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Abstract: Arctium lappa L. (A. lappa) is a popular medicinal plant with promising hepatoprotective
activity. This study investigated the protective effect of A. lappa root extract (ALRE) on lead
(Pb) hepatotoxicity, pointing to its ability to modulate oxidative stress, inflammation, and protein
kinase B/Akt/glycogen synthase kinase (GSK)-3β signaling. Rats received 50 mg/kg lead acetate
(Pb(Ac)2) and 200 mg/kg ALRE or vitamin C (Vit. C) for 7 days, and blood and liver samples
were collected. Pb(Ac)2 provoked hepatotoxicity manifested by elevated serum transaminases
and lactate dehydrogenase, and decreased total protein. Histopathological alterations, including
distorted lobular hepatic architecture, microsteatotic changes, congestion, and massive necrosis were
observed in Pb(II)-induced rats. ALRE ameliorated liver function and prevented all histological
alterations. Pb(II) increased hepatic lipid peroxidation (LPO), nitric oxide (NO), caspase-3, and DNA
fragmentation, and serum C-reactive protein, tumor necrosis factor-α, and interleukin-1β. Cellular
antioxidants, and Akt and GSK-3βphosphorylation levels were decreased in the liver of Pb(II)-induced
rats. ALRE ameliorated LPO, NO, caspase-3, DNA fragmentation and inflammatory mediators,
and boosted antioxidant defenses in Pb(II)-induced rats. In addition, ALRE activated Akt and
inhibited GSK-3β in the liver of Pb(II)-induced rats. In conclusion, ALRE inhibits liver injury in
Pb(II)-intoxicated rats by attenuating oxidative injury and inflammation, and activation of Akt/GSK-3β
signaling pathway.
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1. Introduction

Lead (Pb) is a serious environmental pollutant with high emission rate worldwide. It is a
non-essential heavy metal widely used in industries, including batteries manufacturing and recycling and
other applications such as radiation screening [1,2]. Owing to its high emission rate, Pb contamination
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has been estimated to cause 540,000 deaths annually [3]. Pb can enter the body through the ingestion of
contaminated food or water, absorption through the skin or inhalation; 26 million have been postulated to
be at risk of Pb poisoning [4]. Pb has a hazardous health impact and can affect several tissues in human
and animal bodies. For instance, liver injury osteoporosis, neurological disorders, and numerous cancers
have been linked to the prolonged exposure to Pb [5,6]. Inflammatory mediators and cytokines as well
as leukocytosis were positively correlated with the circulating Pb levels in subjects exposed to Pb [7,8].
Besides inflammation, the toxicity of Pb has been mainly linked to its ionic properties and excessive
production of reactive oxygen species (ROS). Pb can promote ROS generation, diminish antioxidant
defenses, and replace mono- and divalent cations in cellular proteins. Consequently, Pb induces oxidative
stress and disrupts cellular enzyme activities, metabolism, ion transport, and signaling pathways [9–11].
Therefore, oxidative stress and inflammation underlie the toxic effects of Pb. In this context, Pb-induced
hepato- and nephrotoxicity have been associated with oxidative stress [12–14].

Arctium lappa L., commonly known as burdock, is a widely used medicinal plant. In folk medicine,
A. lappa is used as a diuretic, antipyretic, antimicrobial, anti-hypertensive, and anti-inflammatory
agent. In addition, it has been used in the treatment of hepatitis, gout, and many other inflammatory
disorders [15–17]. Recent studies have demonstrated the beneficial effects of A. lappa polysaccharides
in regulating lipid metabolism in diabetic rodents [18] and preventing inflammation in vitro and
in vivo [17]. The lignan arctigenin and its glycoside arctiin extracted from A. lappa have shown
potent anti-inflammatory, anti-viral, and neuroprotective activities [19–22]. In addition to lignans
and polysaccharides, other bioactive constituents of A. lappa have attracted attention because of
their beneficial medicinal and therapeutic effects [23]. The protective activity of A. lappa root extract
(ALRE) has been demonstrated against carbon tetrachloride (CCl4) and acetaminophen hepatotoxicity
in ICR mice [24]. However, its protective effect against Pb hepatotoxicity has not been explored.
Therefore, we investigated the potential of ALRE to prevent lead acetate (Pb(Ac)2)-induced liver injury,
pointing to its ability to modulate oxidative stress, inflammation, and Akt/glycogen synthase kinase
(GSK)-3β signaling.

GSK-3 is a serine/threonine kinase downstream of growth factors, insulin, and other major
cell signaling pathways. It exists in α and β isoforms and has distinctive functions in different
cells [25]. Cell metabolism, proliferation, differentiation, and apoptosis are among the cellular activities
regulated by GSK3β [26–28]. GSK-3β is active in resting cells and its activity is primarily controlled by
Akt/protein kinase B through Ser9 phosphorylation [25]; however, other inactivation methods are also
known [29]. While the increased activity of GSK-3β promoted liver injury in rodents [30], its inhibition
has been associated with accelerated hepatocyte regeneration in acetaminophen-intoxicated mice [31].
Accordingly, activation of Akt/GSK-3β signaling might play a role in the protective efficacy of ALRE
against Pb(II) hepatotoxicity.

2. Materials and Methods

2.1. Experimental Animals and Treatments

Twenty-four male Wistar rats (170–180 g) were included in this investigation. The animals were
housed in the animal facility under standard conditions (23 ± 2 ◦C and 50–60% humidity) and were
given a free access to a chow diet and water. The experimental protocol and treatments were approved
by the Animal Care and Use Committee of the College of Pharmacy, King Saud University (Ethical
approval no.: KSU-SE-19-33).

The rats were allocated randomly into four groups (n = 6) as follows:
Group I (Control): received intraperitoneal (i.p.) injection of physiological saline and 1%

carboxymethyl cellulose (CMC) orally for 7 consecutive days.
Group II (Pb(II)): received 50 mg/kg Pb(Ac)2 [32] via i.p. injection and 1% CMC orally for 7

consecutive days.
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Group III (Pb(II) + ALRE): received 200 mg/kg ALRE [33] dissolved in 1% CMC orally and 50
mg/kg Pb(Ac)2 i.p. for 7 consecutive days.

Group IV (Pb(II) + Vit. C): received 200 mg/kg vitamin C (Sigma, St. Louis, MO, USA) [34]
dissolved in 1% CMC orally and 50 mg/kg Pb(Ac)2 i.p. for 7 consecutive days.

Pb(Ac)2 was supplied by Sigma (USA) and dissolved in sterile physiological saline for i.p.
injection. ALRE was supplied by GNC Live Well (Warwickshire, UK) and the content of the capsules
was suspended in 1% CMC. Vitamin C was obtained from Sigma (St. Louis, MO, USA) and dissolved
in 1% CMC for oral administration.

Twenty-four hours after the last treatment (day 8), all animals were sacrificed under anesthesia.
Blood samples were collected to prepare serum, and the liver was removed, weighed, and a 10% w/v
homogenate was prepared in cold phosphate buffered saline (PBS). Following centrifugation, the
clear supernatant was collected for the assay of lipid peroxidation (LPO), nitric oxide (NO), reduced
glutathione (GSH), and superoxide dismutase (SOD). Other liver samples were collected on 10%
neutral buffered formalin for histological processing, whereas others were kept frozen at −80 ◦C.

2.2. Assay of Liver Function

Serum transaminases (ALT and AST), lactate dehydrogenase (LDH), and total protein levels were
determined using Randox (Crumlin, UK) kits according to the provided instructions.

2.3. Assay of Oxidative Stress Markers and Antioxidants

LPO was determined in the liver homogenate of all groups as previously described [35] and NO
was assayed using Griess reagent [36]. GSH content and SOD activity were determined according to
Beutler et al. [37] and Marklund and Marklund [38], respectively.

2.4. Assay of C-Reactive Protein (CRP), Pro-Inflammatory Cytokines, and Caspase-3

Serum CRP, TNF-α, and IL-1β levels were determined using R&D (Minneapolis, MN, USA)
enzyme-linked immunosorbent assay (ELISA) kits. Caspase-3 was assayed using ELISA kit purchased
from Cusabio (Wuhan, China). All assays were performed according to the provided instructions.

2.5. Histological Examination

The liver samples collected on 10% neutral buffered formalin were fixed for 24 h. The samples
were dehydrated, embedded in paraffin wax, and 5-µm sections were cut. After deparaffinization and
rehydration, the sections were stained with hematoxylin and eosin (H&E; Sigma, St. Louis, MO, USA) and
examined using a light microscope (Olympus light microscope BX40, Olympus Optical Co., Tokyo, Japan).

2.6. Western Blot

Pieces from the liver were homogenized in radioimmunoprecipitation assay (RIPA) buffer
containing proteinase and phosphatase inhibitors. The protein concentration in the homogenates was
determined using Bradford reagent [39] and 40 µg proteins were subjected to 10% sodium dodecyl
sulfate/polyacrylamide gel electrophoresis (SDS/PAGE). The separated proteins were transferred to
nitrocellulose membranes which were blocked using 5% skimmed milk in tris buffered saline/tween 20
(TBST). After blocking, the membranes were probed with antibodies against pAkt Ser473, Akt, pGSK-3β
Ser9, GSK-3β, and β-actin (Novus Biologicals, Centennial, CO, USA) overnight at 4 ◦C. The blots
were washed three times with TBST and incubated with the secondary antibodies for 1 h at room
temperature. The membranes were washed three times with TBST and developed using enhanced
chemiluminescence detection kit (BIO-RAD, Hercules, CA, USA). The developed blots were scanned,
and the band intensity was quantified using ImageJ (version 1.32j, NIH, USA).
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2.7. DNA Fragmentation Assay

DNA fragmentation was determined by agarose gel electrophoresis. Quantification of DNA
fragmentation was carried out as previously described [40]. Briefly, the tissue samples were lysed and
centrifuged to generate fragmented DNA (supernatant) and intact chromatin (pellet). The proteins
were precipitated, and the samples were treated with diphenylamine. Absorbance of the developed
color was measured at 600 nm and the results were presented as percent of the control.

2.8. Statistical Analysis

The results were presented as mean ± SEM (standard error of mean). All statistical comparisons
were made by one-way analysis of variance (ANOVA) followed by Tukey’s test and the differences
were considered statistically significant at p < 0.05. The statistical analysis was carried out using
GraphPad Prism 7 (La Jolla, CA, USA).

3. Results

3.1. ALRE Attenuates Pb(II)-Induced Liver Injury

Pb(II)-intoxicated rats exhibited a significant (p < 0.001) elevation in serum ALT, AST, and LDH as
depicted in Figure 1A–C. In contrast, serum total protein was significantly declined in Pb(II)-intoxicated
rats (p < 0.001; Figure 1D). Rats received a concurrent treatment with Vit. C exhibited a significant
amelioration of serum transaminases, LDH, and total protein. All the assayed markers were significantly
alleviated in Pb(II)-induced rats received ALRE (p < 0.001).
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Figure 1. A. lappa root extract (ALRE) and Vit. C ameliorate serum ALT (A), AST (B), LDH (C), and
total protein (D) in Pb(II)-induced rats. Data are expressed as mean ± SEM, (n = 6). *** p < 0.001.

The ability of ALRE and Vit. C to prevent Pb(II)-induced liver injury was supported by the
histological findings (Figure 2). While the control rats showed normal liver structure (Figure 2A,B), Pb(II)
provoked multiple histological alterations, including ballooning, distorted lobular hepatic architecture,
microsteatotic changes, and massive necrosis (Figure 2C–F). Co-treatment of the rats with ALRE
(Figure 2G,H) or Vit. C (Figure 2I,J) prevented all Pb(II)-induced histological changes and the sections
showed hepatic tissue with normal architecture and slight congestion of veins at the portal tract.
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Figure 2. Photomicrographs of hematoxylin and eosin (H&E)-stained sections from liver of (A,B) 
control rats showing normal structure and architecture with hepatocytes arranged in thin plates 
(black arrow), sinusoids (yellow arrow), and central vein; (C–F) Pb(II)-intoxicated rats showing 
distorted lobular architecture, ballooning (black arrow), multinucleated hepatocytes (yellow arrow), 
microsteatotic changes (red arrow), and large areas with necrosis (blue arrow); (G,H) Pb(II)-
administered rats treated with ALRE showing normal hepatic tissue with normal hepatocytes (black 
arrow) and sinusoids (yellow arrow); and (I,J) Pb(II)-administered rats treated with Vit. C normal 
hepatocytes (black arrow) and sinusoids (yellow arrow). (A, C, E, G, and H: ×200, Scale bar 100 μm) 
and (B, D, F, H, and J: ×400, Scale bar 50 μm). 

Figure 2. Photomicrographs of hematoxylin and eosin (H&E)-stained sections from liver of (A,B) control
rats showing normal structure and architecture with hepatocytes arranged in thin plates (black arrow),
sinusoids (yellow arrow), and central vein; (C–F) Pb(II)-intoxicated rats showing distorted lobular
architecture, ballooning (black arrow), multinucleated hepatocytes (yellow arrow), microsteatotic changes
(red arrow), and large areas with necrosis (blue arrow); (G,H) Pb(II)-administered rats treated with ALRE
showing normal hepatic tissue with normal hepatocytes (black arrow) and sinusoids (yellow arrow);
and (I,J) Pb(II)-administered rats treated with Vit. C normal hepatocytes (black arrow) and sinusoids
(yellow arrow). (A, C, E, G, and H: ×200, Scale bar 100 µm) and (B, D, F, H, and J: ×400, Scale bar 50 µm).
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3.2. ALRE Prevents Pb(II)-Induced Oxidative Stress in Liver of Rats

The ameliorative effect of ALRE and Vit. C on Pb(II)-induced oxidative stress was evaluated
through the assessment of hepatic LPO, NO, GSH, and SOD. Rats received Pb(II) exhibited a significant
increase in hepatic malondialdehyde (MDA; Figure 3A), a LPO marker, as well as NO levels (Figure 3B)
when compared with the control group (p < 0.001). Concurrent administration of ALRE or Vit. C
prevented Pb(II)-induced LPO and NO elevation in the liver of rats.
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Figure 3. ALRE prevents Pb(II)-induced oxidative stress in the liver of the rats. ALRE and Vit. C
decreased malondialdehyde (MDA) (A) and nitric oxide (NO) (B), and increased glutathione (GSH)
(C) and superoxide dismutase (SOD) activity (D). Data are expressed as mean ± SEM, (n = 6). *** p < 0.001.

On the contrary, Pb(II) decreased GSH content (Figure 3C) and SOD activity (Figure 3D) significantly
(p < 0.001) in the liver of rats when compared with the control group. ALRE and Vit. C boosted both GSH
and SOD in the liver of Pb(II)-induced rats.

3.3. ALRE Attenuates Inflammation in Pb(II)-Induced Rats

CRP, TNF-α, and IL-1β were determined in the serum of control and Pb(II)-intoxicated rats.
CRP showed a significant elevation in Pb(II)-induced rats when compared with the control group
(p < 0.001; Figure 4A), an effect that was reversed in rats treated with ALRE (p < 0.001) or Vit. C
(p < 0.05). The circulating levels of the pro-inflammatory cytokines, TNF-α (Figure 4B), and IL-1β
(Figure 4C) were markedly increased in Pb(II)-intoxicated rats (p < 0.001). Oral supplementation of
ALRE or Vit. C to Pb(II)-induced rats decreased serum TNF-α and IL-1β.
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Figure 4. ALRE attenuates inflammation in Pb(II)-induced rats. ALRE and Vit. C decreased serum
CRP (A), TNF-α (B) and IL-1β (C) levels in Pb(II)-intoxicated rats. Data are expressed as mean ± SEM,
(n = 6). * p < 0.05 and *** p < 0.001.

3.4. ALRE Suppresses Caspase-3 and DNA Fragmentation in Liver of Pb(II)-Induced Rats

Caspase-3 was significantly increased in the liver of Pb(II)-intoxicated rats as depicted in Figure 5A.
Concurrent administration of ALRE or Vit. C decreased hepatic caspase-3 in Pb(II)-administered rats.

DNA fragmentation was determined by agarose gel electrophoresis and has been
spectrophotometrically quantified. The agarose gel electrophoresis revealed noticeable fragmentation
of DNA in the liver of Pb(II)-intoxicated rats as represented in Figure 5B. Pb(II)-induced DNA
fragmentation was confirmed by the quantitative assay which showed increased DNA fragmentation
in the liver of Pb(II)-intoxicated rats (p < 0.001). Concomitant administration of ALRE or Vit. C
prevented DNA fragmentation in the liver of Pb(II)-induced rats (Figure 5C).
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Figure 5. ALRE suppresses caspase-3 and DNA fragmentation in liver of Pb(II)-induced rats. ALRE and
Vit. C diminished hepatic caspase-3 (A) and inhibited DNA fragmentation (B,C). Data are expressed as
mean ± SEM, (n = 6). *** p < 0.001.

3.5. ALRE Activates Akt/GSK-3β Signaling in Liver of Pb(II)-Induced Rats

Inhibition of GSK-3β has been demonstrated to protect against cell death induced by ischemia/

reperfusion (I/R) [41]. The activity of GSK3β is primarily controlled by phosphorylation-mediated
inactivation [29]. Therefore, the phosphorylation levels of Akt and GSK-3β were determined to evaluate
the involvement of Akt/GSK-3β signaling in the protective effect of ALRE against Pb(II) hepatotoxicity.
The data showed significantly reduced pAkt in the liver of Pb(II)-induced rats (Figure 6A,B) when
compared with the control animals (p < 0.001). Similarly, hepatic pGSK-3β levels were decreased
in rats received Pb(II) (Figure 6A,C). Concomitant administration of ALRE or Vit. C increased the
phosphorylation levels of Akt and GSK-3β in the liver of Pb(II)-induced rats (p < 0.001).
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Figure 6. ALRE activates Akt/GSK-3β signaling in liver of Pb(II)-induced rats. (A) Representative blots
of pAkt, Akt, pGSK-3β, GSK-3β, and β-actin. (B,C) ALRE and Vit. C increased the levels of pAkt
(B) and pGSK-3β (C). Data are expressed as mean ± SEM, (n = 6). *** p < 0.001.

4. Discussion

Oxidative stress has been well-acknowledged to be implicated in the toxic effect and tissue injury
induced by Pb(II) [12–14,42]. A. lappa possesses potent antioxidant activity and Lin et al. [24] have
demonstrated its ability to reduce MDA, increase GSH and alleviate liver injury in mice challenged
with CCl4 and acetaminophen. However, nothing is known whether A. lappa can modulate Akt/GSK-3β
signaling and protect against Pb(II) hepatotoxicity. Here, we showed that ALRE prevents Pb(II)-induced
liver injury by attenuating oxidative stress, inflammation and DNA fragmentation, and activating
Akt/GSK-3β signaling.

Liver is one of the most common depository sites of Pb within the body [43], and is therefore
particularly vulnerable to toxicity and injury. Pb(Ac)2 has been well-documented to induce toxicity
in different animal models. Accordingly, previous studies have shown increased blood [32] and
cerebellar [44] Pb(II) concentration following the i.p. administration of 50 mg/kg Pb(Ac)2. Therefore,
we used Pb(Ac)2-induced rats to study the protective mechanism of ALRE against Pb(II) hepatotoxicity.
In this study, administration of 50 mg/kg Pb(Ac)2 promoted liver dysfunction and damage manifested
by the elevated serum transaminases, LDH, and decreased total protein. The biochemical findings
were supported by the histological examination where Pb(II)-intoxicated rats exhibited ballooning,
distorted lobular hepatic architecture, microsteatotic changes, central vein congestion, and massive
necrosis. In line with these findings, serum transaminases were elevated in rats received 50 mg/kg [32]
or 0.4% Pb(Ac)2 in drinking water [45] for one and 8 weeks, respectively. ALRE and Vit. C prevented
liver dysfunction and histological alterations induced by Pb(II). ALRE has been previously shown to
ameliorate serum AST and ALT, and prevented tissue injury induced by CCl4 [24] and acetaminophen
in mice [24,46]. In cadmium (Cd)-intoxicated rats, ALRE prevented liver injury and ameliorated
transaminases [47]. These findings pointed to the potent hepatoprotective efficacy of ALRE.
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Given the role of ROS and inflammatory mediators in Pb(II) toxicity, we assumed that attenuation
of these pathological processes represents an important part of the hepatoprotective mechanism of
ALRE. Our results showed increased MDA and NO accompanied with decreased GSH and SOD in the
liver of Pb(II)-intoxicated rats, demonstrating an oxidative stress status. Excess ROS and diminished
cellular antioxidants mediate the toxic effects of Pb [9,11]. Pb provokes ROS generations [11], leading
to inactivation of enzymatic antioxidants, DNA damage, and cell death [48]. Accordingly, Pb(Ac)2

has been reported to elicit cerebellar LPO and reduce SOD activity [44] and alter hepatic antioxidant
enzymes gene expression in rats [32]. In addition to oxidative stress, Pb(II) induced inflammation
in rats as evidenced by increased serum CRP and the pro-inflammatory cytokines TNF-α and IL-1β.
Excess ROS activate the transcription factor nuclear factor-kappaB (NF-κB) that promote the expression
of TNF-α, IL-1β, IL-6, and inducible NO synthase (iNOS), and this explains the increased NO
levels. The role of inflammation in Pb toxicity has been demonstrated in several studies [7,8,32,49].
In male subjects with high blood Pb and Pb-exposed workers, the inflammatory response has been
manifested by leukocytosis and increased inflammatory mediators, including TNF-α [7,8]. In addition,
increased TNF-α expression has been reported in blood mononuclear cells treated with Pb(II) and
lipopolysaccharide (LPS) [50] and in liver of Pb(Ac)2-induced rats [32].

Oral administration of ALRE significantly reduced MDA, NO, and inflammatory mediators, and
enhanced the antioxidant defenses in the liver of Pb(II)-induced rats, demonstrating its antioxidant and
anti-inflammatory activities. The antioxidant efficacy of A. lappa has been demonstrated in previous
studies. In CCl4- and acetaminophen-induced mice, ALRE decreased hepatic MDA and increased GSH
as reported by Lin et al. [24]. ALRE has been suggested to confer its hepatoprotective effects against
CCl4 and acetaminophen via its antioxidative effect [24]. The same authors have reported the protective
effect of A. lappa against ethanol/CCl4-induced liver injury and attributed the obtained effects to the
antioxidant activity of A. lappa extract [51]. ALRE has also enhanced antioxidant defenses and prevented
liver injury induced by Cd in rats [47]. The antioxidant activity of different extracts of A. lappa roots
has been demonstrated in vitro where the hydroethanolic extract exhibited the strongest free-radical
scavenging efficacy [52]. Besides its antioxidant activity, burdock roots suppressed inflammation both
in vivo and in vitro inflammation models [17]. ALRE significantly decreased paw edema induced by
carrageenan when administered subcutaneously in rats [53]. In patients with knee osteoarthritis, the
consumption of A. lappa root tea for 42 days decreased the levels of serum IL-6, CRP, and MDA [54].
The current study added support to the anti-inflammatory efficacy of ALRE. Our findings showed
significantly decreased serum CRP, TNF-α, and IL-1β in Pb(II)-induced rats.

The antioxidant and anti-inflammatory activities of A. lappa are directly connected to its active
phytoconstituents. ALRE has been reported to contain arctigenin, diarctigenin, quercetin, caffeic
acid, chlorogenic acid, arctiin, beta-eudesmol, lappaol, polysaccharides, nutrients, and others [17,52].
The antioxidant and anti-inflammatory activities of these active constituents have been demonstrated
in several studies. Quercetin, caffeic acid and chlorogenic acid have been well-acknowledged as
antioxidant, anti-inflammatory, and hepatoprotective agents [55–57]. The water-soluble polysaccharides
from A. lappa roots increased anti-inflammatory cytokines and diminished TNF-α and IL-1β in
macrophages and mice challenged with LPS [17]. Arctigenin inhibited the expression of iNOS, TNF-α,
and IL-6 through suppression of NF-κB activation and p65 nuclear translocation in LPS-induced
macrophages [22]. Diarctigenin is a lignan that inhibited NO production, suppressed the DNA
binding ability of NF-κB, and down-regulated the expression of pro-inflammatory mediators in
zymosan-induced macrophages [58]. Arctiin suppressed NF-κB and inhibited the expression of
pro-inflammatory mediators in LPS-induced macrophages [59]. In addition to the roots, other parts
of A. lappa exhibited a potent anti-inflammatory activity. For instance, the hydroethanolic extract of
A. lappa bark has shown anti-inflammatory activity where it suppressed LPS-induced inflammation
and exerted anti-melanoma effects in mice [16]. The methanol extract from the leaves and stem of
A. lappa suppressed NLRP3 inflammasome and inhibited IL-1β secretion from activated bone marrow
derived macrophages [60].
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Although the hepatoprotective activity of burdock has been previously reported, the underlying
mechanism is not fully understood. We assumed that modulating Akt/GSK-3β signaling might play
a role on the hepatoprotective efficacy of A. lappa. Herein, we investigated the effect of ALRE on
the phosphorylation levels of Akt and GSK-3β in liver of Pb(II)-induced rats. Our results showed
that Akt Ser473 and GSK-3β Ser9 phosphorylation levels were significantly decreased in the liver of
Pb(II)-intoxicated rats. Interestingly, ALRE supplementation activated Akt/GSK-3β as evidenced by
the increased phosphorylation of Akt and GSK-3β. The decreased GSK-3β phosphorylation in liver of
Pb(II)-induced rats is a consequence of diminished pAkt. Under resting conditions, GSK-3β is active
and its activity is controlled by phosphorylation mediated by Akt as well as other mechanisms [25].
In rodent models of acute liver failure, acetaminophen-induced hepatotoxicity and liver I/R injury,
GSK-3β activation has been demonstrated [30,31,41]. Interestingly, inhibition of GSK-3β has been
associated with accelerated liver regeneration and inhibition of cell death [30,31,41]. In the present
investigation, ALRE activated Akt and suppressed GSK-3β activation, resulting in the inhibition of
cell death. The protective effect of ALRE against Pb(II)-induced cell death was further confirmed
by inhibition of DNA fragmentation in the liver of rats. The cell death promoting role of GSK-3β is
supported by the evidence that activation of PI3K/Akt signaling suppresses apoptosis and inhibits
GSK-3β [61]. Furthermore, fibroblasts and neuronal cells apoptosis has been elicited by GSK-3β
overexpression and PI3K inhibition, whereas the expression of GSK-3β-K85R, a dominant-negative
mutant, prevented cell death [62]. GSK-3 has also been suggested to induce direct phosphorylation and
mitochondrial translocation of the pro-apoptotic protein Bax [63]. Therefore, our study provided new
information on the role of Akt/GSK-3β signaling in mediating, at least in part, the hepatoprotective
effect of ALRE.

In addition to GSK-3β suppression, ALRE exerted a protective effect against Pb(II)-induced
cell death by its dual ability to attenuate oxidative stress and inflammation. Excess ROS and
activation of inflammatory cascades have been evidenced to induce hepatocyte death [64]. ROS and
pro-inflammatory cytokines activate mitochondrial apoptotic pathway resulting in the release of
cytochrome c, and subsequent activation of caspase-3 and cell death [65]. Accordingly, caspase-3 and
DNA fragmentation were increased in the liver of Pb(II)-induced rats, an effect that was inhibited
by ALRE supplementation. Hence, it is noteworthy assuming that inhibition of oxidative stress
represents a main part of the protective mechanism of ALRE against Pb(II) toxicity and cell death.
The ameliorated liver function and attenuated oxidative stress in Pb(II)-intoxicated rats treated with
Vit. C supported this assumption. In addition, several studies have reported the protective effects of
different antioxidants against drug/chemical-induced hepatocyte apoptosis [64,66,67].

5. Conclusions

This study introduces new information that ALRE prevents Pb(II)-induced liver injury by
attenuating oxidative stress, inflammation, and DNA damage and modulating Akt/GSK-3β signaling.
Pb(II) promoted oxidative injury, inflammation, and activated GSK-3β, resulting in apoptotic cell
death and tissue injury. ALRE attenuated these alterations and activated Akt, resulting in GSK-3β
suppression (Summarized mechanistic pathways is presented in Figure 7). The protective effect of
ALRE could be attributed to its active constituents; however, further studies scrutinizing the role of
each active ingredient and the exact involvement of Akt/GSK-3β signaling are recommended.
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