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Abstract: Feline leukemia virus (FeLV) was the first feline retrovirus discovered, and is associated
with multiple fatal disease syndromes in cats, including lymphoma. The original research
conducted on FeLV employed classical virological techniques. As methods have evolved to allow
FeLV genetic characterization, investigators have continued to unravel the molecular pathology
associated with this fascinating agent. In this review, we discuss how FeLV classification,
transmission, and disease-inducing potential have been defined sequentially by viral interference
assays, Sanger sequencing, PCR, and next-generation sequencing. In particular, we highlight the
influences of endogenous FeLV and host genetics that represent FeLV research opportunities on the
near horizon.
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1. Background

In the early 1960s, William Jarrett described feline leukemia virus (FeLV) as the infectious
agent responsible for approximately half of observed cases of feline leukemia and lymphoma [1].
The discovery of this pathogenic gammaretrovirus launched the field of feline retrovirology and
discoveries relating to mechanisms of retroviral-induced cancers and oncogenes [2,3]. FeLV was
historically a common domestic cat pathogen, and remains one of the few retroviral diseases for which
there is an effective vaccine [3–5]. As the incidence of FeLV decreased via effective quarantine and
vaccination procedures, and with the discovery of feline and simian immunodeficiency viruses as
alternate and more analogous models for human immunodeficiency virus (HIV) research, studies of
FeLV biology and pathogenesis diminished. Therefore, most of the significant FeLV literature was
generated before the development of ‘modern’ molecular techniques. In this retrospective, we review
the traditional assays used to establish classical virus subgroups, examine how modern molecular
techniques may be used to re-evaluate FeLV subgroup classification schemes, and provide new
information to unravel interactions between exogenous and endogenous retroviruses.

2. Feline Leukemia Virus Genome Organization

The genome structure of retroviruses includes three genes flanked by un-translated regulatory
sequences known as long terminal repeats (LTR). Gag encodes group-specific capsid antigens,
pol encodes protease, integrase, and reverse transcriptase enzymes, and env encodes the envelope
proteins [6]. FeLV is approximately 8.4-kb in length and lacks accessory genes characteristic of
complex feline retroviruses such as feline immunodeficiency virus (FIV) and feline foamy virus
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(FFV, also referred to as feline spumavirus, FSV). FeLV contains two reading frames, one for gag and
pol genes and a second that encodes the env transcript (Figure 1) [3].
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been associated with different disease outcomes that differ genetically and biologically from 
endogenous FeLV (enFeLV). EnFeLV is the most genetically distinct from FeLV-A, with nucleotide 
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C, T, and TG35 have focal insertions, substitution, and deletions within the parent FeLV-A virus at 
different regions. Insertions are most often localized to the 5′ env and are demarcated here by bold 
vertical bars, with each line denoting a minimum of one amino acid insertion. Stars denote presence 
of single nucleotide polymorphisms (SNPs) that are highly concentrated in the respective genes 
between FeLV-A and other subgroups. FeLV-D displays a recombination event with another domestic 
cat endogenous virus (ERV-DC; for simplicity, we have not indicated ERV-DC here). 

3. Endogenous Feline Leukemia Virus 

As part of the retroviral infection cycle, viral RNA is reverse transcribed into DNA, which enters 
the nucleus and integrates within the host genome. This process leads to an integrated provirus in 
host cell DNA, a hallmark of retroviral infection that is a required component of the viral lifecycle. If 
integration occurs in a germ cell, the provirus can be transmitted vertically through simple Mendelian 
inheritance [7]. As retrotransposable elements, endogenized retroviruses have duplicate flanking 
LTRs, and thus can be excised and relocate to other areas of the genome via recombination. 
Endogenized viruses may acquire mutations that impair productive viral replication, yet remain as 
endogenous genomic elements fixed in the host genome [8]. 

Endogenous feline leukemia virus (enFeLV) appears to have invaded the feline genome prior to 
the speciation of the Felis genus [9]. While enFeLVs do not induce disease in the host, they are highly 
relevant to domestic cat FeLV biology. Endogenous FeLV is expressed in many tissue types and is 
associated with FeLV infection [10–13]. Endogenous FeLV integration site and copy numbers vary 
among individual cats (8–12 copies per haploid genome; up to 19 per diploid genome) due to viral 
transposition events and multiple independent integrations [8,9,14–16]. Increased enFeLV proviral 
copies have been correlated with both increased [11,12] and decreased [17] susceptibility to FeLV 
infection, but not with disease progression [11]. Endogenous and exogenous FeLVs (exFeLV) are 

Figure 1. Genomic map of feline leukemia virus (FeLV) subgroups. Six different FeLV subgroups
have been associated with different disease outcomes that differ genetically and biologically from
endogenous FeLV (enFeLV). EnFeLV is the most genetically distinct from FeLV-A, with nucleotide
differences noted in long terminal repeats (LTR), gag, and env. FeLV-B is formed by recombination of the
enFeLV env-LTR with FeLV-A. The 5′ recombination site is more conserved than the 3′ site. FeLV-C, T,
and TG35 have focal insertions, substitution, and deletions within the parent FeLV-A virus at different
regions. Insertions are most often localized to the 5′ env and are demarcated here by bold vertical
bars, with each line denoting a minimum of one amino acid insertion. Stars denote presence of single
nucleotide polymorphisms (SNPs) that are highly concentrated in the respective genes between FeLV-A
and other subgroups. FeLV-D displays a recombination event with another domestic cat endogenous
virus (ERV-DC; for simplicity, we have not indicated ERV-DC here).

3. Endogenous Feline Leukemia Virus

As part of the retroviral infection cycle, viral RNA is reverse transcribed into DNA, which enters
the nucleus and integrates within the host genome. This process leads to an integrated provirus in
host cell DNA, a hallmark of retroviral infection that is a required component of the viral lifecycle.
If integration occurs in a germ cell, the provirus can be transmitted vertically through simple Mendelian
inheritance [7]. As retrotransposable elements, endogenized retroviruses have duplicate flanking LTRs,
and thus can be excised and relocate to other areas of the genome via recombination. Endogenized
viruses may acquire mutations that impair productive viral replication, yet remain as endogenous
genomic elements fixed in the host genome [8].

Endogenous feline leukemia virus (enFeLV) appears to have invaded the feline genome prior
to the speciation of the Felis genus [9]. While enFeLVs do not induce disease in the host, they are
highly relevant to domestic cat FeLV biology. Endogenous FeLV is expressed in many tissue types
and is associated with FeLV infection [10–13]. Endogenous FeLV integration site and copy numbers
vary among individual cats (8–12 copies per haploid genome; up to 19 per diploid genome) due
to viral transposition events and multiple independent integrations [8,9,14–16]. Increased enFeLV
proviral copies have been correlated with both increased [11,12] and decreased [17] susceptibility to
FeLV infection, but not with disease progression [11]. Endogenous and exogenous FeLVs (exFeLV)
are approximately 86% similar at the nucleotide level. Differences between enFeLV and exFeLV
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occur in gag and env, and feature insertions and deletions (INDELs), frameshifts, nonsense mutations,
and changes to the unique 3′ regions of the LTR (Figure 1) [3]. As noted below, enFeLV recombination
with exFeLV results in novel FeLV subgroups [18], though the relationship between enFeLV and exFeLV
infection has not been extensively studied. Because most felid species do not harbor enFeLV, naturally
occurring FeLV infections in non-domestic felids provide an opportunity to interrogate protection or
promotion of exFeLV by enFeLV in a biologically relevant system.

4. Exogenous Feline Leukemia Virus

It is postulated that FeLV arose from a rodent-derived virus that evolved to infect cats as a
consequence of predator/prey relationship between cats and mice [2]. Exogenous (horizontally
transmissible/infectious) FeLVs have been classified as subgroups, based on functional and genetic
relatedness. The first three FeLV subgroups identified (FeLV-A, B and C) were characterized
using viral interference (VI) assays, and eventually were associated with subgroup-specific clinical
phenotypes [19–21]. Definition of FeLV subgroups by Oswald Jarrett et al. was an early area of intense
FeLV study because of their relation to differences in disease progression and prognosis. FeLV-A
is the most common horizontally transmitted subgroup [22,23]. While FeLV-A has been reported
to be less pathogenic than other FeLV subgroups, it has been associated with macrocytic anemia,
immunosuppression, and lymphoma [3,24]. FeLV-B, a recombinant of FeLV-A with enFeLV, has been
reported to occur in approximately half of cats infected with FeLV-A. It arises by recombination
between FeLV-A and enFeLV subsequent to co-packaging of expressed enFeLV and exFeLV transcripts
into a single virion, followed by strand displacement during reverse transcription [25–27]. FeLV-B is
tumorigenic [24], and is considered to be incapable of horizontal transmission unless it is co-transmitted
with FeLV-A [20], with rare exception [28,29]. FeLV-C is a less common subgroup that arises from
de novo mutations in env of FeLV-A and has been associated with the development of aplastic
anemia [3,30–35].

5. Viral Interference Assays

Viral interference (VI) assays test the ability of one viral strain to limit infection with a second
viral isolate. Viral interference occurs via both intrinsic and extrinsic mechanisms resulting from
cellular pathways that are perturbed during viral infection. Extrinsic VI is caused by competitive
blockage of virus receptor by proteins or other viruses that bind and occlude receptor-mediated
entry for subsequent viruses. Intrinsic VI refers to multiple processes including intra-cellular
receptor fatigue [10,36–38], interferon-mediated interference in response to viral genetic material [39],
and superinfection exclusion [40].

Viral interference assays were used to distinguish and initially define FeLV subgroups A, B and
C, presumably via intrinsic mechanisms. FeLV viruses that “interfere” with one another (i.e., virus A
precludes superinfection with virus B) were tested by a classical method to identify viral groups of the
same subgroup (which interfere) versus viruses of different subgroups (which do not interfere) [41,42].
In 1971, Sarma and Log used interference assays to establish the first three recognized FeLV subgroups:
A, B and C (Figure 2) [19]. Focus-forming FeLV/murine sarcoma virus (MSV) pseudotypes (viral
chimeric constructs in which MSV envelope proteins have been replaced by FeLV env) were produced
by rescue of 9 natural tumorigenic FeLV isolates following co-culture on Harvey MSV-infected hamster
tumor cells and feline embryonic fibroblasts. Subsequent in vitro infection of feline embryo fibroblasts
with one subgroup resulted in the blockage of the corresponding pseudotype. Cell cultures were
considered to demonstrate viral interference if a 2-log drop in focus forming titer was measured.
For example, when feline embryo fibroblast cultures were infected with FeLV-A, they were still
susceptible to FeLV-B and C pseudotypes (i.e., foci were present following secondary infection).
Additionally, cells infected with FeLV-C were susceptible to FeLV-B pseudotype infection, and vice
versa (Figure 2). These experiments led to the conclusion that FeLV-A, B and C were genetically
different and capable of superinfection in cells.



Viruses 2018, 10, 29 4 of 12Viruses 2018, 10, 29 4 of 12 
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(MSV)-infected hamster cells (Sarma and Log, 1971 [19]). Focus-forming pseudotypes (chimeras with 
the ability to form plaques) were plated on previously infected cell cultures. Cultures with a 2-log 
reduction in focus-forming units were considered to demonstrate viral interference. 

Curiously, primary infection with FeLV-B or FeLV-C virus blocked subsequent infection of 
FeLV-A pseudotype. This unexpected display of viral interference between different strains 
subgroups provided evidence for co-infection between FeLV-A and other. This led to the hypothesis 
that FeLV-A is a necessary precursor for the development of more pathogenic FeLV subgroups and 
is an essential helper virus for other subgroups. Subgroups were further described by demonstrating 
that neutralizing antibodies raised in goats and cats inoculated with different strains demonstrated 
subgroup neutralizing specificity, further elucidating variation among subgroups [43]. Using this 
criterion, FeLV-A was more monotypic compared to FeLV-B and C, which displayed more antigenic 
variation. 

On a functional level, VI among FeLV subgroups may be explained by variation in receptor use 
(extrinsic interference). FeLV-A uses thiamine transporter receptors (ThTR-1) [44] while FeLV-B uses 
a common retroviral entry receptor, the phosphate transporter receptors (PiT-1/2) [45–48]. FeLV-A 
env would bind ThTR-1, which would not preclude binding to PiT-1/2, but cells infected with FeLV-
B would not be permissive to an additional FeLV-A infection as FeLV-B infections almost always 
involve a FeLV-A co-infection. FeLV-C uses a heme exporter receptor (FLVCR-1/2) along with ThTR-
1/2 [49–51]. 

6. Sanger Sequencing 

Now a fundamental technique in molecular biology, Sanger sequencing was developed in 1977, 
after FeLV was discovered and classified by VI assays [19,20,52]. Sanger sequencing introduced 
nucleotide analysis allowing researchers to understand and associate FeLV genetic sequences with 
functional proteins [53]. Additionally, other FeLV subgroups marked by relatively minor genetic 
variations were identified, making subgroup identification more complicated. 

In 1980, Rosenberg et al. conducted a sequence-level comparative analysis of FeLV-A, B and C. 
Homology indices based on 2D polyacrylamide gel electrophoresis (PAGE) fingerprinting were low 
among all subgroups (37–66%) [54]. Modern sequencing technologies have allowed full genome 
analyses of FeLV, and documented homology among all subgroups and enFeLV by pairwise 
comparison. Figure 3 illustrates strain similarities using SDTv1.2 nucleotide pairwise comparison 
tool following Multiple Alignment using Fast Fourier Transform (MAFFT) [55]. FeLV-A displays the 

Figure 2. Predicted outcomes of FeLV viral interference as defined by Sarma and Log, 1971 [19]. FeLV
subgroups were first identified by ability or inability of virus types to infect Murine sarcoma virus
(MSV)-infected hamster cells (Sarma and Log, 1971 [19]). Focus-forming pseudotypes (chimeras with
the ability to form plaques) were plated on previously infected cell cultures. Cultures with a 2-log
reduction in focus-forming units were considered to demonstrate viral interference.

Curiously, primary infection with FeLV-B or FeLV-C virus blocked subsequent infection of
FeLV-A pseudotype. This unexpected display of viral interference between different strains subgroups
provided evidence for co-infection between FeLV-A and other. This led to the hypothesis that FeLV-A
is a necessary precursor for the development of more pathogenic FeLV subgroups and is an essential
helper virus for other subgroups. Subgroups were further described by demonstrating that neutralizing
antibodies raised in goats and cats inoculated with different strains demonstrated subgroup
neutralizing specificity, further elucidating variation among subgroups [43]. Using this criterion,
FeLV-A was more monotypic compared to FeLV-B and C, which displayed more antigenic variation.

On a functional level, VI among FeLV subgroups may be explained by variation in receptor use
(extrinsic interference). FeLV-A uses thiamine transporter receptors (ThTR-1) [44] while FeLV-B uses
a common retroviral entry receptor, the phosphate transporter receptors (PiT-1/2) [45–48]. FeLV-A
env would bind ThTR-1, which would not preclude binding to PiT-1/2, but cells infected with FeLV-B
would not be permissive to an additional FeLV-A infection as FeLV-B infections almost always involve a
FeLV-A co-infection. FeLV-C uses a heme exporter receptor (FLVCR-1/2) along with ThTR-1/2 [49–51].

6. Sanger Sequencing

Now a fundamental technique in molecular biology, Sanger sequencing was developed in 1977,
after FeLV was discovered and classified by VI assays [19,20,52]. Sanger sequencing introduced
nucleotide analysis allowing researchers to understand and associate FeLV genetic sequences with
functional proteins [53]. Additionally, other FeLV subgroups marked by relatively minor genetic
variations were identified, making subgroup identification more complicated.

In 1980, Rosenberg et al. conducted a sequence-level comparative analysis of FeLV-A, B and
C. Homology indices based on 2D polyacrylamide gel electrophoresis (PAGE) fingerprinting were
low among all subgroups (37–66%) [54]. Modern sequencing technologies have allowed full
genome analyses of FeLV, and documented homology among all subgroups and enFeLV by pairwise
comparison. Figure 3 illustrates strain similarities using SDTv1.2 nucleotide pairwise comparison
tool following Multiple Alignment using Fast Fourier Transform (MAFFT) [55]. FeLV-A displays
the strongest sequence conservation among distinct FeLV-A isolates, with some genes having
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98% homology [56,57]. Other subgroups are less well conserved. For instance, FeLV-B was first
characterized as having up to ten variable regions with respect to FeLV-A [26,33,58,59]. The sequences
of the variable region depend on the enFeLV source. enFeLVs have not been rigorously examined
at the nucleotide level; as a result few FeLV-B sequences have been recorded to allow for detailed
nucleotide comparisons [25,33,53,58–65]. Variable regions 1–5 (vr1–5) and potentially the C-terminus
domain are believed to be responsible for altering cellular tropism due to changes in the receptor
binding protein (gp70) based on phylogenetic analysis [25,59,66]. Few studies have been performed to
document consequences of amino acid variation in other variable regions. Alignment and comparative
analyses of enFeLV, FeLV-A and FeLV-B sequences identify a relatively conserved 5’ recombination
site in the 5′ gp70 gene. A 3′ recombination site region is also evident, but is more variable [27,57,67].
Variation in recombination sites between enFeLV and exFeLV results in nucleotide divergence among
FeLV-B genotypes, particularly in the envelope gene. However, FeLV-B’s still share significant pairwise
identity to the closely related FeLV-A’s. Work from the laboratories of Roy-Burman and Overbaugh
examining exFeLV/enFeLV recombination during in vitro infections has revealed that replication
efficiency and cellular tropism depends on the length and region of the enFeLV sequence incorporated
into the FeLV-B recombinant [68]. Amino acid changes localized to two variable regions (VRA and
VRB) mediate the ability of FeLV-B to bind to receptors Pit1 and/or Pit 2 [60,61]. Aside from changes
to the env gene, FeLV-B recombinants have been described that incorporate enFeLV sequences in
the LTR region and gag gene [69]. Curiously, while enFeLV is seen as a necessary progenitor for the
generation of FeLV-B, it has also been posited that truncated enFeLV Env may act to interfere with
FeLV-B infection [10].
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divergent among FeLV subgroups. Sequence accession numbers used for analysis: enFeLV—
AY364318-9, M25425; FeLV-A—AB060732, AB635483, AB635500, AB635510, AB635516, AB672612, 
EU359303-6, EU359308-9, KP728112, M12500, M18247-8, M89997; FeLV-B—AB635492, AB635494, 
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Changes in the FeLV-C 3′ pol and 5′ env gene are associated with aplastic anemia and expand the host 
range to other species in cell culture [59]. Naturally occurring FeLV-C isolates demonstrate that FeLV-

Figure 3. Pairwise identity across FeLV subytpes. (A) Full genomes of enFeLV (green font), FeLV-A
(black font), and FeLV-B (blue font) document discrimination of two major groups (indicated by
blue/green grid and yellow/red grid). Pairwise identify is indicated by color scale of intersecting
grid blocks. FeLV-A is highly conserved (>94% pairwise identity), though two subgroups are
indicated by red versus yellow-orange grid colors. Isolates demonstrate great variation between
clades (70–77% pairwise identity with highest conservation in gag and pol), although genetic similarity
is not entirely driven by subgroup; (B) pairwise identity of the env genes demonstrates that this
region is most divergent among FeLV subgroups. Sequence accession numbers used for analysis:
enFeLV—AY364318-9, M25425; FeLV-A—AB060732, AB635483, AB635500, AB635510, AB635516,
AB672612, EU359303-6, EU359308-9, KP728112, M12500, M18247-8, M89997; FeLV-B—AB635492,
AB635494, AB635499, AB635502, AB635506, AB635512, AB635517, AB635526, AB635579, AB635581,
AB635638, AF403716, J03448, JF957361, JF957363 K01208-9, V01172, X00188; FeLV-C—M14331;
FeLV-D—AB673426, AB673432; FeLV-T—M18246.

Sequence analysis of FeLV-C linked genotypic determinants to disease phenotypes [33]. Changes
in the FeLV-C 3′ pol and 5′ env gene are associated with aplastic anemia and expand the host range
to other species in cell culture [59]. Naturally occurring FeLV-C isolates demonstrate that FeLV-C is
the result of amino acid changes in the N-terminal portion of the surface protein. Further studies
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indicated that an 886-bp fragment from FeLV-C encompassing the 3′ end of pol (73 amino acids) and
the 5′ end of env (241 amino acids) to a recipient FeLV-A were necessary to confer the fatal aplastic
anemia phenotype [59]. Subsequent analysis indicated that a three-codon deletion within the first
variable region of the vr1 of the 5′ env gene and nine adjacent substitutions may be sufficient to confer
virulent phenotype [62,63]. These findings suggest precise mutations at specific loci may dictate
disease phenotypes typically ascribed to FeLV-C.

FeLV-61C (aka FeLV-T), is a T-cytopathic FeLV subgroup capable of forming syncytia in 3201 cells,
was first isolated in a natural thymic lymphoma [70,71]. FeLV-T induces a fatal immunosuppressive
disorder described as FeLV-FAIDS (feline acquired immune deficiency syndrome) [72]. The subgroup
was characterized following experimental infections of a domestic cats with a transmissible FeLV
clone, 61E [35,72,73]. An infected cat subsequently developed thymic lymphoma, atypical of FeLV-A
infection, and tissues were analyzed for mutations underlying this phenotype [35]. Sequence analysis
revealed a variant of primary FeLV-A env containing a 6-amino acid insertion and 6-amino acid
deletion [71]. Another FeLV variant with a 4-amino acid insertion, (81T), was shown to be sufficient to
induce the FeLV-T phenotype [65,74]. This variant, like 61C, was replication-defective [75]. Chimeras
generated from 61E and 81T generated tissue culture-adapted isolates with compensatory mutations
at positions 7 and 375, rescuing the Env processing ability. These changes both occur outside of the
receptor-binding domain [75]. Further research documented that FeLV-T is incapable of membrane
fusion to its receptor (Pit1) due to a histidine-aspartate substitution at the N-terminus [76]. Infection is
possible only in the presence of FeLIX, a truncated envelope protein constitutively produced by enFeLV,
which shares greater than 90% identity to FeLV-B env [77]. Ultimately, the progressive FeLV-FAIDS
disease progression and augmented cellular tropism led to classification the FeLV-T subgroup [65,71].

In the late 1980s, Levesque et al. examined naturally occurring FeLV from a group of cats
experiencing lymphomas. One animal had developed a multicentric lymphoma that was non-B-cell
non-T-cell in origin [78]. LTR recombinants of FeLV-945 and a closely related retrovirus, Moloney
murine leukemia virus, were identified in tumor tissue [79]. Variant FeLV-945 was shown to have
a specific 21-bp tandem triplication repeatedly identified in independent multicentric lymphomas,
conferring a replicative advantage in feline cells [80–82].

The two most recent additions to the FeLV subgroup family include the less characterized
FeLV subgroups D and TG35. FeLV-D was identified concurrent with the discovery of a novel
domestic cat endogenous retrovirus (ERV-DC) that is divergent from enFeLV [83]. Transduction of the
ERV-DC env gene into FeLV produced FeLV-D that displayed novel receptor interference patterns [84].
As has been hypothesized with FeLV-B, FeLV-D appears to be restricted by an ERV-DC envelope-like
antiretroviral factor termed, Refrex-1 [84,85]. FeLV-TG35 was identified in a 1-year-old castrated male
cat. One of several env clones (TG35-2) harbored a seven amino acid substitution and two amino
acid insertions in the vr1. Although the sequence bore resemblance to FeLV-A, interference assays
confirmed that TG35-2 Env targeted a different receptor, potentially constituting a new subgroup [64].

This review of novel FeLV variants and subgroups demonstrates a wide range of sequence
heterogeneity. Some subgroups represent infrequent point mutations, while others represent
recombination events resulting in substitution of nearly 30% of exFeLV genome. Determining whether
particular isolates are new subgroups vs. variants is reminiscent of the splitter-lumper debates that
are innate to taxonomy, systematics, and nosology [86–89]. Since not all FeLV sequenced variants
have been definitively associated with disease, it is also unclear if some sequenced isolates represent
truncated defective viruses that are apathogenic. The presence of variable enFeLV proviral copy
number and genotype provide a rich potential for the generation of many new FeLV variants during
the course of infection.

7. Polymerase Chain Reaction

The development of PCR in the early 1980s provided scientists with the ability to directly
target specific nucleic acid sequences for amplification and detection, either by visual or digital optic
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means [90]. The specificity of a PCR assay depends on the primers used to discriminate between targets.
The presence of enFeLV in all domestic cats has added additional challenges to the understanding of
FeLV biology. EnFeLV can exist as nearly full length pseudogenomes or may be present as a small
fraction of the genome consisting solo LTRs. This factor, coupled with the significant homology
between enFeLV and exFeLV genomes makes PCR differentiation of these two forms challenging.
Regions of relatively high sequence heterogeneity in the env gene and LTR sequences have been
exploited to develop PCR primer targets to distinguish between enFeLV and exFeLV subgroups [9,91].
This has allowed investigators to begin to interrogate interactions between the enFeLV genotype and
exFeLV susceptibility and disease outcome [12]. Additionally, infection outcome categories previously
characterized by antigen detection have been re-examined using PCR focusing on the differences in
proviral load and viremia [91–93]. This advance allowed for the definition of 4 different viral outcomes
based on viral load: progressive, regressive, latent, and abortive [24,91,93]. Determination of proviral
and viral loads and correlation with FeLV subgroups and tissue tropism will further help to understand
determinants of FeLV pathogenesis.

8. Next Generation Sequencing and Beyond

Viral infections typically result in populations of viral quasi-species representing a vast amount
of diversity [94]. Despite its relatively slow mutation rate compared to other retroviruses, FeLV can
be detected within a single infected cat as a population of multiple variants [95]. Next generation
sequencing (NGS) can be implemented in FeLV research to examine within host or within population
viral diversity, enFeLV and exFeLV integration sites, and physiological responses to infection,
which have formerly been inferred using indirect genetic analysis [96–99]. As of this writing, only one
group has used NGS as a methodology for examining FeLV [13]. In this RNA-seq study, Krunic et al.
measured a 3.4-fold decrease in enFeLV expression in feline lymphomas compared to case controls.
NGS methods could allow for re-examination of enFeLV infection interactions in the presence and
absence of exFeLV [100,101].

While NGS will open a new frontier for FeLV studies, significant challenges are inherent in
enFeLV genotypic analysis. Assembling exogenous FeLV provirus are complicated by the presence of
enFeLV, given the high homology between the two forms of the virus and variation in insertion sites
within the feline genome. These difficulties will likely be overcome by rapidly occurring advances in
analytic analyses.

9. Concluding Remarks

The history and biology of FeLV infection has been enriched with the introduction of modern
sequencing methods. Multiple FeLV subgroups and the virus’ propensity to interact with endogenous
elements of the feline genome provide unique viral replication and transmission attributes that
significantly impact disease outcomes. Viral interference assays initially determined the virus
biological activity and co-infection profiles of FeLV, and predicted genomic changes that were
discovered years later with remarkable precision. Sanger sequencing has allowed partial resolution
of genotypic characterization of subgroups, resulting in a greater understanding of FeLV diversity.
PCR has allowed further dissection of viral replication kinetics during infection, and next generation
sequencing provides a future landscape to derive additional information about this interesting virus
and its interaction with host genomic elements. Despite the introduction of each new technology,
classical techniques continue to identify historic and novel subgroups. Questions that remain include:
How should we regard FeLV subgroups, and how should they be classified? Should a minimum
sequence length or disease outcome define FeLV subgroups, or should subgroups be defined based
on cellular tropism and demonstrated ability to replicate in vitro or in vivo? What are the molecular
mechanisms and genotypic correlates that underlie disease phenotypes and outcomes? How does
enFeLV genotype influence exFeLV susceptibility and disease outcome? This unique virus will
continue to be an important pathogen to both domestic and wild felids. Naturally occurring infections
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can provide an interesting basis for examination of interactions between endogenous elements and
exogenous viral agents in mammalian hosts.
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