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interactions and early embryo development.9 Surprisingly, the “sex 
of the sperm cell” appears to modify the oviductal transcriptome 
in a sex‑specific manner.10 Once in the oviduct, the epithelial cells 
appear to exert rigorous selection, being able to bind spermatozoa 
with particular characteristics such as normal chromatin,8 lack of 
capacitation, or morphological “normality”11,12 among others. The 
failure of abnormal spermatozoa to reach the site of fertilization has 
also been demonstrated in various species.13,14

One hypothesis is that females can select which spermatozoa reach 
and fertilize the oocyte;15,16 this introduces the concept of the “sperm 
passport.” Just as each individual person has some characteristics that 
make him different from others, i.e., biometric identifiers which are 
physiological characteristics related commonly to the shape of the body, 
each spermatozoon could have its own biometric identifier, making it 
able (or not) to progress along the female tract and fertilize. Conversely, 
females could use such molecular mechanisms to recognize and obtain 
the information from an individual spermatozoon.15

Moreover, it is known that an ejaculate is composed of different 
subpopulations of spermatozoa.5 The subpopulations are characterized 
by differences in motility, DNA fragmentation status, morphology 
or shape and size, sensitivity to signaling molecules, and many other 
properties. Motility is very important; when females are inseminated 
with spermatozoa exhibiting different levels of motility, those 
spermatozoa with poor motility are found in the backflow after only 

INTRODUCTION
A huge number of spermatozoa are deposited in the female genital tract 
at ejaculation, but little is known about the special characteristics which 
enable a particular spermatozoon to reach the oocyte and fertilize it in 
preference to the other millions around it. Within the female genital 
tract, spermatozoa have to negotiate different physical barriers and 
undergo complex interactions. In some species (i.e., humans, sheep), 
the cervix presents an important obstacle and is the first “filter” 
for abnormal spermatozoa.1 Once in the uterus, spermatozoa are 
in contact with uterine fluid, which, in species such as the mouse, 
induces deleterious effects on spermatozoa unless they are provided 
with protein SVS2 present in seminal plasma.2 Moreover, within the 
uterus, spermatozoa make contact with different cell types (cell‑cell 
interaction), among them polymorphonuclear leukocytes  (PMNs), 
that are present in the lumen of the uterus after insemination. It 
is not clear yet whether the PMNs are able to distinguish between 
abnormal and normal spermatozoa, although damaged, capacitated, 
and moribund spermatozoa seem to be eliminated by phagocytosis.3–5 
Once in the oviduct, the environment is more suitable for promoting 
sperm viability. In this respect, leukocytes in this anatomical region 
are sparse or even absent6 and the interaction with oviductal epithelial 
cells and oviductal fluid modulates sperm function.7,8 Moreover, the 
arrival of spermatozoa in the oviduct modulates local gene expression, 
thus preparing the oviduct for an adequate environment for gamete 
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15 min.17 This indicates that an initial sperm selection process within 
the genital tract is biased in favor of highly motile spermatozoa. With 
regard to the sperm chromatin, other authors have demonstrated the 
superior ability of spermatozoa with stable chromatin to reach the 
fertilization site18 and bind to the zona pellucida.19

What makes spermatozoa successful in reaching the site of 
fertilization and fertilizing the egg depends on some of the traits 
mentioned above  (i.e.,  good motility, adequate morphology, and 
normal DNA status). Sperm heterogeneity in an ejaculate may have 
functional relevance, ensuring a greater potential to fertilize after being 
deposited in the female genital tract. The aim of the present review 
is focused on the influence of sperm size and shape in evolution and 
their putative role in sperm transport and selection within the uterus 
and the ability to fertilize the oocyte.

DIFFERENCES IN MAMMALIAN SPERM MORPHOLOGY
As explained above, the mechanisms that determine how spermatozoa 
are transported in the female genital tract are still controversial, as 
is the significance of variations in mammalian sperm morphology. 
Why, for example, do the spermatozoa vary in shape and size between 
species, and even within an ejaculate? Even within a single taxonomic 
group such as the rodents, sperm heads have evolved a remarkable 
spectrum of shapes. While mouse, rat, and hamster spermatozoa are 
hook‑shaped, the sperm heads of some Australian rodents of the genus 
Pseudomys have also developed two auxiliary hooks20,21 that are not 
extensions of the acrosome. In contrast, the hystricomorph rodents, 
including the guinea pig,22 degu,23 and Chinchilla,24 have evolved 
exceptionally large acrosomes, a feature also found in some insectivores 
such as the white‑tailed shrew.25

Spermatozoa are subjected to postmating sexual selection within 
the female tract, and it has been suggested that the dimensions of 
different sperm components are responsible for the continuous 
adjustments of male fertility, which eventually produce these dramatic 
phenotypic differences.16 Species with high levels of sperm competition 
are believed to produce longer spermatozoa than others because, from 
a purely biophysical perspective, the positive correlation between 
flagellar length and swimming speed26 should enable the faster 
spermatozoa to reach the uterotubal junction (UTJ) before their rivals. 
However, major studies in mammals have failed to support this simple 
hypothesis,27,28 and this relationship also oversimplifies what happens 
when spermatozoa are swimming within the viscous environment of 
the uterus and oviducts29 and their flagellar activity is modified.30,31 
When spermatozoa are swimming within the female reproductive tract, 
they are subjected to more complex influences than, for example, fish 
spermatozoa in freshwater or seawater.

Mammalian spermatozoa have a tendency to interact with 
adjacent cells and, therefore, to swim along epithelial surfaces.32 A 
recent study of this phenomenon indicated that human spermatozoa 
exhibit “slither,” or two‑dimensional, swimming within the female 
reproductive tract, which involves remaining in very close contact 
to the epithelial cells.33 This mode of swimming allows human 
spermatozoa to make faster progress than bull spermatozoa under 
similar conditions because the latter remain further away from the 
epithelial cell layer. In addition to the physical differences imposed 
by flagellar length and structure, female reproductive tract anatomy 
also modulates the progress of spermatozoa. In some species, such as 
sheep, pigs, and cows, spermatozoa adhere firmly to epithelial cells 
of the oviductal isthmus, where they form a sperm reservoir,32,34,35 
while in species such as the musk shrew36 and the Australian dasyurid 
marsupial, Sminthopsis,37 the spermatozoa reside for a period in 

epithelial crypts and, therefore, do not have to swim toward the oocyte 
immediately after mating.

Total sperm length varies from 28.30 to 258.33 µm across more 
than 200 mammalian species analyzed.28,38,39 Considering only 
nondomestic species (Table 1 and Supplementary Table 1), there is 
considerable variation in sperm dimensions. For example, total sperm 
length ranges from 28.30 to 189.40 µm in 193 of the species measured, 
which represents an increment of more than 500% between minimal 
and maximal value. Such data have to be viewed in the context of 
evolution and analyzed with specialized statistical techniques that 
incorporate phylogenetic information.40 In the case of domestic 
animals (Table 2 and Supplementary Table 2), this variation between 
species is less pronounced (i.e., total sperm length ranges from 47.21 to 
114.07 µm), although only 22 domestic species were analyzed. When 
more common domestic farm animals were considered  (Table  3), 
the sperm dimensions were quite similar across species. Although 
the effects of sperm competition on sperm size is still not resolved,41 
the reduction in variation of dimension mentioned above might be a 
consequence of the reduction in between‑male competition in domestic 
animals, as a result of selection of genetically high‑value individuals. 
Little is known about how the level of sperm competition might 
affect some sperm traits,42 although a significant study of mole rat 
spermatozoa, where because of the unusual social system there is little 
or no sperm competition, revealed a massive degree of within‑ejaculate 
structural diversity, low incidence of motile spermatozoa, and slow 
swimming speed.43 In this sense, sperm characteristics seem to depend 
on social environment, as occurs in horses, where the presence of 
other males and mares influences ejaculate sperm concentration and 
motion parameters.44

When females are artificially inseminated with spermatozoa 
from two or more males  (heterospermic insemination dosages), 
spermatozoa from specific males are consistently favored in their ability 

Table  1: Sperm dimension ranges in up to 193 nondomestic 
mammalian species  (data collected from Tourmente et  al.39)

Sperm traits Number 
of species 
measured

Minimum Maximum Increment (%)#

Head width (µm) 65 2.00 12.20 510.00

Head length (µm) 164 3.00 15.00 400.00

Midpiece length (µm) 164 3.30 67.00 1930.30

Principal piece length (µm) 164 15.60 125.00 7012.82

Total flagellum length (µm) 164 22.00 177.00 704.54

Total sperm length (µm) 193 28.30 189.40 569.25
#Increment  (%) parameter indicates the difference between the lowest to the highest 
value among species

Table  2: Sperm dimension ranges in up to 22 domestic mammalian 
species  (data collected from Tourmente et  al.39)

Sperm traits Number 
of species 
measured

Minimum Maximum Increment (%)#

Head width (µm) 12 3.30 6.60 100

Head length (µm) 20 4.50 10.87 141.55

Midpiece length (µm) 20 5.30 15.45 191.51

Principal piece length (µm) 20 34.23 92.10 169.06

Total flagellum length (µm) 20 41.57 103.20 148.25

Total sperm length (µm) 22 47.21 114.07 141.62
#Increment  (%) parameter indicates the difference between the lowest to the highest 
value among species
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to fertilize oocytes and produce offspring.45–48 This indicates either 
a significant female selection of spermatozoa or sperm traits per se, 
and in both cases, morphological characteristics could be involved. 
The spermatozoa within an ejaculate are typically recognizable as 
belonging to different subpopulations whereby one cell type can have a 
higher fertilization potential.49 For example, boar sperm heads from an 
ejaculate can be morphometrically divided into three subpopulations: 
large, small‑elongated, and small round sperm populations50 or 
rectangular‑shaped, sharply tapering, or slightly tapering sperm heads.51 
Buck (goat), bull, and ram spermatozoa can be similarly recognized 
as belonging to different subpopulations.50 The biological relevance of 
these subpopulations remains unclear, and further research is necessary 
to clarify what some of the variation really means. In human clinical 
medicine, the concept of the “normal” spermatozoon is widely used 
and the latest version of the World Health Organization guidelines on 
semen analysis52 indicates that only about 4% of spermatozoa within 
a fertile human ejaculate conform to the morphological definition of 
a normal spermatozoon. The definition was derived by examining the 
morphology of spermatozoa that reached the vicinity of the oocyte after 
insemination. Viewed from the perspective of comparative biology, this 
is rather similar to the situation with the naked mole rat cited above,42,43 
where the absence of sperm competition has relaxed the pressure 
to produce a high proportion of uniformly competent spermatozoa 
during spermatogenesis. Anthropological evidence confirms that as a 
species, humans have evolved in a context where sperm competition 
is not an important influence.53 Nevertheless, this observation also 
highlights that the human female reproductive tract must be capable of 
selectively preventing abnormal spermatozoa from migrating through 
the reproductive tract and accessing the oocytes.

SPERM SELECTION WITHIN THE FEMALE GENITAL TRACT 
RELATED TO MORPHOLOGY
As mentioned above, the small number of spermatozoa reaching 
the oviduct and deposited in the sperm reservoir is the result of 
strong selection during sperm transport in the female genital tract. 
Only morphologically normal spermatozoa, uncapacitated and with 
intact DNA are capable of binding to oviductal epithelia.8 However, 
the number of spermatozoa with these characteristics present in an 
ejaculate is much higher than those that reach the reservoir. Therefore, 
the female genital somehow carries out other more complex selection 
so that it will choose the spermatozoon that fertilizes the egg, i.e., 
“cryptic female selection”54,55 (Figure 1).

Since the environment in the cervix and uterus is hostile to 
spermatozoa, they have to swim actively to move forward along 
the upper sections of the female tract. The first types of excluded 
spermatozoa are likely to be those with midpiece or tail defects that 
impair motility. Garcia‑Vazquez et al.56 have shown that spermatozoa 
analyzed in the backflow were small (head and flagellum), with different 

head shapes compared with spermatozoa observed in the dose before 
insemination. The site of deposition (cervix vs uterus) also influences 
sperm selection, head morphometry and tail size both being smaller 
in the backflow after cervical insemination.

In the uterus, the seminal plasma (SP) has an important role in 
affecting sperm motility and the maintenance of viability. Spermatozoa 
that reach the uterus may not be able to swim through the UTJ unless 
they possess certain cell surface proteins derived from the SP.57,58 
In addition, the uterus induces sperm cell death and some proteins 
from SP protect sperm from uterine attack.2 SP also provides energy 
substrates that drive oxidative phosphorylation, stabilize the sperm 
plasma membrane, and prevent uterine spermatozoa from undergoing 
premature capacitation and the acrosome reaction.59

The energy for supporting the key functions of the spermatozoa, 
including motility, is provided by adenosine triphosphate  (ATP). 
The ATP is formed through two metabolic pathways: glycolysis and 
oxidative phosphorylation  (OXPHOS). Glycolysis occurs in the 
principal piece of the flagellum and the OXPHOS takes place in the 
mitochondria, which are tightly packed in the sperm midpiece. The 
amount of ATP produced by OXPHOS is much higher than that 
produced by glycolysis, and for this reason, this pathway is considered 
as the main source of ATP production for sperm motility.60 On the 
basis of these characteristics, one might think that spermatozoa with 
a longer midpiece will be the faster; however, there is a wide range of 
variation of this relationship among mammalian species. For example, 
Malo et al.61 observed that spermatozoa with longer midpieces swam 
more slowly and spermatozoa with elongated heads, and those in which 
the relative length of the rest of the flagellum is longer, swam faster. 
However, Anderson et al.62 showed, in a study using 494 specimens, 
that the volume of the midpiece  (but not the length) was higher 
in those mammals where females have a multiple‑partner mating 
system. Presumably, a larger volume midpiece has higher densities of 
mitochondria, which could provide an increase in sperm motility and 
an advantage at the level of sperm competition.

Gomendio and Roldan63 found that spermatozoa with elongated 
heads swam faster and that the effect of head shape upon sperm 
hydrodynamics was considerable. However, Mossman et al.64 showed 
that the mean flagellar length and the mean total sperm length 
were not associated with the sperm swimming speed, measured by 
computer‑aided sperm analysis. Nevertheless, boar spermatozoa 
with both short and long flagella were able to reach and colonize 
the oviductal sperm reservoir.65 Hence, it seems that the factors 
determining the sperm arrival to the place of fertilization are sperm 
swimming velocity, the shape of the head, and the forces generated by 
the relative size of the rest of the flagellum.

On the other hand, studies of ram spermatozoa suggest that 
spermatozoa with large and long heads are more fertile than those 
with smaller heads, and that this morphometric parameter could be 

Table  3: Sperm dimensions of some domestic mammalian species  (data collected from Tourmente et  al.39)

Sperm traits Equus caballus
Stallion

Sus scrofa
Boar

Bos taurus
Bull

Ovis aries
Ram

Capra hircus
Goat

Increment (%)#

Head width (µm) 3.90** 4.41* 4.30 4.30 4.25** 13.07

Head length (µm) 7.00 9.08* 6.77 8.20 8.27 34.12

Midpiece length (µm) 9.80 10.00 9.38 14.00 11.38 49.25

Principal piece length (µm) 43.80 36.10 36.93 42.50 39.75 21.33

Total flagellar length (µm) 53.60 46.57* 46.76 56.50 51.13 21.32

Total sperm length (µm) 60.60 55.65* 53.53 64.70 59.39 20.86
#Increment  (%) parameter indicates the difference between the lowest to the highest value among species.*Garcia‑Vazquez et  al.;56 **Cummins and Woodall38
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an indicator of fertility.66 When spermatozoa reach the oviduct, they 
attach to the epithelium (Figure 1); those that do not are unable to 
survive.67 Gomez Montoto et al.40 proposed that an increase in sperm 
head size may facilitate interactions and attachment with oviductal 
epithelial cells, and that it may also obstruct the attachment of rival 
spermatozoa. However, despite all of the above, it seems that sperm 
selection is based on more complex criteria involving male genotype68 
and/or “cryptic female choice.”15,54

RELATIONSHIPS BETWEEN SPERM MORPHOLOGY AND 
FERTILITY AND OTHER SPERM QUALITY PARAMETERS
Sperm morphology and fertility
The common use of spermatozoa in artificial insemination protocols 
in a great number of species constantly reinvigorates interest in 
the identification of subfertile or infertile males. That is why the 
relationships between sperm morphometry and fertility have been the 
objective of a large number of studies for nearly a century69 (Figure 1). 
However, the results reported until now have not been totally conclusive. 
Different factors affect the morphometric sperm measurements; some 
are related to sample variability with respect to season,70,71 age,72 breeds 
or subspecies,73–76 and sexual maturity.77 Differences also arise through 
the measurement procedures themselves, including the staining 
procedure,78 microscopic evaluation technique,79 wet versus stained 
samples,80 sperm preparation,81 and statistical methodology  (mean 
value, variation coefficient, and subpopulation analysis)82,83 among 
others. Differences in the methodology of the studies and the large 
number of factors that affect the relationships could be behind the 
ambiguous results reported in the scientific literature. We will try to 
analyze the main results reported in some species.

The reported studies have tried to measure the sperm head 
dimensions, flagellar length,64 midpiece length,73 or the nuclear 

shape84,85 and to relate them to fertility. Differences in sperm head 
length have been directly related to conception rates in some species. 
For example, an increase in the coefficient of variation of the sperm 
head length in bulls and stallions has been related to a reduction of 
fertility.69,83 However, no correlation was found in bulls when the 
deviation of morphometric head parameters was analyzed with respect 
to fertility ratings.86 Other studies have included the relationship 
of morphometry with sperm cryopreservation. In this sense, the 
post‑thaw sperm survival and fertility rates for bulls and boars were 
correlated with prefreeze measurements of width and the change in 
width/length after cryopreservation.51,87

For humans, higher sperm head width and lower length/width 
ratios were detected in spermatozoa from fertile than infertile men.80 
However, other authors did not find morphometric measurements 
useful in predicting fertility.88 In an interesting study with American 
soldiers, Vietnam veterans showed longer mean sperm head major 
axis length and head circumference than coetaneous veteran soldiers 
in other areas with similar fertility.89 Later, in a study of greater size, the 
sperm length/width ratio was confirmed as an important parameter 
in relation to impaired fertility.90 An inverse relationship between 
sperm head area and perimeter with fertility after human intrauterine 
insemination (IUI) and intracytoplasmic sperm injection (ICSI) has 
also been reported.91

Another common domestic animal studied has been the horse. In 
stallions, higher values for sperm head length, area, and perimeter are 
found in subfertile rather than in fertile animals.92,93 The sperm head 
area and perimeter were smaller in stallions with high fertility (69%–
79%) than in those of low fertility (50%–59%).71 Although the number 
of reports is still limited, the data suggest that differences in the 
dimensions of sperm heads may exist between fertile and subfertile 
stallions.

Figure 1: References related to sperm morphology in different situations within the female genital tract: sperm quality before or during deposition, sperm 
selection during their travel within the uterus, influence of sperm morphology during the interaction with oviductal epithelial cells and fertilization.
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For the pig breeding industry, different approaches have been 
developed to find fertility markers, such as the use of sperm protein 
profiles.94 The finding of a correlation between sperm morphometry 
and fertilization might be very useful because of the huge number 
of sperm doses used every day for artificial insemination. When the 
sperm head morphometry from boars with high fertility (nonreturn 
rate >86%) versus lower fertility (<86%) was compared,95 the authors 
found that high fertility was related to lower values in sperm head 
area and length, and higher values for width and ratio width/length. 
Similarly, they compared sperm head dimensions between groups 
with litter sizes >10 and <10 live‑born piglets, obtaining the opposite 
results.95 They found higher area and length of sperm heads, and 
lower width and width/length ratios, in the group of higher litter 
size (>10). The authors did present an explanation for their results95 and 
a comparison with the results in other species (i.e., horses92) was not 
appropriate because of the differences between evaluations of fertility 
parameters among species.

For rabbits, sperm head morphometry parameters are heritable96 
and males with smaller sperm head size show lower fertility (45.0% 
vs 77.9%).97 Nevertheless, the sperm head morphometric parameters 
assayed showed low potential to predict fertility and litter size when 
the ejaculates fulfilled the minimum requirements commonly used 
in artificial insemination  (motility and percentage of abnormal 
spermatozoa).98

The sheep has been one of the species studied for relating 
fertility and sperm morphometry. According to de Paz et  al.,79 
the relationship between ram sperm head morphometry and 
fertility depends on the methodology of evaluation, with the best 
results being obtained when a system based on light microscopy 
with a digital camera and a conventional image analysis is used. 
However, ram sperm midpiece length was not related to fertility.73 
An interesting approach has recently been reported in the study of 
ram sperm morphometric subpopulations and their relationship 
with fertility.49,66,82 While no relationships were found between 
male fertility rates and average values of sperm head dimensions, 
differences in fertility rates between rams were strongly associated 
with the proportion of spermatozoa in an ejaculate with short and 
elongated heads.82 The distribution of subpopulations between rams 
of high and low field fertility was different, with higher percentages 
of spermatozoa exhibiting fast and linear movements, and those 
with large and long nuclei in the high fertility group.66 However, 
the importance of morphometric values is relative for predicting 
fertility, because when the morphometric values were evaluated, 
together with viability, DNA fragmentation rate, and motility values 
in a logistic regression model for ovine fertility rate, only the viability 
and VCL needed to be included in the model.49

It is not currently possible to distinguish the real cause of the 
differences observed between species. The results relating morphology 
and fertility in literature are controversial and sometimes contrary 
between species, as pointed out throughout the review. For example, 
for pigs, small head area is associated with higher fertility95 whereas in 
rabbits small sperm heads are linked with lower fertility.97 Therefore, 
other mechanisms may be taken into account relative to intraspecies 
reproductive factors such as site of sperm deposition, length of the 
uterus, or number of sperm deposited, among others. For example, 
in some species (i.e., human and rams), cervical mucus acts as one of 
the main barriers, so shape might be essential for sperm in order to 
make their way through the mesh‑like structure of cervical mucus, 
and the hydrodynamic design of the sperm head would influence 
the sperm swimming within the female genital tract,63 so it may 

favor spermatozoa whose shape is best adapted to swim under these 
constraints. Hence, maybe we cannot directly compare the results 
obtained related to the morphology between different species. In fact, 
some authors50 have reported different subpopulations in four species of 
domestic animals (cattle, sheep, goat, and pigs), with the size category 
classification being different between the four species.

Sperm morphology related with other sperm qualities
From a comparative point of view, different authors have studied 
the possible relationships between sperm dimensions and body 
weight or other parameters such as genome mass, chromosome 
number, or duration of estrus in different species.27,38,99 Furthermore, 
some studies have evaluated possible relationships between sperm 
morphometry and other seminal parameters (i.e., sperm concentration 
or motility) (Figure 1).64,100 Relationships between motion parameters 
measured by CASA‑Mot  (VCL, ALH, STR, and LIN) and sperm 
morphometry have been reported in pigs100 and deer.61 In the case of 
pigs, boar sperm head and intermediate piece morphometry influence 
their motility characteristics;100 for example, larger mean values of 
sperm head area are associated with larger mean values of ALH, a 
parameter which is related with sperm hyperactivation. This finding 
could be interesting in fertility programs or as a model to evaluate the 
capacitation process.

One objective was to evaluate any possible relationship between 
sperm head morphometry and the chromatin structure. Some 
authors have studied this relationship in the domestic bull,86 pigs,76 
and carnivores.101,102 A consistent relationship between the standard 
deviation of morphometric head parameters and chromatin structure 
measured by SCSA has been detected in bulls.86 In contrast, Saravia 
et al.76 studied porcine spermatozoa and did not find any consistent 
relationship between morphometry and SCSA outcomes. In the same 
way, no differences were found between head morphometry parameters 
and DNA fragmentation index in feline epididymal spermatozoa.101 In 
dogs, a significant relationship has been reported between sperm head 
length (inverse) and sperm head width (direct) with the percentage 
of DNA fragmentation measured by SCSA.102 The shape of the sperm 
nuclei appeared to be more informative about chromatin structure 
than morphometry.84,85

Sperm viability has also been related with morphometry. In 
goats, dead spermatozoa are smaller in head length, width, area, and 
perimeter than live ones after freezing‑thawing. This fact probably is 
associated with the loss of sperm membrane function.103 Similarly, 
bull spermatozoa that regarded as dead after cryopreservation show 
smaller dimensions than those that survived, suggesting that sperm 
morphometry could be a valuable tool for detecting changes associated 
with sperm membrane integrity in these conditions.104

Finally, some authors have evaluated sperm morphometry after 
freezing in different species such as dog,105 goats,103,106,107 bulls,108 and 
boars.51 These studies have tried to provide a forecast of the freezing 
ability, resistance to the cryopreservation process and the value in 
predicting post‑thaw fertility.

CONCLUSIONS
It would seem to be obvious that sperm selection within the female genital 
tract depends on different factors, and that sperm morphology could 
be one of them. Nonetheless, it is far from clear how to understand the 
mechanisms that relate sperm trait morphometry and their selection in 
the quest for female gamete encounter. New knowledge about sperm size 
implications in fertility could offer to the reproductive biotechnology 
industry new tools for semen evaluation, thus turning morphometry into 
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a reliable and predictive test for potential fertility. This would enable the 
selection of those ejaculates with determined morphometry properties 
measured by CASA‑Morph as happens routinely with other sperm traits, 
such as motility evaluation. However, this is not possible at present because 
much remains to be discovered about the meaning of sperm morphometry.
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Supplementary Table  2: Domestic mammalian species included in 
Table  2

Species Family Order

Bison bison Bovidae Artiodactyla

Bos taurus Bovidae Artiodactyla

Bubalus bubalis Bovidae Artiodactyla

Budorcas taxicolor (sub. tibetana) Bovidae Artiodactyla

Capra hircus Bovidae Artiodactyla

Ovis aries Bovidae Artiodactyla

Camelus dromedarius Camelidae Artiodactyla

Lama glama Camelidae Artiodactyla

Cervus elaphus (sub. bactrianus) Cervidae Artiodactyla

Cervus elaphus (sub. barbarus) Cervidae Artiodactyla

Cervus elaphus (sub. macneilli) Cervidae Artiodactyla

Dama dama Cervidae Artiodactyla

Rangifer tarandus Cervidae Artiodactyla

Sus scrofa Suidae Artiodactyla

Canis familiaris Canidae Carnivora

Felis catus Felidae Carnivora

Mustela putorius (sub. eversmanni) Mustelidae Carnivora

Oryctolagus cuniculus Leporidae Lagomorpha

Equus asinus Equidae Perissodactyla

Equus caballus Equidae Perissodactyla

Homo sapiens Hominidae Primates

Cavia porcellus Caviidae Rodentia




