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Abstract
Gastric cancer is characterized by chromosomal instability. In this study, we investigated chromosomal instability
quantified by copy number instability (CNI) score of circulating tumor DNA (ctDNA) during the drug treatment in
advanced gastric cancer (AGC). A total of 55 pretherapeutic plasmas from 55 AGC patients and 75 plasmas during drug
treatment of 26 AGC patients were collected. Plasma ctDNA was extracted and assessed by whole-genome
sequencing (WGS) for somatic copy number alteration (SCNA), and according to which we calculated the CNI scores.
We next assessed the correlations between chromosomal instability and therapeutic response. The cutoff value of
chromosomal instability was defined as the mean+ SD of the CNI scores (56.60) in cfDNA of plasmas from 100 healthy
people. For 55 enrolled cases, chromosomal instability was observed in 27 (49%) prior to drug treatment, whose
response rate (59%, 16/27) was higher than in 28 patients with stable chromosomes (32%, 9/28, P= 0.043). We also
observed that CNI scores fluctuated during treatment in 26 patients. Specifically, the CNI scores in 93% (14/15) of
patients sensitive to drug treatment reduced to the level of chromosomal stability and the CNI scores in 52% (13/25) of
patients resistant to treatment elevated again. For ctDNA with developed resistance, the SCNA patterns were identical
to those before treatment, whereas the CNI scores were lower than the pretherapeutic scores. We found that
chromosomal instability based on ctDNA could predict and monitor therapeutic response in gastric cancer, although
validation in a larger cohort will be necessary.

Introduction
Gastric cancer (GC) is featured by the high hetero-

geneity on anatomical, molecular, and cellular levels,
which greatly impeded the current therapeutic develop-
ment for advanced GC (AGC)1,2. Individualized che-
motherapeutic or targeted therapy guided by predictive
and monitoring markers has been progressed desirably
into the era of precision medicine, yet the therapeutic

targets for GC remains limited3. Although several land-
mark studies have highlighted the molecular subtypes of
GC on DNA, RNA, and protein levels based on large-
cohort tumor tissues, the application of such markers in
clinical practice remains to be a big challenge4–6.
Although predictive and resistance markers are equally
important for systemic antitumor therapy, most research
efforts to date have been focused on exploring the efficacy
of predictive markers, while only a few clear markers of
resistance have been found7,8. Meanwhile, due to the
specific features of GC, the current Response Evaluation
Criteria in Solid Tumors (RECIST) fail to evaluate drug
resistance in a precisely and timely manner9.
Chromosomal instability, often indicated as large or

small somatic gains and losses on chromosomal level, has
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been widely accepted as a hallmark of cancer10. A large
amount drugs exert their antitumor activities through
disrupting chromosomal stability11. Moreover, chromo-
somal instability has been reported to drive the clonal
evolution of intratumoral heterogeneity, and confer the
intrinsic and acquired resistance11,12. Hence, dynamically
deciphering the landscape of chromosomal stability dur-
ing treatment is of great importance in help under-
standing the therapeutic effect as well as cancer evolution.
Nevertheless, the sequential acquisition of tumor tissues is
clinically impractical, and new approach to achieve sur-
veillance for patients’ response is urgently demanded.
With the rapid progress of high-throughput sequencing

and liquid biopsy techniques, circulating tumor DNA
(ctDNA) presented in plasma have become the alternative
surrogate to tissues13. Genome-wide profiling of copy
number instability (CNI) in ctDNA provides a suitable
method to quantify chromosomal instability and predict
therapeutic response in several cancers14,15. However, the
significance and dynamic changes of chromosomal
instability during the treatment of AGC have not been
reported. Our previous research indicated that the HER2
copy number detected by plasma ctDNA could serve as a
response biomarker of trastuzumab treatment16. In the
present study, we attempted to elucidate the chromoso-
mal instability based on ctDNA during chemotherapy or
targeted therapy by whole-genome sequencing and
investigate their significance in AGC.

Results
The clinicopathological characteristics of 26 patients
A total of 55 patients were enrolled with a median age of

58 years (range: 29–80 years). Totally, 43 patients (78%)
were male and 12 (22%) were female. Most of the patients
were diagnosed with HER2-positive (55%, 30/55), poorly
differentiated (51%, 28/55), and intestinal (69%, 38/55)
AGC. All of the patients received at least two cycles of
drug treatment with 30 patients receiving targeted therapy
(pyrotinib, RC48, trastuzumab, pertuzumab, and fuquin-
tinib) alone or in combination with chemotherapy and 25
patients undergoing chemotherapy alone. The detailed
clinicopathological characteristics of 55 patients are
shown in Table 1 and Table S1.

SCNA patterns in individuals reflected tumor
heterogeneity
Genome-wide patterns of SCNA detected in ctDNA

derived from baseline plasma and paired blood samples
showed high tumor heterogeneity among patients (Fig. 1
and Fig. S1). According to the profiling of segmented copy
numbers, large-scale copy number gain or loss was
observed on chromosomes 5, 7, 8, 13, 17, 18, 19, and 20 in
ctDNAs of plasmas 5001, 7335, 5185, 8001, 5978, and
7294. Among the tumor-related genes, the top amplified

genes included ERBB2 (17q21), MYC (8q24), GNAS
(20q13), EGFR (7p11), ZNF217 (20q13), CCNE1(19q12),
NCOA3 (20q13), and CDK6 (7q21), and the most fre-
quently deleted genes were CDKN2A (9p21), CDKN2B
(9p21), KIT (4q12), SMAD4 (18q21), and FGFR1 (8p12).
Most of these genes encoded receptor tyrosine kinases
and cell cycle-related proteins, which was consistent with
the previously published studies on GC4,17.

CNI scores of ctDNA in all patients
We calculated the CNI scores in ctDNA from 130

plasmas from 55 patients and cfDNA from 100 plasmas
from 100 healthy people (Table S2). The cutoff value of
the chromosomal instability was defined as the mean+
SD of the CNI scores (56.60) in 100 plasmas from healthy
people. Chromosomal instability with diverse patterns
was observed in 27 of 55 patients (49%) prior to drug
treatment.

Table 1 The clinicopathological characteristics of
patients (N= 55)

Characteristics Number (%)

Sex

Male 43 (78.2)

Female 12 (21.8)

Age

<65 41 (74.5)

≥65 14 (25.5)

Tumor location

EGJ 21 (38.2)

Non-EGJ 34 (61.8)

Differentiation

High 4 (7.3)

Middle 23 (41.8)

Low 28 (50.9)

Lauren classification

Intestinal type 38 (69.1)

Diffuse type 10 (18.2)

Mixed type 7 (12.7)

HER2 status

Positive 30 (54.5)

Negative 25 (45.5)

Targeted treatment

Yes 30 (54.5)

No 25 (45.5)
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Among 26 patients with paired blood cells and dynamic
plasma samples, the CNI scores of ctDNA derived from
baseline plasmas were significantly higher than those from
paired blood cells (67.62 ± 15.99 vs. 49.88 ± 2.47, P <
0.001) (Fig. 2a). The CNI scores after drug treatment were
significantly lower than they were before treatment
(56.94 ± 15.50 vs. 67.62 ± 15.99, P < 0.001) (Fig. 2b).
Moreover, CNI scores fluctuated during therapy. 93% (14/
15) of post-therapeutic ctDNA at the time of partial
response (PR) had the lowest scores (48.85 ± 2.54), while
52% (13/25) of ctDNA with developed resistance to
therapy retained elevated scores (63.75 ± 18.65). For
ctDNA with developed resistance, SCNA patterns were
identical to those before treatment, but the instability
scores were lower than the pretherapeutic level (63.75 ±
18.65 vs. 67.62 ± 15.99) (Fig. 2c).
Five ctDNA from four patients at the timepoint of stable

disease (SD) showed relatively high CNI scores (cases 3, 6,
12, and 22), which was analyzed individually (Fig. 2d). For
case 3 and case 6, although the clinical response was

determined as SD by CT after four or six cycles’ treatment
respectively, the tumor biomarkers (CEA, CA199, and
CA72.4) were increased, which suggested a trend toward
disease progression. For case 12 and case 22, the increase
of tumor biomarkers at the time of SD was not significant,
and only CA72.4 increased slightly.

Chromosomal instability of ctDNA prior to treatment could
predict the therapeutic response
Among patients with chromosomal instability prior to

treatment (n= 27), 16 patients (59%) achieved PR after
drug treatment, 10 patients (37%) achieved SD, and 1
patients (4%) achieved progressive disease (PD). For
patients with chromosomal stability (n= 28) prior to
treatment, 9 patients (32%) achieved PR after treatment,
16 patients (57%) achieved SD, and 3 patients (11%)
achieved PD. The response rate (59%, 16/27) of patients
with chromosomal instability was higher than that (32%,
9/28) of patients with chromosomal stability (P= 0.043)
(Fig. 3 and Table S3).

Fig. 1 SCNV patterns of ctDNA at baseline among 26 patients. Genome-wide patterns of somatic copy number variation (SCNV) based on ctDNA
of baseline plasma and corresponding blood cell samples from 26 patients were analyzed and plotted. The x-axis and y-axis represent the loci of 22
chromosomes and corresponding copy numbers, respectively. CNI score copy number instability score
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Dynamic changes in CNI scores of ctDNA could indicate
disease progression
Based on the clustering heatmap (Fig. 4), the CNI scores

changed dynamically during therapy, which decreasing at
PR or SD and re-increasing at PD. The detailed changes of
CNI scores and therapeutic responses in 26 patients are
shown in Figs. S2, S3, and Table S4. Four exemplary

patients are also further demonstrated in Fig. 5. For case
26, with chromosomal stability (score, 51.23) at baseline,
achieved SD after treatment with gradually swelling ret-
roperitoneal lymph nodes until the progressive of disease
(Fig. 5a). For case 22 (score, 84.76) and case 18 (score,
87.10), which had high levels of chromosomal instability
at baseline, distant metastases were significantly shrunk

Fig. 2 The CNI scores of ctDNA in 26 patients with dynamic plasma samples. a The CNI scores of ctDNA in plasmas and paired blood cells from
26 AGC patients. b The CNI scores of ctDNA from plasma samples before and after treatment in 26 AGC patients. c The CNI scores of ctDNA from
plasma under different clinical responses. CNI score copy number instability score, PR partial response, SD stable disease, PD progressive disease. All
data are presented as mean ± SD. P < 0.001 according to t test or one-way ANOVA. d The dynamic changes of CNI scores and tumor biomarkers
during the administration of treatments in four patients
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with decreased CNI scores, and when patients developed
resistance to treatment, the scores increased again (Fig.
5b, c). For case 21, with chromosomal stability (score, 54)
at baseline, liver metastases increased rapidly after treat-
ment, and the CNI score increased significantly (Fig. 5d).
Changes in the CNI scores of these patients were
observed during therapy (Fig. 5e).
It seemed that the SCNA patterns of ctDNA with

developed resistance were similar to those of paired pre-
therapeutic ctDNA (Fig. 5). A circular map verified the
identity of the SCNA pattern between pretherapeutic and
resistant ctDNA, but the CNI score at resistance was
lower than the pre-therapeutic level. Three representative
patients are shown in Fig. 6.

Discussion
Chromosomal instability has been reported to underpin

intratumoral heterogeneity, accelerate clone evolution,
drive phenotypic adaptation, finally resulting in a poor
clinical outcome, and accelerating therapeutic resistance
in various cancers11,18,19. Compared with single-
nucleotide polymorphism, the analysis of the somatic

copy number alteration (SCNA) pattern is a more uni-
versal approach based on chromosomal instability13,15.
With the next-generation sequencing of ctDNA applied to
the quantitative analysis of the SCNA pattern, it provides
a sufficient method for early diagnosis of cancer15,20,
prediction of treatment response14, and dynamic mon-
itoring of acquired resistance19.
GC is featured by frequent SCNA and high-

chromosomal instability. Among 295 patients with pri-
mary gastric adenocarcinomas from The Cancer Genome
Atlas (TCGA) cohort, 50% showed chromosomal
instability4. In the present study, chromosomal instability
detected by whole ctDNA-based genome sequencing was
observed in 27 of 55 patients (49%) prior to drug treat-
ment. No significant relationship was found between
patients’ characteristics and CNI scores, and we also did
not find differences between survival and CNI scores (data
not shown).
Chromosomal instability has been demonstrated to

predict therapeutic response to radiotherapy, che-
motherapy, and immunotherapy14,21,22. Recently,
researchers observed a prediction accuracy of 83% of the

Fig. 3 Schematic of 130 plasma samples and therapeutic response from 55 patients. For patients with pretherapeutic chromosomal instability,
the response rate (59%, 16/27) was significantly higher than that in patients with chromosomal stability (32%, 9/28) (P= 0.043). The cutoff value of
chromosomal instability was defined as the mean+ SD of the CNI scores (56.60) in cfDNA from 100 healthy people. CNI scores also fluctuated during
drug treatment among 26 patients with dynamic plasmas. CNI scores copy number instability score, CIN chromosomal instability, CNS chromosomal
stability, PR partial response, SD stable disease, PD progressive disease
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quantified chromosomal instability and the prediction of
SD vs. PD prior to standard imaging analysis14. In our
research, we found that pre-treatment chromosomal
instability could predict a higher response rate (59% vs.
32%, P= 0.043). Compared with baseline, the scores of 19
patients (73%) decreased after drug treatment, and greatly
increased when disease progressed, to a level slightly
lower than the baseline value. In addition, we also pre-
sented the dynamic changes of CEA, CA125, CA19-9, and
CA72-4 of 14 patients throughout the treatment with
series information of serum biomarkers (Fig. S4). The CNI
scores decreased in 9/13 patients at PR or SD, accom-
panied by reduction levels of CEA, CA19-9, CA125, or
CA72.4. These results derived from our relatively small
sample are worth validating in future studies.
The noninvasiveness of ctDNA has been used to detect

the acquired resistance mutations selected by treatment of
nonsmall cell lung cancer, melanoma, and metastatic
HER2-positive GC7,23–25. In the dynamic process of clone
evolution under selective pressures induced by treatment,
our research showed that, as expected, the CNI scores

declined at PR and distinctly increased at PD. Compared
with the traditional biomarkers, the CNI score elevated in
10/14 patients at progressive disease, accompanied by
increasing levels of CEA, CA19-9, CA125, and CA72.4,
alone or in combination (Fig. S4). More importantly, for
case 22 with pre-therapeutic chromosomal instability,
although the tumor biomarkers were decreased at stable
disease (evaluated by RECIST criteria) after three cycles of
treatment, we observed sharp increase of CNI score
(44.28–91.41). This suggested that ctDNA-based CNI
scores could serve as an early indicator of progression
disease, whose power was comparable to the combination
of CEA, CA19-9, CA125, and CA72-4.
Our previous research revealed a high concordance of

HER2 amplification between ctDNA and tumor tissues in
56 patients with AGC16. Furthermore, patients exhibited a
decrease in the HER2 copy number when they benefited
from trastuzumab therapy, and achieved an increase at
progressive disease. In the present study, among 17
patients with HER2-positive AGC who received anti-
HER2 therapy, 13 (76%) achieved increases of the CNI

Fig. 4 Cluster analysis of SCNV patterns and therapeutic response among 26 patients. In the dynamic administration of treatment, the CNI
scores showed a sharp decline at PR, then achieved slow recovery at SD, and finally increased significantly at PD. The x-axis and y-axis represent the
chromosomes’ loci and corresponding normalized copy numbers in plasma samples. PR partial response, SD stable disease, PD progressive disease,
CN normalized copy number
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scores, while 11 (65%) achieved increases of the HER2
copy number, at progressive disease (Fig. S5). For the first
time, we found that the efficacy of CNI score to monitor
therapeutic response of anti-HER2 treatment was not
inferior to the changes of HER2 copy number.
The concept that spatiotemporal evolution of genomic

clones is involved in drug resistance had been explored by
several studies25,26. Multiregional and ctDNA-based next
generation sequencing for intratumoral heterogeneity

identification and genomic subclones detection could
identify the dynamic emergence of resistant subclones
during therapy25,27. Recently, the presence and size esti-
mation of ibrutinib-resistant subclones at baseline in
patients with chronic lymphocytic leukemia was demon-
strated by droplet-based microfluidic technology and
growth kinetic analyses26. In the present study, we found
that the SCNA patterns of ctDNAs with acquired drug
resistance were largely unchanged compared with

Fig. 5 Dynamic changes in CNI scores of ctDNA and representative scan images. a–d Visualization of dynamic changes in CNI scores and
representative scan images are presented for four patients (cases 26, 22, 18, and 21). PR partial response, SD stable disease, PD progressive disease.
e The dynamic changes in CNI scores of ctDNA from four patients. CNI scores copy number instability score

Fig. 6 Dynamic SCNV patterns of ctDNA in three patients with acquired resistance. a–c The SCNV patterns at baseline, PR, SD, and PD in cases
22, 9, and 3, respectively. Orange, SCNV patterns at baseline (BL); green, SCNV patterns at partial response (PR); blue, SCNV patterns at stable disease
(SD); red, SCNV patterns at progressive disease (PD). The Circos software package was used to plot genomic SCNVs
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baseline SCNV patterns, which suggested that multiple
factors from different levels are involved in drug
resistance.

Conclusions
We employed a low-coverage WGS to quantify the

chromosomal instability of plasma ctDNA and revealed
the dynamic changes induced by drug treatment in AGC.
Our finding suggests that chromosomal instability of
ctDNA could be used to predict and monitor therapeutic
response in GC, although validation in a larger cohort will
be necessary.

Materials and methods
Study design
A cohort of 55 patients with histopathologically con-

firmed AGC who received chemotherapy or targeted
therapy at Peking University Cancer Hospital were
included in this study. Totally, 100 plasma samples from
100 healthy people, 55 pretherapeutic plasmas (26 has
paired blood cells) from 55 AGC patients and 75 dynamic
plasmas from 26 AGC patients were collected. The clin-
ical data of patients was obtained from their medical
records and the clinical response after drug treatment was
evaluated by computed tomography and categorized as
complete response, PR, SD, or PD, according to the
RECIST 1.1 criteria9. This study was approved by the
Medical Ethics Committee of Peking University Cancer
Hospital, and written informed consent was obtained
from all of the patients for their samples to be used in the
future.

Plasma collection and ctDNA extraction
Whole blood from patients was collected in cell-free

DNA BCT tubes (Streck Laboratories, USA), and then
centrifuged at 1600g for 10 min at 4 °C to separate plasma
from blood cells. The supernatant was transferred into a
fresh tube and centrifuged at 16,000g for another 10 min
at 4 °C. ctDNA was extracted from a 1000 μL aliquot of
plasma using a QIAamp Circulating Nucleic Acid Kit
(Qiagen, Germany), and genomic DNAs from peripheral
blood cells were extracted using the RelaxGene Blood
DNA System (Tiangen Biotech Co., Ltd., China). The
quality of DNA was examined by quantitative polymerase
chain reaction and the 2100 Bioanalyzer (Agilent, USA).
All of the samples were stored at −80 °C for further use.

Whole-genome sequencing
Low-coverage whole-genome sequencing (LC WGS)

based on ctDNA samples was performed to analyze
SCNAs. More than 5 ng of the ctDNA was used to build
the library, and the sequencing was performed on an
Illumina HiSeq 2500 sequencer (Illumina, San Diego, CA,
USA). Each sample had about 5 million paired-end reads,

and the average length of each read was 100 bp. Over
91.92% of bases had a sequencing quality score ≥Q30 in
LC WGS. The QC of sequence data was performed as
described previously16. The adapters and low-quality
bases were filtered and trimmed from the raw data
using Trimmomatic (version 0.35). High-quality reads
were mapped to the reference genome (hg19) using BWA
(version 0.7.12-r1039).

Copy number analysis of ctDNA and CNI score calculation
Unique mapped reads were extracted from the align-

ment reads (BAM file). The whole reference genome was
divided into non-overlapped observation windows (bins)
with a size of 1000 kB. The read number and guanine-
cytosine (GC) content were calculated in each bin. The
bin read count was normalized based on the GC content
and on a reference dataset to represent the relative copy
number, which was reported accordingly16. we used R
(version 3.0.0) to graph the relative copy number of each
bin to visualize CNVs. The relative read number (RRN) of
each bin was then segmented by circular binary seg-
mentation (CBS) algorithms to merge bins with similar
trends and calculate the final copy number segments.
Then, we calculated the Z value of each bin according to
the formula

zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log2
xi
2

� �
�

�

�

�

�

�

r

;

where xi is the relative copy number of each bin.
The CNI score was calculated according to the formula,

as descripted previously28

CNI score ¼
X

Pb

i¼mb

Zij j;

where mb and pb are the bins ranked m% and p%,
respectively, according to the Z value (m= 95, p= 99).
ChromGo (Yikon Genomics Inc., Shanghai, China)

software was used to automatically analyze sequencing
data and report abnormalities of chromosomes. We used
software package Circos (http://circos.ca/), ideal for
visualizing genome DNA, to plot patients’ SCNV at the
baseline, PR, SD, and PD stages. For the clustering heat-
map, we used the R package dendextend (https://cran.r-
project.org/web/packages/dendextend/vignettes/
introduction.html) for hierarchical clustering and the R
package ComplexHeatmap (https://www.rdocumentation.
org/packages/) to obtain the heatmap.

Statistical analysis
A chi-square test was conducted to investigate the

association of chromosomal instability with clin-
icopathological characteristics and the response rate of
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treatment. The significance of CNI scores between ctDNA
of plasma and blood cells, as well as the differences before
and after treatment, were determined with t test. The
significance of CNI scores variance among ctDNA
obtained from samples at baseline, PR, SD, and PD was
measured by one-way ANOVA. Kaplan–Meier survival
analysis was performed to compare the survival outcomes
of patients with different CNI scores. P < 0.05 was con-
sidered statistically significant. Analyses were performed
with SPSS 22.0 or GraphPad Prism 7.0.
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