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Abstract: Breast cancer is a multifactor disease, and many drug combination therapies are applied for
its treatment. Selenium derivatives represent a promising potential anti-breast cancer treatment. This
study reports the cytotoxic activity of forty-one amides and phosphoramidates containing selenium
against five cancer cell lines (MCF-7, CCRF-CEM, HT-29, HTB-54 and PC-3) and two nonmalignant
cell lines (184B5 and BEAS-2B). MCEF-7 cells were the most sensitive and the selenoamides I.1f and
1.2f and the selenium phosphoramidate II.2d, with GI50 values ranging from 0.08 to 0.93 uM, were
chosen for further studies. Additionally, radical scavenging activity for all the compounds was
determined using DPPH and ABTS colorimetric assays. Phosphoramidates turned out to be inactive
as radical scavengers. No correlation was observed for the antioxidant activity and the cytotoxic
effect, except for compounds I.1e and 1.2f, which showed dual antioxidant and antitumor activity.
The type of programmed cell death and cell cycle arrest were determined, and the results provided
evidence that I.1f and L.2f induced cell death via autophagy, while the derivative I.2d provoked
apoptosis. In addition, Western blot analysis corroborated these mechanisms with an increase in
Beclinl and LC3-IIB and reduced SQSTM1/p62 levels for 1.1f and 1.2f, as well as an increase in BAX,
p21 and p53 accompanied by a decrease in BCL-2 levels for derivative I1.2d.

Keywords: amide; cytotoxicity; diselenide; phosphoramidate; selenocyanate

1. Introduction

Cancer is considered a serious public health burden because it affects millions of
people worldwide. Cancer is the second lethal disease globally, and about one out of
six deaths are due to cancer [1]. Worldwide, breast cancer is one of the most common
cancers, the fifth most prevalent cause of cancer death, and the main cause of cancer death
in women [2]. Although many novel small molecules with cytotoxic activity toward breast
cancer have been designed for the last decade, it is meaningful to develop more effective
and safer drugs for this illness.

In this context, researchers worldwide have focused their attention on the synthesis
of selenium-containing compounds due to their promising results against different types
of cancer [3]. Several chemical entities in selenocompounds have demonstrated potent
inhibitory effects on cell proliferation, mainly by interfering in the redox homeostasis and
cell signaling of cancer cells [4]. Among the different mechanisms implicated, apoptosis,
autophagy, DNA damage and HDAC inhibition are among the most studied [5]. Other

Antioxidants 2021, 10, 590. https://doi.org/10.3390/antiox10040590

https:/ /www.mdpi.com/journal/antioxidants


https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-8266-0445
https://orcid.org/0000-0001-8593-8994
https://orcid.org/0000-0003-3088-4751
https://orcid.org/0000-0002-0542-967X
https://orcid.org/0000-0003-1732-1989
https://orcid.org/0000-0003-3431-7826
https://doi.org/10.3390/antiox10040590
https://doi.org/10.3390/antiox10040590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10040590
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox10040590?type=check_update&version=2

Antioxidants 2021, 10, 590

20f 15

implicated mechanisms could be the modulation of the oxidative stress, antioxidant effects
through selenoproteins, the modulation of some kinase activity, the inhibition of the mTOR
regulatory cascade or a combination of some of those described [6-8]. Moreover, different
studies have described organoselenium derivatives with potent activity against triple-
negative breast cancer, i.e., a type of breast cancer that lacks estrogen, progesterone and
HER? receptors [9,10], or as adjuvants against resistant breast cancer, i.e., a doxorubicin-
resistant subline overexpressing ABCB1 derived from MCF-7 cells [11]. In addition, small
molecules containing selenium such as methylseleninic acid suppressed breast cancer
growth via the JAK2/STAT3 pathway [12].

In spite of the controversy about the use of antioxidants for cancer treatment, different
clinical trials have demonstrated their efficacy [13]. If we focus on breast cancer, considering
the existence of many subtypes with different redox status, several compounds such as
N-acetylcysteine [14], garlic derivatives [15] or flavonoids [16] have been reported for their
specific properties against breast cancer. Moreover, the association between total selenium
content in the body and breast cancer incidence has been studied extensively [17,18]. In
this context, different selenium derivatives have been described with this purpose.

Accumulating evidence in the literature has illustrated that among the different
selenated scaffolds, selenenocyanate [19,20] and diselenide [21-23] fragments are important
pharmacophores that significantly suppress breast cancer. Furthermore, our research
group has reported that selenocyanate and diselenide entities possess potent antitumor
activity [24-27]. Consequently, these motifs are considered as an encouraging template
for designing a new category of selenium compounds. Taking as prototypes two effective
analogs, 4-aminophenylselenocyanate and bis(4-aminophenyl)diselenide, we design a
new generation of derivatives with amide and phosphoramidate linkages and diverse
alkyl, aryl and heteroaryl substitutional units. The amide link was used because amides
assume distinct conformations and are present in many anticancer drugs [28]. The inclusion
of phosphoramide was based on its presence in many antitumoral compounds such as
cyclofosfamide, ifosfamide, trofosfamide, perfosfamide and evofosfamide [29].

In this study, we provide an evaluation of the synthesized selenium derivatives as
cytotoxic and antioxidant agents. The antiproliferative effect was tested in vitro using five
human cancer cell lines as well as two nonmalignant cell lines. The antioxidant activity was
determined by DPPH and ABTS assays. To better understand the potential mechanisms of
action, the most active and selective compounds were further evaluated for their effect on
the cell cycle distribution, cell death induction and alteration of different proteins related
to autophagy or apoptosis processes.

2. Materials and Methods
2.1. Chemistry

Synthesis, purification and characterization of the compounds have been previously
described [30]. Chemicals were purchased from E. Merck (Darmstadt, Germany), Pan-
reac Quimica S.A: (Montcada I Reixac, Barcelona, Spain), Sigma-Aldrich Quimica S.A.
(Alcobendas, Madrid, Spain) and Across Organics (Janssen Pharmaceuticals, Geel, Belgium).

2.2. Biological Evaluation
2.2.1. Cell Cultures

Cell lines were provided by the European Collection of Cell Cultures (ECACC) or
by the American Type Culture Collection (ATCC). Seven cell lines were used: MCF-7
(breast adenocarnicoma), 184B5 (nonmalignant, mammary gland derived), CCRF-CEM
(lymphoblastic leukemia), HT-29 (colon carcinoma), HTB-54 (lung carcinoma), BEAS-2B
(nonmalignant, derived from the bronchial epithelium) and PC-3 (prostate carcinoma).
MCEF-7, CCRE-CEM, HT-29, HTB-54, BEAS-2B and PC-3 cell lines were grown in RPMI
medium (Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco), 100 units/mL
penicillin and 100 mg/mL streptomycin (Gibco). 184B5 cells were grown in DMEM/F12
medium supplemented with 5% FBS, 1 x ITS (Lonza), 100 nM hydrocortisone (Aldich),
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2 mM sodium pyruvate (Lonza), 20 ng/mL EGF (Sigma-Aldrich), 0.3 nM trans-retinoic
acid (Sigma-Aldrich), 100 units/mL penicillin and 100 mg/mL streptomycin. Cells were
maintained at 37 °C and 5% COs,.

2.2.2. Cytotoxic and Antiproliferative Activities

The cytotoxic effect of each substance was tested by the MTT method. Each compound
was initially dissolved in DMSO at a concentration of 0.01 M, and serial dilutions were
prepared with nonsupplemented medium. The cytotoxic effect of each compound was
tested at 50 and 10 pM as a first screening. Compounds with a cell growth percentage
under 50% at 10 uM in at least one cell line were selected and tested at five different
concentrations ranging between 0.01 and 100 puM.

A total of 1 x 10* cells/well in 96-well plates were treated with increasing concen-
trations of the corresponding compounds for 48 h at 37 °C in a humidified atmosphere
containing 5% CO;. Then, cells were incubated with 50 pL of MTT (2 mg/mL stock) for 4 h.
The medium was then removed by aspiration, and the formazan crystals were dissolved
in 150 mL of DMSO. Results are expressed as Glsp, the concentration that reduces by
50% the growth of treated cells with respect to untreated controls (0.1% DMSO); TGI, the
concentration that completely inhibits cell growth; and LCs, the concentration that kills
50% of the cells. Data were obtained from at least 3 independent experiments performed in
quadruplicate. The standard error of the means (SEM) for the cytotoxic parameters was
calculated applying the standard deviation formula to the mean values of each parameter
for the three independent experiments performed.

2.2.3. Evaluation of Cell Cycle Progression and Cell Death

For the MCF-7 cell line, both cell cycle analysis and the cell death percentage were
determined using the Apo-Direct kit (BD Pharmingen) based on the TUNEL technique,
according to the manufacturer’s instructions. Cells were seeded in 25 cm? flasks (3 x 10°
for 24 h of treatment, 2 x 10° for 48 h and 10° for 72 h) treated with DMSO (negative
control), 6 uM of camptothecin (positive control) and different concentrations of I.1f, 1.2f
and I1.2d.

After treatment, cells were collected and fixed with 1% paraformaldehyde (Sigma)
in PBS (pH = 7.4), incubated in ice for 40 min, collected by centrifugation, washed with
PBS and incubated with 70% ethanol for 30 min at —20 °C. After fixation, cells were
washed twice with PBS and incubated for 1 h at 37 °C with FITC dUTP-DNA Labeling
Solution. Cells were then rinsed and incubated in the dark for 30 min at room temperature
with PI/RNase staining buffer before being analyzed by flow cytometry (Coulter Epics
XL, Beckman Coulter Flow cytometer). Then, cells were treated with compounds 1.1f
(80 uM), L.2f (30 pM) and 11.2d (5 pM) at different times (from 8 to 72 h) following the same
methodology.

For autophagy and caspase inhibition assays, cells were pretreated with 100 nM of
autophagy inhibitor (wortmannin, Santa Cruz) and 50 uM of pan-caspase inhibitor (Z-VAD-
FMK, BD Pharmingen) for 1 h. The cells were treated with the compounds 1.2f (30 uM)
and I1.2d (20 uM) for 24 h and 1.1f (80 uM) for 72 h. Samples were processed following the
same methodology stated above. DMSO was used as a negative control for both inhibitors.

2.2.4. Protein Analysis

After treatment, cells were lysed in cell lysis buffer consisting of: 20 mmol/L Tris-HCl
(pH 7.5), 150 mmol/L NaCl, 1% Triton X-100, supplemented with protease inhibitors
and phosphatase inhibitors (10 mmol/L sodium fluoride and 10 mmol/L sodium ortho-
vanadate) for 30 min on ice. Lysates were centrifuged at 13,200 x g for 15 min at 4 °C to
remove cell debris. The nonprotein fraction and supernatants were stored at —80 °C before
use. Protein concentration was determined with the BCA Protein Assay. Cell samples
(2040 png) were placed in SDS-sample buffer and 2% 2-3-mercaptoethanol, boiled for 5 min
and subjected to SDS-PAGE on 12% Tris-glycine gels. Separated proteins were transferred
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onto 0.22 um nitrocellulose membranes at 100V for 1 h. The membranes were incubated
in blocking solution (5% nonfat dry milk-TBS-Tween-20) for 1 h at room temperature.
Primary specific antibodies were incubated in 5% milk-TBS-Tween-20 (1 h, room temper-
ature) to detect LC3B, Beclin-1 (D40C5), SQSTM1/p62, AMPK, JNK, BCL-2, BAX, p-53
and p21 (Cell Signaling) and actin (Santa Cruz Biotechnology). After incubation with the
HRP-conjugated secondary antibody (Cell Signaling) in 5% milk-TBS-Tween-20 (1 h, room
temperature), a chemiluminescence kit was used for visualization.

2.2.5. Antioxidant Activity
DPPH Radical Scavenging Assay

The DPPH (1,1-diphenyl-2-picrylhydrazyl radical) assay measures the hydrogen
donation ability of the antioxidant to convert the stable DPPH free radical into 1,1-diphenyl-
2-(2,4,6-trinitrophenyl)-hydrazine. After radical reaction with the compounds, a decrease
in the absorbance was detected at 517 nm, which is accompanied by a change of color from
violet to light-yellow. The target compounds were dissolved in methanol to make 1 mg/mL
stock solutions, which were diluted to five concentrations as test samples. Ascorbic acid
was used as a standard, and the experiment was carried out on 96-well plates. The DPPH
solution was prepared at a 100 uM concentration. For each test, 100 uL of DPPH solution
was added to 100 uL of methanolic solution containing the tested derivatives, and the
absorbance was determined at different time points. All the measurements were carried out
in triplicate. Results were expressed as the percentage of the radical scavenged, calculated
using the following formula:

Acontrol — Asample

% DPPH radical scavenging = x 100 (1)

Acontrol

where Aontrol Tefers to the absorbance of the negative control, and Agample refers to the
absorbance of the tested compounds. Results are expressed as a percentage of DPPH
radical scavenged £ SEM.

ABTS Radical Scavenging Assay

ABTS radical scavenging was additionally assayed with a colorimetric assay following
a previous methodology [24]. Briefly, ABTS was first dissolved in deionized water at
a concentration of 1 mg/mL and then oxidized to ABTS** with potassium persulfate
(2.45 mM final concentration). This cocktail was kept overnight away from light at room
temperature. Then, this ABTS®** reaction mixture was diluted with a 50% ethanolic solution
in order to achieve absorbance values of 0.70 £ 0.02 at 734 nm for measurements. Finally, 1
mg/mL stock solutions for the selected derivatives were formed in absolute ethanol and
20 uL of these solutions were added to 180 L of the diluted ABTS®** cocktail. After 6 min
of incubation, absorbances at 734 nm were registered. A 50% ethanolic solution was used
as blank along with Trolox (TROL) and ascorbic acid (Asc) as positive controls. All of the
determinations were performed in triplicate using 96-well plates. The same time intervals
as in the DPPH assay were also measured. The ability to scavenge ABTS®** was calculated
using the following formula:

Acontrol — Asample

% ABTS radical scavenging = x 100 (2)

Acontrol

where A ontrol refers to the absorbance of the negative control and Agample refers to the
absorbance of the tested compounds. The results are expressed as percentage of ABTS
radical scavenging + SEM.

2.2.6. Statistical Analysis

Data were expressed as the mean £+ SEM and analyzed by the Student’s t-test.
* Statistical significance was defined as p < 0.05 (*); p < 0.01 (**) or p < 0.001 (***).
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3. Results
3.1. Chemistry

The route adopted for the synthesis of the novel forty-one compounds presented in
this work has been previously reported [30,31]. Structures are summarized in Figure 1.
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Figure 1. Chemical structures of series I (amides) and II (phosphoramidates). The diselenides
derived from 0B were coded as I.1a-n and Il.1a-f, and the selenocyanates obtained using 0A as
starting material were coded as I.2a-n and I1.2-f.

The synthesis of both series of compounds followed similar synthetic routes. Briefly,
4-aminophenylselenocyanate (0A) and bis-(4-aminophenyl)diselenide (0B) were achieved
as previously reported [30]. For series I, selenocyanate derivatives (1a-1n) were obtained
by the reaction of the amine OA with the corresponding acid chlorides. Diselenides were
synthesized by the reaction between 0B and the corresponding acid chloride (2d, 2k and 2m)
or by the reduction of the corresponding selenocyanate analogs with sodium borohydride
to yield 2a-2c¢, 2e-2j, 2i and 2n [30].

For series II, 0A and 0B were treated dropwise with the corresponding phosphoryl
chlorides under different temperatures, atmospheric conditions and reaction times [31].

3.2. Biology
3.2.1. Cytotoxicity and Antiproliferative Activities

Herein, two series of compounds based on amides (series I) and phosphoramidates (se-
ries II) derived from 4-aminophenylselenocyanate and bis-(4-aminophenyldiselenide) were
tested in vitro against cell lines derived from breast adenocarcinoma (MCF-7), lymphoblas-
tic leukemia (CCRF-CEM) and colon adenocarcinoma (HT-29). Evaluation was performed
at48 h of treatment following the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) methodology as previously described [25]. The in vitro anticancer activity was
determined using a two-stage process. The first stage involved the screening of all com-
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pounds at two doses (50 and 10 uM). The growth inhibition percentages obtained at 10 pM
are shown in Figure 2.

Series | Series I
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I1.2b 100
Il.1e
Il.2¢
Il.1d
I1.2d 50
Il.1e
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Figure 2. Cell growth percentage of MCF-7, CCRF-CEM and HT-29 cells treated with series I and II
compounds at 10 uM after 48 h.

Twelve compounds: 1b, 2b, 1e, 2e, 1f, 2f, 1h and 2h (series I) and compounds 1b, 2b, 1d
and 2d (series II) showed cell growth below 50% at a 10 uM concentration. Hence, they were
tested at five concentrations between 0.01 and 100 uM against five cancer cell lines, MCF-7,
CCRF-CEM, HT-29, HTB-54 (lung carcinoma) and PC-3 (prostatic adenocarcinoma), and
two nonmalignant cells, 184B5 and BEAS-2B. Gl5y, TGI and LCs values were calculated
from the curves and are shown in Table 1. In addition, selectivity indexes (SI) for tumor
cells compared with nonmalignant ones were estimated according to the formulas Glsg
(184B5)/Gls59 (MCF-7) and Gls5p (BEAS-2B)/Gl5¢ (HTB-54) (Table 2). Cisplatin was used
as a standard drug. It was found that MCF-7, CCRF-CEM and HT-29 cells were more
sensitive to most derivatives in comparison to other cancer cells (HTB-54 and PC-3). In
fact, MCF-7 presented the highest sensitivity with eleven derivatives (all of them with
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the exception of 1.1h) with Glsg < 10 uM. In general, different profiles were observed for
amides and phosphoramidates. Thus, phosphoramidates I1.1d, IL.2b, and I1.2d displayed a
cytotoxic profile in MCF-7, CCRF-CEM and HT-29, whereas the amides only inhibited the
growth in the same cells (I.1b, I.1f or I1.2f). The presence of electron-withdrawing groups
(-NOy, -CF3, -Cl) in the phenyl ring favored the cytotoxic activity in the amides, but in
the phosphoramidates, the best results were obtained for aliphatic chains methoxy (II.1b,
I1.2b) and ethoxy (II.1d, I1.2d). Additionally, the replacement of oxygen (IL.1b, II.1d, II.2b,
I1.2d) by sulfur (I.1a, IL.1e, II.2e) resulted in the abrogation of the activity. In relation to
selenium entity, amides with selenocyanate motif were more active than the corresponding
diselenides, and this is particularly evident in PC-3 (compounds 1.1b versus 1.2b, 1.1e
versus 1.2e, 1.1f versus 1.2f, 1.1h versus 1.2h). However, no significant differences were
observed for phosphoramidates.

Table 1. Average &+ SEM values for Gl5y, TGI and LCsy parameters in MCF-7, CCRF-CEM, HT-29, HTB54 and PC-3 cell lines.

Cell Lines
Comp MCE-7 CCRF-CEM HT-29 HTB54 PC-3
G5 2 TGI P LCsp ¢ G5 2 TGIP LCsp ¢ G5 2 TGIP LCs € GIgp 2 TGI P LCs © GIgp 2 TGI P LCs ©
Lb 4605 >100 >100 90+£16  726%11 >100 30+£18  77+06 >100 >100 >100 >100 77+£22 >100 >100
Lle  74£10 40101 734401  65+15  338£20 67.0+£20  168+25  446+31 723+18  169+31  448+23  728+14  25+£02 285419 64911
LIf  01+00  130+03 546407  47+07  317+18 792241  014£00 57209 >100 251431  502+24  754+17  12£15 329431  650=06

L1h 18.0+£23 473 +24 76.6 2.5 41+24 36.1+1.4 72.8 +£29 174+19 458 £1.2 743 +£0.7 20.8 +2.5 486+ 1.8 76.3 +3.6 23+03 27.6+28 65.6 = 4.1

1.2b 0.5+0.9 518425 >100 87+1.1 >100 >100 16.5 £ 3.6 >100 >100 >100 >100 >100 >100 >100 >100

1.2e 0.6 +0.1 544 4+27 >100 31.6 £ 04 >100 >100 08+0.1 582+ 6.4 >100 >100 >100 >100 >100 >100 >100
L.2f 09 +0.0 62+04 422408 734+05 >100 >100 0.6 +04 792 +03 >100 298415 57.1+£33 844 +52 28.54+0.7 53.14+0.6 777 £0.6
1.2h 74+19 504+ 1.3 949 +4.7 21.8+3.1 >100 >100 427 +12 >100 >100 >100 >100 >100 >100 >100 >100
1IL.1b 4.3+ 0.6 88+0.1 569 + 5.4 20+01 39+04 80+28 20.0+3.1 474420 749 £ 0.6 72+32 371+32 76.0 £4.2 171+17 469 +23 76.6 £2.5
L1d 23+02 42+03 8.8+ 0.8 04402 1.7+02 34+02 1.7+£0.1 3.0+01 43+0.1 59+03 77+02 94+01 6.4+02 8.6+02 35.1+49
1I.2b 0.6+02 50+1.0 9.1+0.7 1.6+02 32+02 48+03 20403 35+01 50+01 62102 8.6+ 04 346 +04 6.4+02 93+0.1 49.0+0.7
L2d 09+0.1 41401 84+0.1 02+00 05+0.0 09+0.1 50+08 73+02 95+04 1.6+ 04 32+03 48+02 19+01 44+01 99.9+£95
Cp

d 32 >100 >100 1.0 79.6 >100 79 >100 >100 9.6 327 50.0 5.0 50.1 >100

2 G5, concentration that reduces growth by 50% compared to control. ® TGI, concentration that completely inhibits cell growth. ¢ LCsy,
concentration that kills 50% of cells, ¢ Cp: cisplatin; the Gl5p, TGI and LCsg values for Cp were obtained from the DTP database of the
NCI [32].

Table 2. Average + SEM values for Gl5p, TGI and LCsy parameters in 184B5 and BEAS-2B cell lines
and selectivity indexes (SI).

Cell Lines
Comp. 184B5 grd BEAS-2B grd
Gl;p 2 TGIP LCs © GlIsp 2 TGIP LCs ©
L1b 7.08 >100 >100 1.57 1.11 42.78 >100 <0
Lle 7.76 33.79 68.16 1.14 0.42 4.80 15.81 0.02
L1f 6.59 43.95 92.30 82.38 10.66 41.79 72.91 0.42
L1h 19.94 47.19 74.44 1.11 10.60 40.65 70.70 0.51
L.2b 0.89 >100 >100 1.53 >100 >100 >100 <0
I.2e 7.13 >100 >100 20.97 >100 >100 >100 <0
L.2f 16.59 >100 >100 17.84 20.76 46.96 73.15 0.70
L.2h 36,1 >100 >100 5.66 8.47 67.32 >100 <0
IL.1b 5.75 7.20 8.65 1.36 6.48 41.33 >100 0.84
1.1d 5.45 7.01 8.58 2.38 5.43 6.98 8.54 0.92
I1.2b 5.44 6.94 8.44 7.56 5.22 6.80 8.38 0.84
1r.2d 5.70 7.31 8.93 6.33 4.65 6.59 8.30 2.85

2 Glsp, concentration that reduces growth by 50% compared to control. ® TGI, concentration that completely
inhibits cell growth. ¢ LCsy, concentration that kills 50% of cells. d Selectivity index (SI) = Gl (184B5)/ Glsp
(MCEF-7) and Gl5q (BEAS-2B)/Glsy (HTB-54).

The lack of selectivity toward cancerous cells is one of the major issues during the
discovery and development of new anticancer agents. Therefore, we evaluated the cytotoxic
activity of our compounds against two cell lines derived from nonmalignant breast tissue
(184B5) and no malignant bronchial epithelium (BEAS-2B) (Table 2). Data analysis showed
that some of the compounds with potent anticancer activity also exhibited great cytotoxicity
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on normal cells (184B5 and BEAS-2B), demonstrating that some of them exhibited poor
selectivity. However, derivatives L.1f, I.2e and 1.2f, displayed SI higher than 10 in the
breast, which is considered by the literature [33] as a threshold to be considered selective.
Additionally, derivatives II.2b and II.2d presented SI values of 7.56 and 6.33 in the breast. If
we focused on lung carcinoma, I1.2d was the most selective with SI = 2.85.

Collectively, considering all the results, compounds 1.1f, 1.2f and II.2d showed the
most significant cytotoxicity against all the screened cell lines along with acceptable safety
and were picked for further pharmacological research in the breast adenocarcinoma cell
line MCEF-7.

3.2.2. Radical Scavenging Activity

In a first approach, the radical scavenging activity for all the synthesized compounds
was characterized by the DPPH colorimetric assay at a dose of 0.03 mg/mL of each
compound and six different time points (0, 15, 30, 60, 90 and 120 min). Ascorbic acid and
Trolox were used as radical scavenger gold standards. Three diselenides (L.1e, I.1g and 1.1n)
and three selenocyanates (1.2f, 1.2i and 1.2j) from series I showed DPPH activity inhibition
values greater than 35% after 30 min (Figure 3A) of treatment and were considered as radical
scavengers. Surprisingly, no phosphormidates presented radical scavenging activity (data
not shown). None of these six selenoderivatives reached DPPH activity inhibition values,
as shown by the gold standards, but they can be considered potent radical scavengers, with
compound I.2i being the most active radical scavenger of all the synthesized compounds.
No correlation was found for either structure-radical scavenging activity or antitumor—
radical scavenging activity, except for compound 1.2f, one of the selected cytotoxic agents.
To further confirm this antioxidant activity, three compounds (I.1e, I.1g and 1.2i) were also
evaluated as DPPH radical scavengers at a lower concentration of 0.003 mg/mL (Figure 3B).
As expected, radical scavenging activity for these compounds was lower compared with
the high dose, but still, some moderate effect was observed.

120
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DPPH activity inhibition (%) >
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33
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TROL 12f 12i 12 lle I1ig lin ASC ASC 1.2i L1e 11g TROL 12f 12i 12j I1e 11g 1in ASC

Figure 3. In vitro radical scavenging activity for the most active radical scavengers of series I using the colorimetric assays
of DPPH ((A) for concentrations of 0.03 mg/mL and (B) for concentrations of 0.003 mg/mL) and ABTS (C).

In a second approach, the antioxidant activity of the six compounds that showed
DPPH activity inhibition was also further confirmed using the ABTS colorimetric assay
(Figure 3C). Surprisingly, only the three selenocyanates also displayed ABTS activity
inhibition capacity.

3.2.3. Apoptosis and Cell Cycle Arrest

Apoptosis and cell cycle arrest are typical mechanisms of action for many anticancer
drugs, including selenocompounds [34-36]. In a first approach, the effect of the selected
compounds on cell cycle progression and the induction of apoptosis was studied in MCF-7
cell cultures. Analyses were performed by flow cytometry using the Apo-Direct kit, based
on the TUNEL technique under the conditions described by the manufacturer. The cells
were treated with the corresponding compound at different concentrations and time points.
Camptothecin was used as a positive control at 6 pM.
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As seen in Figure 4, compound I.1f did not stimulate cell death at 24 h when concen-
trations ranging from 10 to 80 uM were added, whereas derivatives L.2f and II.2d provoked
a significant increase in the number of death cells (subdiploid cells) in a concentration-
dependent manner. On the other hand, if we considered different time points and concen-
trations, all of them induced cell death in a time- and concentration-dependent manner
(Figure 5).
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Figure 4. Percentage of subdiploid cells in MCF-7 cultures after 24 h of treatment with increasing doses of L1f (A), 1.2f (B) or
I1.2d (C). * Statistical significance with values of p < 0.05; ** statistical significance with values of p < 0.01.
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Figure 5. Percentage of subdiploid cells in MCF-7 cell cultures after treatment for the indicated time period with: 40 and
80 uM of I.1f (A), 30 uM of 1.2f (B) and 5 uM of I1.2d (C). * Statistical significance with values of p < 0.05; ** statistical
significance with values of p < 0.01; *** statistical significance with values of p < 0.001.

To further understand the mechanism of action of these potent compounds, their
effects on cell cycle distribution in MCF-7 were studied by flow cytometry. This assay was
carried out with different concentrations (Figure 6) and different time points (Figure 7).
The amides I.1f and 1.2f increased the number of cells in the S phase dose-dependently, and
the phosphoramidate II.2d arrested them in G0/G1 phase after 24 h of treatment (Figure 6).

100 E’ = 100:
! !

oe2m

2 2 |s

8 8 G0t

3 5

2 % e o Swe1

0 o o
§ ® $ $ $ X N 3 3 $ o N 4 & ?
& 06& oY oF FN d}\\ (},69\ q")\» PR oF %

Figure 6. Cell cycle phase distribution of MCF-7 cell cultures after 24 h of treatment with different doses of I.1f (A), 1.2f
(B) and II.2d (C). * Statistical significance with values of p < 0.05; ** statistical significance with values of p < 0.01.
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Figure 7. Cell cycle phase distribution of MCF-7 cell cultures treated for different time periods with I.1f (80 uM) (A), I.2f
(30 uM) (B) and II.2d (5 uM) (C). * Statistical significance with values of p < 0.05; ** statistical significance with values of
p < 0.01; *** statistical significance with values of p < 0.001.

After treatment with 1.1f, 1.2f and I1.2d at various time points (24-72 h for 1.1f and
8-48 h for 1.2f and I12d), the results suggested that these compounds arrested cell cycle in a
time-dependent fashion (Figure 7).

3.2.4. Compounds I.1f and I.2f Induce Autophagy-Mediated Cell Death and Compound
I1.2d Caspase-Mediated Cell Death

Apoptosis and autophagy are considered as two recognized pathways for anticancer
agents due to their effects on cell survival [37,38]. In the next step, in order to investigate
whether the cell death pathway is related to apoptosis or autophagy, we explored the effect
of pre-treated cells with either an autophagy inhibitor (wortmannin) or a pan-caspase
inhibitor (Z-VAD-FMK). According to the previous results, determinations were performed
after treatment with 80 uM of 1.1f for 72 h, 30 uM of 1.2f for 24 h and 20 uM of 11.2d for 24 h.

As illustrated in Figure 8, preincubation with wortmannin prevented cell death
induced by both amides 1.1f and 1.2f, while preincubation with Z-VAD-FMK did not.
These data suggested that autophagy is implicated in the cell death induced by these
two compounds.
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Figure 8. Cell death induced by compounds I.1f and 1.2f blocked by wortmannin (A) but not by
pan-caspase inhibitor Z-VAD-FMK (B). * Statistical significance with values of p < 0.05; ** statistical
significance with values of p < 0.01.

Conversely, preincubation with wortmannin (Figure 9A) could not prevent cell
death caused by compound II1.2d, whereas preincubation with Z-VAD-FMK prevented it
(Figure 9B). Thus, compound II.2d seems to act through a caspase-dependent mechanism.
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Figure 9. Z-VAD-FMK (B) but not wortmannin (A) prevented MCF-7 cells from II.2d induced cell
death. * Statistical significance with values of p < 0.05; ** statistical significance with values of p < 0.01.

To further confirm the programmed cell death pathway, the expression levels of several
markers of autophagy [39] and apoptosis [40] were evaluated by Western blot. Beclin-1 and
LC3B were determined, and autophagic flux was also assessed by testing SQSTM1/p62.
As shown in Figures 10 and 11, increased levels of Beclin-1 and LC3B were detected in
MCE-7 cells when treated with L.1f (80 uM during 48 h) and 1.2f (30 uM for 24 h), indicating
autophagy. In addition, the autophagic flux, SQSTM1/p62, was downregulated confirming
the autophagy process. Phosphorylation of AMPK and JNK was also studied because they
have shown to be implicated in autophagy-mediated cell death [27]. As expected, both
compounds induced JNK and AMPK phosphorylation.
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Figure 10. Western blot analysis of autophagy markers SQSTM1/p62, Beclin-1, p-JNKm p-AMPK,
LC3B and p53 of MCEF-7 cell culture treated with I.1f. ** statistical significance with values of p < 0.01;

*** statistical significance with values of p < 0.001.
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Figure 11. Western blot analysis of autophagy markers SQSTM1/p62, Beclin-1, p-JNKm p-AMPK
and LC3B in MCE-7 cell culture treated with I.2f. * Statistical significance with values of p < 0.05;
** statistical significance with values of p < 0.01; *** statistical significance with values of p < 0.001.

Bax is an important proapoptotic protein implicated in apoptosis induction. On
the contrary, Bcl-2 is an important antiapoptotic protein that suppresses apoptosis. The
balance between Bax and Bcl-2 is very important for judgmental cell apoptosis [41]. The
expression of apoptotic cell death markers was studied in MCF-7 cells after exposure to
II.2d (Figure 12). Significantly increased levels of BAX, p21, p53 and decreased levels of
Bcl-2 were detected, thus indicating apoptosis.
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Figure 12. Western blot analysis of apoptosis markers BAX, p21, p53 and Bcl-2 in MCF-7 cell culture
treated with I1.2d. ** statistical significance with values of p < 0.01; *** statistical significance with
values of p < 0.001.

4. Conclusions

Forty-one new amides and phosphoramidates bearing selenocyanate and diselenide
scaffolds were prescreened against three tumor cell lines at two doses. Twelve compounds
were selected and tested against a panel of five tumor cell lines and two nonmalignant
cell lines. The breast tumor cell line MCF-7 was the most sensitive, with six compounds
showing Gls5g values <1 uM (I.1f, 1.2b, I.2e, 1.2, I1.2b and II.2d). These compounds were
approximately three-fold more potent than cisplatin, a reference drug used clinically.
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Additionally, in vitro radical scavenging studies have shown that only series I compounds
(amide derivatives) present antioxidant activity. Surprisingly, no phosphoramidate showed
this effect. No correlation was found for either structure- or cytotoxicity-antioxidant
activity, except for compound 1.2f. Moreover, compounds I.1f, 1.2f and I1.2d showed the
highest SI values when comparing the cytotoxic activity against 184B5 nonmalignant cell
lines and were selected for further biological studies. Flow cytometry studies suggested
that amides I.1f and 1.2f induced cell cycle arrest at the S phase and cell death in a time-
and dose-dependent manner and cell death through an autophagy process. Meanwhile,
phosphoramidate I1.2d flow cytometric studies showed an early caspase-dependent cell
death at low doses and cell cycle arrest at Go/G; phase at a 5 pM dose. However, as
the dose increases, the number of subdiploid cells in the SubG1 phase also increases
significantly. Both autophagy processes caused by I.1f and 1.2f and apoptosis induction
caused by I1.2d were confirmed by Western blot analysis.
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