

j=1

[4(i − j)+ 6] +

n
∑

j=i+1

[4(j − i)+ 6]

]

+ 2

[ i−1
∑

j=1

[4(i − j)+ 7] +

n
∑

j=i+1

[4(j − i)+ 5]

]

+

i−1
∑

j=1

[4(i − j − 1)+ 6] +

n
∑

j=i+1

[4(j − i)+ 4] + 21

=

i−1
∑

j=1

[20(i − j)+ 31] +

n
∑

j=i+1

[24(j − i)+ 27] +

i−1
∑

j=1

[4(i − j − 1)+ 6] + 21

= 24i2 − 18i + 12n2 − 24ni + 39n− 12.

ω(ci) =
∑

x∈V(G)

lG(ci , x)

=

n
∑

j=1

lG(ci , aj)+

n
∑

j=1

lG(ci , bj)+

n
∑

j=1

lG(ci , cj)+

n
∑

j=1

lG(ci , a
′
j)+

n
∑

j=1

lG(ci , b
′
j)+

n
∑

j=1

lG(ci , c
′
j)

=

i−1
∑

j=1

lG(ci , aj)+ lG(ci , ai)+

n
∑

j=i+1

lG(ci , aj)+

i−1
∑

j=1

lG(ci , bj)+ lG(ci , bi)+

n
∑

j=i+1

lG(ci , bj)

+

i−1
∑

j=1

lG(ci , cj)+

n
∑

j=i+1

lG(ci , cj)+

i−1
∑

j=1

lG(ci , a
′
j)+ lG(ci , a

′
i)+

n
∑

j=i+1

lG(ci , a
′
j)

+

i−1
∑

j=1

lG(ci , b
′
j)+ lG(ci , b

′
i)+

n
∑

j=i+1

lG(ci , b
′
j)

+

i−1
∑

j=1

lG(ci , c
′
j)+ lG(ci , c

′
i)+

n
∑

j=i+1

lG(ci , c
′
j)

=

i−1
∑

j=1

lG(ci , aj)+

n
∑

j=i+1

lG(ci , aj)+ 2

[ i−1
∑

j=1

lG(ci , bj)+

n
∑

j=i+1

lG(ci , bj)

]

+ 2

[ i−1
∑

j=1

lG(ci , cj)+

n
∑

j=i+1

lG(ci , cj)

]

+

i−1
∑

j=1

lG(ci , a
′
j)+

n
∑

j=i+1

lG(ci , a
′
j)+ lG(ci , ai)+ lG(ci , a

′
i)+ lG(ci , bi)+ lG(ci , b

′
i)+ lG(ci , c

′
i)

=

i−1
∑

j=1

[4(i − j)+ 4] +

n
∑

j=i+1

[4(j − i)+ 2] + 2

[ i−1
∑

j=1

[4(i − j)+ 5] +

n
∑

j=i+1

[4(j − i)+ 7]

]

+ 2

[ i−1
∑

j=1

[4(i − j)+ 6] +

n
∑

j=i+1

[4(j − i)+ 6]

]

+

i−1
∑

j=1

[4(i − j − 1)+ 5] +

n
∑

j=i+1

[4(j − i)+ 5] + 21

=

i−1
∑

j=1

[20(i − j)+ 26] +

n
∑

j=i+1

[24(j − i)+ 33] +

i−1
∑

j=1

[4(i − j − 1)+ 5] + 21

= 24i2 − 30i + 12n2 − 24ni + 45n− 6.
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Now for a′i ∈ V(G) , the detour transmission of a vertex a′i is

  �

Theorem 2 Let G be a molecular graph of linear polyphenylene of dimension n. Then ω(G) = 24n3 + 72n2 − 33.

Proof Due to symmetry, for any bi , ci ∈ V(G) , we have ω(bi) = ω(b′i) and ω(ci) = ω(c′i) , and

  �

The graphical representation of the detour index of cycloparaphenylene CPP(n) and poly (p-phenylene) 
PPP(n) were depicted in Fig. 12, which says that the detour index of cycloparaphenylene is higher than poly-
phenylene irrespective of n.

ω(a′i) =
∑

x∈V(G)

lG(a
′
i , x)

=

n
∑

j=1

lG(a
′
i , aj)+

n
∑

j=1

lG(a
′
i , bj)+

n
∑

j=1

lG(a
′
i , cj)+

n
∑

j=1

lG(a
′
i , a

′
j)+

n
∑

j=1

lG(a
′
i , b

′
j)+

n
∑

j=1

lG(a
′
i , c

′
j)

=

i−1
∑

j=1

lG(a
′
i , aj)+ lG(a

′
i , ai)+

n
∑

j=i+1

lG(a
′
i , aj)+

i−1
∑

j=1

lG(a
′
i , bj)+ lG(a

′
i , bi)

+

n
∑

j=i+1

lG(a
′
i , bj)+

i−1
∑

j=1

lG(a
′
i , cj)

+ lG(a
′
i , ci)+

n
∑

j=i+1

lG(a
′
i , cj)+

i−1
∑

j=1

lG(a
′
i , a

′
j)+

n
∑

j=i+1

lG(a
′
i , a

′
j)

+

i−1
∑

j=1

lG(a
′
i , b

′
j)+ lG(a

′
i , b

′
i)+

n
∑

j=i+1

lG(a
′
i , b

′
j)

+

i−1
∑

j=1

lG(a
′
i , c

′
j)+ lG(a

′
i , c

′
i)+

n
∑

j=i+1

lG(a
′
i , c

′
j)

=

i−1
∑

j=1

lG(a
′
i , aj)+

n
∑

j=i+1

lG(a
′
i , aj)+ 2

i−1
∑

j=1

lG(a
′
i , bj)+ 2

n
∑

j=i+1

lG(a
′
i , bj)+ 2

i−1
∑

j=1

lG(a
′
i , cj)+ 2

n
∑

j=i+1

lG(a
′
i , cj)

+

i−1
∑

j=1

lG(a
′
i , a

′
j)+

n
∑

j=i+1

lG(a
′
i , a

′
j)+ lG(a

′
i , ai)+ lG(a

′
i , bi)+ lG(a
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Conclusion
In recent decade, CPPs have gone from being manufactured interests to promptly open materials with excep-
tionally tunable properties. The syntheses of CPPs are motivated by a wide extent of energizing applications, 
going from strong state nanomaterials to organic imaging. Also, the aromatic polymers of PPPs comprising of 
straightforwardly repeating benzene units as their spine. PPP has interesting optical properties, for example, 
electroluminescence, and is regularly utilized as tunable blue-transmitting material for light-radiating devices. 
Detour index is a promising topological index and the study of this index is very helpful to acquire the basic 
topologies of networks. We accept that the detour index acquired here well correspond with a portion of the 
physico-chemical properties and a portion of the structure-property relations.
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