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Abstract: 3-Arylsydnones bearing fluorine and bromine atoms on the benzene ring were synthe-
sized from N-nitroso-2-fluorophenylglycines and characterized by NMR spectroscopy. These were
employed further in synthesis of the corresponding 1-(2-fluorophenyl)pyrazoles by 1,3-dipolar cy-
cloaddition reaction with dimethyl acetylenedicarboxylate (DMAD) as activated dipolarophile. The
sydnones as reaction intermediates were characterized by single crystal X-ray diffraction analysis
showing interesting features such as halogen bonding as an important interaction in modeling the
crystal structure.
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1. Introduction

The 1,3-dipolar cycloadditions reactions [1], also known as “Huisgen reactions” [2],
involving 1,3-dipoles from the class of N-ylides [3–6], mesoionic compounds such as
munchnones [7,8] and sydnones [9,10] and many others [11,12], have been intensively
studied in obtaining a wide range of five membered heterocycles (Figure 1) [13].
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involving 1,3-dipoles from the class of N-ylides [3–6], mesoionic compounds such as 
munchnones [7,8] and sydnones [9,10] and many others [11,12], have been intensively 
studied in obtaining a wide range of five membered heterocycles (Figure 1) [13]. 
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Figure 1. Schematic representation of 1,3-dipolar cycloaddition reaction between a formal 1,3-dipole 
and an (acetylenic) dipolarophile. 

Sydnones are mesoionic compounds with interesting properties and increased syn-
thetic utility as synthons for creating five membered heterocycles [14–24]. The important 
biological properties of sydnones were reviewed recently [25]. On the other hand, 1-phe-
nylpyrazoles generated by 1,3-dipolar cycloaddition between sydnones as dipoles and 
dimethylacetylene dicarboxylate as alkyne dipolarophile are also important bioactive 
scaffolds [26,27]  

Attaching halogenated atoms to organic frameworks could improve the bioavailabil-
ity of such compounds [28–34]. Introducing fluorine atoms on a small molecule frame-
work dramatically influences its properties regarding the interaction with specific target 
enzymes from simple dipole–dipole interactions to the most newly investigated halogen 
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Figure 1. Schematic representation of 1,3-dipolar cycloaddition reaction between a formal 1,3-dipole
and an (acetylenic) dipolarophile.

Sydnones are mesoionic compounds with interesting properties and increased syn-
thetic utility as synthons for creating five membered heterocycles [14–24]. The important
biological properties of sydnones were reviewed recently [25]. On the other hand, 1-
phenylpyrazoles generated by 1,3-dipolar cycloaddition between sydnones as dipoles
and dimethylacetylene dicarboxylate as alkyne dipolarophile are also important bioactive
scaffolds [26,27]

Attaching halogenated atoms to organic frameworks could improve the bioavailability
of such compounds [28–34]. Introducing fluorine atoms on a small molecule framework
dramatically influences its properties regarding the interaction with specific target en-
zymes from simple dipole–dipole interactions to the most newly investigated halogen
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bonds [29–33]. Moreover, (2-fluorophenyl)pyrazoles [35,36] were reported to present an-
ticancer activity [37] and are important ligands for organometallic applications [38]. We
have shown also that halogenated pyrazoles are important tools for studying the halogen
bonding propensity [39,40] and it was interesting to investigate if the fluorine atom could
also play a role among the intermolecular interactions.

Given our interest in the chemistry of nitrogen containing heterocycles [41–43], we
present herein the synthesis of new (2-fluorophenyl)pyrazoles also bearing bromine atoms,
starting from the corresponding sydnones and in presence of DMAD as dipolarophile. The
synthesis is straightforward and implies usual conditions.

2. Results and Discussion
2.1. Synthesis and Spectral Analysis

Sydnones are accessible tools in the synthesis of pyrazoles and thus they were em-
ployed successfully to obtain a large diversity of such compounds. At their turn, the
sydnones are synthesized by the nitrosation and subsequent cyclization of N-phenyl
glycines in acetic anhydride [44].

The first step was the obtaining of N-phenylglycine 1 by reacting 2-fluoroaniline with
2-chloroacetic acid [45]. Compound 1 was then brominated using Br2 in glacial acetic acid
as solvent to obtain the new polyhalogenated N-phenylglycines 2 and 3. The bromination
reactions worked with 78% and 90% yield, respectively (Scheme 1).
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Scheme 1. The synthesis of the starting halogenated N-phenylglycines. 

The structure of the phenylglycines 1–3 was assigned on the basis of NMR spectros-
copy. Both 1H and 13C spectra are in agreement with the proposed structures. The hetero-
nuclear coupling 19F-1H induces specific multiplet signals. The CH2 hydrogens appear in 
the range 3.85–4.03 ppm with the interesting observation that for the compound 3 the sig-
nal is split into a doublet with J = 4.7 Hz due to the heteronuclear spin–spin long range 
coupling with the fluorine atom in the benzene ring (Figure 2). For the other two com-
pounds, the coupling could not be observed. This could be an effect of the hindered rota-
tion about the C-N bond due to the bromine atom in the ortho position. The 13C NMR 
spectra are also in good agreement with the structure of the compounds 1–3. The main 
signals and the multiplicities raised by the 19F-13C heteronuclear spin–spin coupling are 
presented in Table 1. For the compound 3, the same observation was made for 13C spec-
trum as for the 1H such that the signal of the CH2 carbon atom appears as a doublet at 45.5 
ppm with J = 9.2 Hz. Interestingly, the carbon atom in the C=O group signal appears as a 
doublet at 172.3 with J19F-13C = 2.1 Hz. 

Scheme 1. The synthesis of the starting halogenated N-phenylglycines.

The structure of the phenylglycines 1–3 was assigned on the basis of NMR spec-
troscopy. Both 1H and 13C spectra are in agreement with the proposed structures. The
heteronuclear coupling 19F-1H induces specific multiplet signals. The CH2 hydrogens
appear in the range 3.85–4.03 ppm with the interesting observation that for the compound
3 the signal is split into a doublet with J = 4.7 Hz due to the heteronuclear spin–spin long
range coupling with the fluorine atom in the benzene ring (Figure 2). For the other two
compounds, the coupling could not be observed. This could be an effect of the hindered
rotation about the C-N bond due to the bromine atom in the ortho position. The 13C NMR
spectra are also in good agreement with the structure of the compounds 1–3. The main
signals and the multiplicities raised by the 19F-13C heteronuclear spin–spin coupling are
presented in Table 1. For the compound 3, the same observation was made for 13C spectrum
as for the 1H such that the signal of the CH2 carbon atom appears as a doublet at 45.5 ppm
with J = 9.2 Hz. Interestingly, the carbon atom in the C=O group signal appears as a doublet
at 172.3 with J19F-13C = 2.1 Hz.
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Scheme 2. The synthesis of halogenated sydnones 4a–c and the corresponding pyrazoles 5a–c. 

The compounds 4a–c were also characterized by NMR spectroscopy. The main 1H 
NMR features are given by the specific multiplicities of the signals of the hydrogen atoms 
in the benzene ring owing to the 1F-1H spin–spin coupling. The signal of the H-4 sydnone 
hydrogen appears in the range 6.53–6.81 ppm. For the compounds 4a,b multiplicity of the 
signal of H-4 is a doublet with J = 2.3 Hz. For the compound 4c the analogous signal for 
H-4 appears as a sharp singlet due to the hindered C-N rotation induced by the bulky 
bromine atom in the ortho position of the phenyl ring with respect to the sydnone moiety. 
The main characteristic signals in the 13C NMR spectra are presented in Table 1. Similarly 
to the observations made on the 1H NMR spectra, the signal of the sydnone CH appears 
in the range 97.0–98.1 ppm with a multiplicity of doublet for compounds 4a,b with J~0.7 
Hz, which is not observed for the compound 4c. Another interesting aspect is the hetero-
nuclear 19F-13C coupling constant observed in the case of C-6′, which is very small, close to 
1 Hz, knowing that values for a meta coupling should be in the range 4–5 Hz. All the other 
coupling constants are as expected. 

Table 1. 13C NMR assignments and the multiplicity according to 19F-13C spin–spin coupling for the 
compounds 1–3, 4a–c and 5a–c. 
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Figure 2. 1H NMR spectra of compounds 1 and 3 showing the aromatic and aliphatic relevant regions.

The N-phenylglycines 1–3 were employed in the synthesis of 3-arylsydnones 4a–c by
an improved method, which implies the in situ nitrosation reaction and further cyclization
with Ac2O according to Scheme 2.
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Scheme 2. The synthesis of halogenated sydnones 4a–c and the corresponding pyrazoles 5a–c.

The compounds 4a–c were also characterized by NMR spectroscopy. The main 1H
NMR features are given by the specific multiplicities of the signals of the hydrogen atoms
in the benzene ring owing to the 1F-1H spin–spin coupling. The signal of the H-4 sydnone
hydrogen appears in the range 6.53–6.81 ppm. For the compounds 4a,b multiplicity of
the signal of H-4 is a doublet with J = 2.3 Hz. For the compound 4c the analogous signal
for H-4 appears as a sharp singlet due to the hindered C-N rotation induced by the bulky
bromine atom in the ortho position of the phenyl ring with respect to the sydnone moiety.
The main characteristic signals in the 13C NMR spectra are presented in Table 1. Similarly
to the observations made on the 1H NMR spectra, the signal of the sydnone CH appears in
the range 97.0–98.1 ppm with a multiplicity of doublet for compounds 4a,b with J ~ 0.7 Hz,
which is not observed for the compound 4c. Another interesting aspect is the heteronuclear
19F-13C coupling constant observed in the case of C-6′, which is very small, close to 1 Hz,
knowing that values for a meta coupling should be in the range 4–5 Hz. All the other
coupling constants are as expected.

The 1-arylpyrazoles 5a–c were obtained by 1,3-dipolar cycloaddition of the sydnones
4a–c with dimethyl acetylenedicarboxylate (DMAD) as electron deficient alkyne in toluene
or xylene as solvent (Scheme 2). The new compounds were obtained in good yields and
were also characterized by NMR spectroscopy. The main characteristics of the 1H NMR
spectra are the signals of the pyrazole hydrogen H-5, which appears as a doublet with
J = 2.5 Hz at around 8.43 ppm for compounds 5a,b, whereas for compound 5c it appears as
a singlet slightly shielded at 8.07 ppm. All the other NMR signals are in accordance with
the structure and the multiplicities are influenced by the 19F-1H heteronuclear spin–spin
coupling. The 13C NMR signals are shown also in Table 1. The carbon atom C-5 appears
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as a doublet with J = 10 Hz for 5a,b whereas for 5c it appears as a sharp singlet due to the
hindered rotation about C-N bond which minimizes the chances of trough space coupling
between the C5 or H5 and the fluorine atom. The small value of the J19F-13C ~ 1 Hz is
observed also in the case of pyrazoles.

Table 1. 13C NMR assignments and the multiplicity according to 19F-13C spin–spin coupling for the
compounds 1–3, 4a–c and 5a–c.

No. C-3 C-4 C-5 C-1′ C-2′ C-3′ C-4′ C-5′ C-6′

Chemical Shift (ppm), 19F-13C Coupling Constant J (Hz)

1 [45] - - - 136.3
J = 11.6

151.0
J = 237.7

114.4
J = 18.0

116.1
J = 6.9

124.7
J = 3.2

112.1
J = 3.8

2 - - - 136.0
J = 11.5

150.6
J = 242.0

117.4
J = 21.8

105.4
J = 9.2

127.4
J = 3.7

113.5
J = 4.6

3 - - - 134.0
J = 10.6

150.7
J = 245.5

119.1
J = 24.9

106.7
J = 10.9

130.2
J = 3.0

111.1
J = 6.7

4a [45] - 97.1
J ~ 0.7 - 123.0

J = 8.9
154.4

J = 257.4
117.9

J = 20.0
134.0
J = 8.3

125.8
J = 3.8

125.0
J ~ 0.9

4b - 97.0
J ~ 0.7 - 121.4

J = 9.0
153.9

J = 262.0
121.6

J = 22.0
127.3
J = 9.1

129.1
J = 3.8

125.7
Small J

4c - 99.4
No J - 121.9

J = 14.9
156.0

J = 261.0
120.5

J = 22.3
127.5

J = 10.0
132.2
J = 3.6

121.2
Small J

5a 144.7 116.3 135.7
J = 10.0

129.7
J = 9.4

153.8
J = 251.0

116.9
J = 20.0

129.8
J = 8.0

125.2
J = 3.6

125.1
Small J

5b 144.8 116.5 136.5
J = 10.0

126.2
J = 9.4

154.3
J = 257.2

120.6
J = 22.0

122.0
J = 8.8

128.7
J = 3.4

126.0
J ~ 0.7

5c 145.1 116.4 137.1
No J

126.7
J = 14.8

157.9
J = 262.2

119.7
J = 22.0

125.0
J = 10.1

131.7
J = 3.6

123.2
Small J

2.2. X-ray Diffraction Analysis

The solid state structures of the synthesized compounds have been determined using
single-crystal X-ray diffraction method and their crystallographic parameters are shown in
Table 2.

Table 2. The structures of the compounds 3 and 4a–c and X-ray diffraction crystal parameters for each compound.

Parameter
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or xylene as solvent (Scheme 2). The new compounds were obtained in good yields and 
were also characterized by NMR spectroscopy. The main characteristics of the 1H NMR 
spectra are the signals of the pyrazole hydrogen H-5, which appears as a doublet with J = 
2.5 Hz at around 8.43 ppm for compounds 5a,b, whereas for compound 5c it appears as a 
singlet slightly shielded at 8.07 ppm. All the other NMR signals are in accordance with 
the structure and the multiplicities are influenced by the 19F-1H heteronuclear spin–spin 
coupling. The 13C NMR signals are shown also in Table 1. The carbon atom C-5 appears 
as a doublet with J = 10 Hz for 5a,b whereas for 5c it appears as a sharp singlet due to the 
hindered rotation about C-N bond which minimizes the chances of trough space coupling 
between the C5 or H5 and the fluorine atom. The small value of the J19F-13C~1 Hz is observed 
also in the case of pyrazoles. 
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spectra are the signals of the pyrazole hydrogen H-5, which appears as a doublet with J = 
2.5 Hz at around 8.43 ppm for compounds 5a,b, whereas for compound 5c it appears as a 
singlet slightly shielded at 8.07 ppm. All the other NMR signals are in accordance with 
the structure and the multiplicities are influenced by the 19F-1H heteronuclear spin–spin 
coupling. The 13C NMR signals are shown also in Table 1. The carbon atom C-5 appears 
as a doublet with J = 10 Hz for 5a,b whereas for 5c it appears as a sharp singlet due to the 
hindered rotation about C-N bond which minimizes the chances of trough space coupling 
between the C5 or H5 and the fluorine atom. The small value of the J19F-13C~1 Hz is observed 
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Empirical formula C8H6Br2FNO2 C8H5FN2O2 C8H4BrFN2O2 C8H3Br2FN2O2 
Fw 326.96 180.14 259.04 337.94 

space group P-1 P21/c I2/a P21/n 
a [Å] 8.8727(6) 6.7072(5) 13.8035(9) 10.3170(8) 
b [Å] 10.4079(7) 12.6000(11) 8.6487(4) 9.1652(5) 
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Empirical formula C8H6Br2FNO2 C8H5FN2O2 C8H4BrFN2O2 C8H3Br2FN2O2
Fw 326.96 180.14 259.04 337.94

space group P-1 P21/c I2/a P21/n
a [Å] 8.8727(6) 6.7072(5) 13.8035(9) 10.3170(8)
b [Å] 10.4079(7) 12.6000(11) 8.6487(4) 9.1652(5)
c [Å] 12.7466(11) 9.3015(6) 14.9402(7) 10.5526(8)
α [◦] 107.218(7) 90 90 90
β [◦] 91.685(6) 102.085(7) 95.109(5) 95.928(6)
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Table 2. Cont.

γ [◦] 114.901(7) 90 90 90
V [Å3] 1003.57(14) 768.66(10) 1776.51(17) 992.49(12)

Z 4 4 8 4
rcalcd [g cm−3] 2.164 1.557 1.937 2.262

Crystal size [mm] 0.30 × 0.20 × 0.20 0.30 × 0.10 × 0.10 0.30 × 0.20 × 0.20 0.30 × 0.20 × 0.20
T [K] 293 293 293 293

µ [mm−1] 8.064 0.131 4.616 8.161
2Θ range [◦] 4.588 to 58.638 5.524 to 50.038 5.448 to 50.05 5.258 to 52.722

Reflections collected 11,043 5284 3760 9203
Independent reflections 4731[Rint = 0.0491] 1346[Rint = 0.0405] 1559[Rint = 0.0552] 2027[Rint = 0.0543]

Data/restraints/parameters 4731/0/255 1346/0/118 1559/0/127 2027/0/136
R1

a 0.0580 0.0451 0.0334 0.0455
wR2

b 0.1037 0.1150 0.0392 0.0670
GOF c 0.992 1.098 1.021 1.076

Largest diff. peak/hole [e Å−3] 0.52/−0.48 0.17/−0.26 0.32/−0.49 0.49/−0.43
CCDC No. 2080828 2080829 2080830 2080831

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2. c GOF = {Σ[w(Fo

2 − Fc
2)2]/(n − p)}1/2, where n is the number

of reflections and p is the total number of parameters refined.

According to X-ray crystallography, the investigated compounds present a molecu-
lar crystal structure that is built-up from molecular units, as depicted in Figure 3. The
asymmetric part of the unit cell in the crystal structure of 3 comprises two crystallographic
independent but chemically identical molecules, denoted below as A and B components.
The analysis of the molecular structure has revealed the molecule 3 to exhibit a planar
configuration (see Table S1). On the contrary, due to ortho-substitution in aromatic rings, the
molecules 4a, 4b and 4c are essentially non-planar (Table S2). The dihedral angle formed
by two cyclic fragments is of 35.61(9)◦, 50.2(1)◦ and 78.5(1)◦ for 4a, 4b, and 4c, respectively.
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respectively. 

 

Figure 3. View of the asymmetric part of the unit cell in the crystal structure of compounds 3 (a),
4a (b), 4b (c) and 4c (d) with atom labeling scheme and thermal ellipsoids at 50% level. H-bonds
parameters for compound 3: C3A-H···O1B [O3A-H 0.93 Å, H···O1B 2.53 Å, O3A···O1B 3.430(7) Å,
∠C3AHO1B 162.2◦].
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The further analysis of the crystal structure has shown the important role of hydrogen
bonding, π-π stacking and homo- and hetero-halogen X···X (Br, F) interactions, which
determine the formation of 2D supramolecular architecture as the main packing motif
for the investigated compounds. Thus, the both crystallographically independent car-
boxylic groups in compound 3 are involved into the formation of the stable cyclic O-H···O
H-bonded syntons. The system of intermolecular interaction is completed by the short
Br···Br and F···Br contacts in adjacent molecules. These interactions are responsible for the
supramolecular aggregation of the H-bonded synthons into two-dimensional supramolec-
ular layers, as shown in Figure 4. It should be noted that, due to the steric effect of
adjacent oxygen and bromine atoms, N-H groups are not involved in the intermolecular
hydrogen bonding.
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H···O2B [O1B-H 0.82 Å, H···O2B 1.82 Å, O1B···O2B(−x, −y, −z) 2.629(5) Å, ∠O1BHO2B 169.3◦];
C3B-H···O1A [O3B-H 0.93 Å, H···O1A 2.56 Å, C3B···O1A(1 + x, y, z − 1) 3.409(6) Å, ∠O3BHO1A
152.0◦]; Hal···Hal short contacts: C2A-Br1A···Br1A-C2A(1 − x, 1 − y, 1 − z) [Br1A···Br1A’ 3.699(1)
Å, ∠C2A-Br1A···Br1A’ 151.1(2)◦]; C2B-Br1B···Br1B-C2B(−x, −y, −z) [Br1B···Br1B’ 3.614(1) Å, ∠C2B-
Br1B···Br1B’ 143.5(2)◦]. C6A-F1A···Br1B-C2B(x − 1, y, 1 + z) [F1A···Br1B’ 3.365(3) Å, ∠C6A-
F1A···Br1B’ 145.8(4)◦, C2B-Br1B···F1A’ 143.0(2)◦]; C6B-F1B···Br1A-C2A [F1B···Br1A 3.456(3) Å, ∠C6B-
F1B···Br1A 157.1(4)◦, C2A-Br1A···F1B 143.6(2)◦].

A view of 2D organic network in the crystal structure of 4b is shown in Figure 5. This
supramolecular architecture is stabilized via weak intermolecular C-H···O H-bonds, where
both oxygen atoms acts as acceptor of protons. The Br···Br short contacts did not present
the geometrical requirements for halogen–halogen bonding pink dashed line. The crystal
structure of compounds 3 and 4b is similar. It consists from the parallel packing of 2D layers
driven by π-π stacking interactions between aromatic rings belonging to adjacent layers,
which are evidenced by the short centroid-to centroid distances of 3.7568(2) Å. As a result,
the crystal structure of compounds 3 and 4b can be characterized as a 3D supramolecular
network. A view of the packing diagram for compounds 3 and 4b is shown in Figure S1
(Supplementary Materials).

Compared to the compounds 3 and 4b, the crystal structure of compounds 4a and 4c
is built-up from the parallel packing of the discrete weakly interacting two-dimensional
supramolecular double-layers, as shown in Figure S2.

The double layer in the crystal of 4a is formed from the molecular units linked through
C-H···O H-bonds and stacking interactions (see Figure 6a), while in the crystal structure of
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4c, is formed from two symmetric 2D supramolecular units, where the neutral molecules
are self-assembled through C-H···O hydrogen bonding, as depicted in Figure 6b. The
system of intermolecular interaction in 4c is completed by F···Br and Br···Br short contacts
(see Figure 6b).
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Figure 5. 2D suparmolecular layer in the crystal structure of 4b. Black and purple dashed lines are
used for H-bonds and Br···Br contacts, respectively. H-bonds parameters: C3-H···O2 [O3-H 0.93 Å,
H···O2 2.62 Å, C3···O2(x, 0.5 − y, z − 0.5) 3.260(3) Å, ∠O3HO2 126.3◦]; C5-H···O1 [O5-H 0.93 Å,
H···O1 2.62 Å, C5···O1(x, 1 + y, z) 3.389(3) Å, ∠O5HO1 160.7◦]; C7-H···O2 [O7-H 0.93 Å, H···O2 2.35
Å, C7···O2(x, 1 + y, z) 3.186(3) Å, ∠O7HO2 149.7◦].
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Figure 6. View of double layer network in the crystal of 4a, showing the role of hydrogen bonding
and π-π stacking (a), the system of intermolecular interactions in 2D supramolecular unit of 4c (b).
Black and purple dashed lines are used for H-bonds and Br···Br and Br···F contacts close to the
limit of the vdW radii. Centroid-to-centroid distances at 3.6267(3) Å are shown in dashed-orange
lines. H-bonds parameters for 4a: C2-H···O2 [C2-H 0.93 Å, H···O2 2.61 Å, C2···O2(−x, 1 − y,1 + z)
3.364(3) Å, ∠C2HO2 138.0◦]; C3-H···O2 [C3-H 0.93 Å, H···O2 2.59 Å, C3···O2(1 + x, y, 1 + z) 3.251(3)
Å, ∠C3HO2 128.6◦]; C7-H···O2 [C7-H 0.93 Å, H···O2 2.59 Å, C7···O2(−1 − x, 1 − y, −z) 3.313(3) Å,
∠C7HO2 152.2◦]; H-bonds parameters for 4b: C3-H···O2 [C3-H 0.93 Å, H···O2 2.54 Å, C3···O2(−0.5
+ x, 0.5 − y, −0.5 + z) 3.422(3) Å, ∠C3HO2 159.3◦]; C5-H···O2 [C3-H 0.93 Å, H···O2 2.69 Å, C5···O2(x,
−1 + y,1 z) 3.380(5) Å, ∠C5HO2 131.2◦]; C7-H···O2 [C7-H 0.93 Å, H···O2 2.46 Å, C7···O2(1.5− x,−0.5
+ y, 1.5 − z) 3.031(5) Å, ∠C7HO2 119.5◦]; Hal···Hal short contacts for 4c: C4-Br2···Br1-C2(x, y − 1, z)
[Br2···Br1’ 3.7637(7) Å, ∠C2-Br2···B1r’-C2 166.5(1)◦, ∠C6-F1···Br1-C4 125.9(1)Å]; C6-F1···Br1-C2(0.5
+ x, −0.5 + y, 0.5 + z) [F1···Br1’ 3.269(2) Å, ∠C6-F1···Br1’-C2 141.3(2)◦, ∠C2-Br1···F1-C6 157.9(2)Å];
C6-F1···Br2-C4(0.5 + x, −0.5 + y, 0.5 + z).
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2.3. Hirshfeld Analysis

For the representative compounds Hirshfeld analysis as implemented in CrystalEx-
plorer [46] confirm the supra-molecular interactions and also show in a suggestive way the
important crystal arrangement driving forces.

Compound 3. For the acid 3 it is important to note the existence of the two indepen-
dent molecules 3A and 3B. It appears that the O···H bond involving the carboxylic acid
groups are established between the same kind of molecular entities forming dimers. These
dimers are connected together through one O···H bond involving H-3′ and the oxygen in
the hydroxyl atom of the acid of an adjacent molecule and halogen bonds involving Br···Br
and Br···F (at the limit of the sum of the vdW radii) contacts as described in Figure 3 from
the X-ray diffraction chapter. All these interactions form 2D sheets, which are connected
through π···π stacking between two similar molecules and presumably lone-pair···π be-
tween molecules of type 3B. Figure 7 shows the Hirshfeld surfaces of the two independent
molecules of 3, and the shape index mode showing the π-π interactions in molecules 3A.
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Figure 7. Hirshfeld surface of the two independent molecules of 3. For 3A, the shape index mode of
the Hirshfeld surface shows the complementary spots corresponding to the π-π stacking.

Compound 4a. The sydnone 4a does not have any halogen atom attached besides the
fluorine atom. This suggests that the strong intermolecular forces are C-H···O hydrogen
bonding, implying the exocyclic carbonyl oxygen of the sydnone. The red spots on the
Hirshfeld surface depict the contact places for the C-H···O interactions (Figure 8).

Molecules 2021, 26, x FOR PEER REVIEW 8 of 14 
 

 

−0.5 + z) 3.422(3) Å, ∠C3HO2 159.3°]; C5-H···O2 [C3-H 0.93 Å, H···O2 2.69 Å, C5···O2(x, −1 + y,1 z) 
3.380(5) Å, ∠C5HO2 131.2°]; C7-H···O2 [C7-H 0.93 Å, H···O2 2.46 Å, C7···O2(1.5 − x, −0.5 + y, 1.5 − z) 
3.031(5) Å, ∠C7HO2 119.5°]; Hal···Hal short contacts for 4c: C4-Br2···Br1-C2(x, y − 1, z) [Br2···Br1’ 
3.7637(7) Å, ∠C2-Br2···B1r’-C2 166.5(1)°, ∠C6-F1···Br1-C4 125.9(1)Å]; C6-F1···Br1-C2(0.5 + x, −0.5 + y, 
0.5 + z) [F1···Br1’ 3.269(2) Å, ∠C6-F1···Br1’-C2 141.3(2)°, ∠C2-Br1···F1-C6 157.9(2)Å]; C6-F1···Br2-
C4(0.5 + x, −0.5 + y, 0.5 + z). 

2.3. Hirshfeld Analysis 
For the representative compounds Hirshfeld analysis as implemented in CrystalEx-

plorer [46] confirm the supra-molecular interactions and also show in a suggestive way 
the important crystal arrangement driving forces. 

Compound 3. For the acid 3 it is important to note the existence of the two independ-
ent molecules 3A and 3B. It appears that the O···H bond involving the carboxylic acid 
groups are established between the same kind of molecular entities forming dimers. These 
dimers are connected together through one O···H bond involving H-3′ and the oxygen in 
the hydroxyl atom of the acid of an adjacent molecule and halogen bonds involving Br···Br 
and Br···F (at the limit of the sum of the vdW radii) contacts as described in Figure 3 from 
the X-ray diffraction chapter. All these interactions form 2D sheets, which are connected 
through π···π stacking between two similar molecules and presumably lone-pair···π be-
tween molecules of type 3B. Figure 7 shows the Hirshfeld surfaces of the two independent 
molecules of 3, and the shape index mode showing the π-π interactions in molecules 3A. 

3A 3B 

Figure 7. Hirshfeld surface of the two independent molecules of 3. For 3A, the shape index mode of 
the Hirshfeld surface shows the complementary spots corresponding to the π-π stacking. 

Compound 4a. The sydnone 4a does not have any halogen atom attached besides the 
fluorine atom. This suggests that the strong intermolecular forces are C-H···O hydrogen 
bonding, implying the exocyclic carbonyl oxygen of the sydnone. The red spots on the 
Hirshfeld surface depict the contact places for the C-H···O interactions (Figure 8).  

 
Figure 8. Hirshfeld surface of 4a showing the main contacts for the O···H bonds. π-π stacking is also 
highlighted. 

Compound 4b. Adding a Br atom in the para position of the phenyl ring in respect to 
the sydnone did not change dramatically the spatial arrangement of the molecules. The 
main contacts observed also from the Hirshfeld surface are O···H (Figure 9) bonds involv-
ing the sydnone moiety and H-3′ atom between the two Br atoms (red spots). All these 
interactions form stair-like arrangements which are held together by π···π interactions. It 

Figure 8. Hirshfeld surface of 4a showing the main contacts for the O···H bonds. π-π stacking is also
highlighted.

Compound 4b. Adding a Br atom in the para position of the phenyl ring in respect
to the sydnone did not change dramatically the spatial arrangement of the molecules.
The main contacts observed also from the Hirshfeld surface are O···H (Figure 9) bonds
involving the sydnone moiety and H-3′ atom between the two Br atoms (red spots). All
these interactions form stair-like arrangements which are held together by π···π interactions.
It appears that Br atom is not involved in any halogen bonding type contact besides the
hydrogen bonds in which it is involved.
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CA, USA), operating at 300 MHz for 1H-NMR and 75 MHz for 13C-NMR or Bruker Avance 
Neo (Bruker, Billerica, MA, USA) operating at 400 MHz and 125 MHz for compound 4c. 
Supplementary evidence was given by HETCOR and COSY experiments.  
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equipped with graphite-monochromated MoKα radiation. The unit cell determination 

Figure 9. Hirshfeld surface of 4b showing the main contacts for the O···H bonds. Shape index mode
of the Hirshfeld surface shows the complementary spots corresponding to the π···π stacking.

Compound 4c. The addition of the second Br atom in the 6′ position in respect to
the sydnone ring preserved the role of the sydnone moiety in forming hydrogen bonds
by its oxygen and hydrogen atoms and somehow similar stair-like pattern as for 4b was
observed, held together by π···π bonds.

Layers are formed in the plane of the phenyl atoms by F···Br, Br···Br and Br···Syd and
H-3′···O=C (Syd). These layers are interconnected by O···H contacts involving the sydnone
moiety, π···π interactions between the phenyl rings on one part and Br···π of type lone
pair···π on the other face of the phenyl ring (Figure 10).
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3. Materials and Methods

Melting points were determined on a Boëtius hot plate microscope (Carl Zeiss, Jena,
Germany and are uncorrected. The elemental analysis was carried out on a COSTECH
Instruments EAS32 apparatus (Costech Analytical Technologies, Valencia, CA, USA). The
NMR spectra were recorded on a Varian Gemini 300 BB instrument (Varian, Palo Alto, CA,
USA), operating at 300 MHz for 1H-NMR and 75 MHz for 13C-NMR or Bruker Avance
Neo (Bruker, Billerica, MA, USA) operating at 400 MHz and 125 MHz for compound 4c.
Supplementary evidence was given by HETCOR and COSY experiments.

X-ray diffraction measurements were carried out with a Rigaku Oxford-Diffraction
XCALIBUR E CCD diffractometer (Rigaku Oxford Diffraction, Sevenoaks, Kent, UK)
equipped with graphite-monochromated MoKα radiation. The unit cell determination and
data integration were carried out using the CrysAlis package of Oxford Diffraction [47]. The
structures were solved by Intrinsic Phasing using Olex2 [48] software with the SHELXT [49]
structure solution program and refined by full-matrix least-squares on F2 with SHELXL-
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2015 [50] using an anisotropic model for non-hydrogen atoms. All H atoms attached to
carbon were introduced in idealized positions (dCH = 0.96 Å) using the riding model. The
molecular plots were obtained using the Olex2 program. Table 1 provides a summary of
the crystallographic data together with refinement details for compounds. The geometric
parameters are summarized in Table S1. The values of the geometrical parameters are in the
expected ranges for such kinds of compounds. The supplementary crystallographic data
can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (accessed
on 16 June 2021) (or from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44)-1223-336-033; or deposit@ccdc.ca.ac.uk).

Hirshfeld was employed as implemented in CystalExplorer [51,52]. Hirshfeld surface
maps highlight intermolecular interactions at the sum of de and di, the distances from the
external atoms to the surface or internal atoms to the Hirshfeld surface, respectively [52].
Distances shorter than the sum of the vdW radii are represented by red spots, close to the
vdW radii in white spots and larger than vdW as blue surfaces. The fingerprint plots [52]
show a qualitative description (see Supplementary Materials) of the relevant contacts in
the crystal packing, by plotting di vs. de, creating thus a “heatmap” of interactions.

3.1. Procedures for Synthesis of Acids 1–3

N-(2-Fluorophenyl)glycine (1) 40 mL (46 g; 0.41 mol) 2-fluoroaniline and 20 g (0.21 mol)
monochloroacetic acid were refluxed in 300 mL water for 3 h. The reaction mixture was
cooled in a water-ice bath and the precipitate was filtered by suction and then was washed
with water on the filter. After drying the product was filtered. Brown crystals with mp
128–129 ◦C (lit.45 127 ◦C) were obtained by recrystallization from benzene; Yield 60%.
1H NMR (300 MHz, DMSO) δ: 3.85 (s, 2H, CH2); 5.63 (bs, 1H, NH); 6.53–6.61 (m, 2H,
H-4′, H-6′); 6.92–7.03 (m, 2H, H-3′, H-5′); 13C NMR (75 MHz, DMSO) δ: 44.2 (CH2); 112.1
(J = 3.7 Hz, C-6′); 114.4 (J = 18.0 Hz, C-3′); 116.1 (J = 6.9 Hz, C-4′); 124.7 (J = 3.1 Hz, C-5′);
136.3 (J = 11.6 Hz, C-1′); 151.0 (J = 237.0 Hz, C-2′); 172.5 (COOH).

N-(4-Bromo-2-fluorophenyl)glycine (2) A solution of 2.6 mL (8 g, 50 mmol) of bromine in
10 mL of glacial acetic acid was dropped under stirring to a suspension of 8.5 g (50 mmol)
of N-(2-fluorophenyl)glycine in 25 mL of glacial acetic acid. Stirring was continued for
10 min. The reaction mixture was poured into water and the precipitate was filtered at
vacuum. Light brown crystals with mp 138–143 ◦C were obtained by crystallization from
benzene; Yield 78%. Anal. Calc. C8H7BrFNO2: C 38.74, H 2.84, N 5.65. Found: C 38.98, H
4.06, N 5.76. 1H NMR (300 MHz, DMSO) δ: 3.85 (s, 2H, CH2); 5.63 (bs, 1H, NH); 6.53–6.59
(m, 1H, H-3′); 7.11–7.14 (m, 1H, H-6′); 7.30 (dd, 1H, J = 11.5, 2.7 Hz, H-5′). 13C NMR
(75 MHz, DMSO) δ: 44.0 (CH2); 105.4 (J = 9.2 Hz, C-4′); 113.5 (J = 4.6 Hz, C-6′); 117.4
(J = 21.7 Hz, C-3′); 127.4 (J = 3.3 Hz, C-5′); 136.0 (J = 11.0 Hz, C-1′); 150.6 (J = 242.0 Hz, C-2′);
172.1 (COOH).

N-(4,6-Dibromo-2-fluorophenyl)glycine (3) A solution of 4.4 mL (13.5 g, 80 mmol) of bromine
in 10 mL of glacial acetic acid was dropped under stirring to a suspension of 6.8 g (40 mmol)
of N-(2-fluorophenyl)glycine in 25 mL of glacial acetic acid. Stirring was continued for
30 min. The reaction mixture was poured into water and the precipitate was filtered
under vacuum. Brown crystals with mp 148–150 ◦C were obtained by crystallization from
benzene; Yield 90%. Anal. Calc. C8H6Br2FNO2: C 29.39, H 1.85, N 4.28. Found: C 29.68, H
1.95, N 4.51. 1H NMR (300 MHz, DMSO) δ: 4.03 (d, 2H, J = 4.7 Hz, CH2); 5.63 (bs, 1H, NH);
7.37 (dd, 1H, J = 13.0, 2.3 Hz, H-3′); 7.50 (dd, 1H, J = 2.3, 1.6 Hz, H-5′); 13C NMR (75 MHz,
DMSO) δ: 46.5 (d, J = 9.8 Hz, CH2); 106.7 (d, J = 10.9 Hz, C-4′); 111.1 (d, J = 6.7 Hz, C-6′);
119.1 (d, J = 24.9 Hz, C-3′), 130.2 (d, J = 3.0 Hz, C-5′); 134.0 (d, J = 10.6 Hz, C-1′); 150.7 (d,
J = 245.5 Hz, C-2′); 172.3 (d, J = 2.1 Hz, COOH).

www.ccdc.cam.ac.uk/conts/retrieving.html
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3.2. Procedures for Synthesis of Sydnones 4a–c

To a solution of 2 g NaOH in 30 mL of water were added under stirring 20 mmol
N-arylglycine 1–3 and 1.4 g (21 mmol) of NaNO2. In the cooled solution 10 mL of HCl
were dropped under stirring, the temperature being maintained at 5–7 ◦C. The nitroso
derivatives, separated as oils were extracted twice with CH2Cl2, and the organic layer
was dried on CaCl2. The solvent was evaporated in vacuum on a water bath. The residue
was treated with 30 mL of acetic anhydride and 2 mL of pyridine and evaporated under
reduced pressure. The crude products were crystallized from a suitable solvent.

3-(2-Fluorophenyl)sydnone (4a). Colorless crystals with mp 111–114 ◦C (Lit.45 109 ◦C) were
obtained by crystallization from ethanol; Yield 71%. 1H NMR (300 MHz, CDCl3) δ: 6.80 (d,
1H, J = 2.2 Hz, H-4); 7.37–7.44 (m, 2H, H-3′, H-6′); 7.62–7.71 (m, 1H, H-4′); 7.76–7.81 (m, 1H,
H-5′). 13C NMR (75 MHz, CDCl3) δ: 97.1 (J ~ 0.7 Hz, C-4); 117.9 (J = 20.0 Hz, C-3′); 123.0
(J = 8.9 Hz, C-1′); 125.0 (J ~ 0.9 Hz, C-6′); 125.8 (J = 3.8 Hz, C-5′); 134.0 (J = 8.3 Hz, C-4′);
154.4 (J = 257.4 Hz, C-2′); 168.8 (CO).

3-(4-Bromo-2-fluorophenyl)sydnone (4b). Colorless crystals with mp 121–125 ◦C were ob-
tained by crystallization from isopropanol; Yield 80%. Anal. Calc. C8H4BrFN2O2: C 37.09,
H 1.56, N 10.81. Found: C 37.37, H 1.84, N 11.13. 1H NMR (300 MHz, CDCl3) δ: 6.81 (d, 1H,
J = 2.2 Hz, H-4); 7.58–7.65 (m, 2H, H-3′, H-5′); 7.69–7.74 (m, 1H, H-6′). 13C NMR (75 MHz,
CDCl3) δ: 97.0 (C-4); 121.6 (J = 22.0 Hz, C-3′, C-1′); 125.7 (C-6′); 127.3 (J = 9.1 Hz, C-4′);
129.1 (J = 3.8 Hz, C-5′); 153.9 (J = 262.0 Hz, C-2′); 168.4 (CO).

3-(2,4-Dibromo-6-fluorophenyl)sydnone (4c). Colorless crystals with mp 199–202 ◦C were
obtained by crystallization from acetic acid; Yield 77%. Anal. Calc. C8H3Br2FN2O2: C
28.43, H 0.89, N 8.29. Found: C 28.72, H 1.27, N 8.58. 1H NMR (400 MHz, DMSO) δ: 6.73
(s, 1H, H-4); 8.22 (dd, 1H, J = 9.1, 1.9 Hz, H-3′); 8.27 (m, 1H, H-5′); 13C NMR (125 MHz,
DMSO) δ: 99.4 (C-4); 120.5 (J = 22.3 Hz, C-3′); 121.2 (C-6′); 121.9 (J = 14.9 Hz, C-1′) 127.5
(J = 10.0 Hz, C-4′); 132.2 (J = 3.6 Hz, C-5′); 156.0 (J = 261.0 Hz, C-2′); 167.9 (CO).

3.3. Genereal Procedure for Synthesis of Pyrazoles 5a–c

A mixture of 5 mmol sydnone 4 and 0.9 g (6 mmol) of DMAD was refluxed 8 h in 20 mL
toluene for 4a,b and xylene for 4c. After removal of the solvent in vacuo, the pyrazoles
5a–c were crystallized from 2-propanol (5a) or ethanol (5b and 5c).

1-(2-Fluorophenyl)-3,4-dicarbomethoxypyrazole (5a). Light brown crystals with mp 55–57 ◦C
were obtained by crystallization from isopropanol; Yield 80%. Anal. Calc. C13H11FN2O4:
C 56.12, H 3.98, N 10.07. Found: C 56.40, H 4.23, N 10.37. 1H NMR (300 MHz, CDCl3) δ:
3.87, 3.98 (2s, 6H, OCH3); 7.22–7.30 (m, 2H, H-3′, H-6′); 7.34–7.42 (m, 1H, H-4′); 7.89 (td,
1H, J = 7.9, 1.7 Hz, H-5′); 8.43 (d, 1H, J = 2.5 Hz, H-5). 13C NMR (75 MHz, CDCl3) δ: 52.2,
52.9 (2OCH3); 116.3 (C-4); 116.9 (J = 20.0 Hz, C-3′); 125.1 (C-6′); 125.2 (J = 3.6 Hz, C-5′);
129.7 (J = 9.4 Hz, C-1′); 129.8 (J = 8.0 Hz, C-4′); 135.7 (J = 10.0 Hz, C-5); 144.7 (C-3); 153.8
(J = 251.0 Hz, C-2′); 161.7, 162.0 (2COO).

1-(4-Bromo-2-fluorophenyl)-3,4-dicarbomethoxypyrazole (5b). Colorless crystals with mp 90–91 ◦C
were obtained by crystallization from ethanol; Yield 71%. Anal. Calc. C13H10FBrN2O4:
C 43.72, H 2.82, N 7.84. Found: C 43.97, H 3.11, N 8.09. 1H NMR (300 MHz, CDCl3) δ:
3.89, 4.00 (2s, 6H, OCH3); 7.45–7.49 (m, 2H, H-3′, H-5′); 7.80–7.85 (m, 1H, H-6′); 8.43 (d,
1H, J = 2.5 Hz, H-5). 13C NMR (75 MHz, CDCl3) δ: 52.2, 52.9 (OCH3); 116.6 (C-4); 120.6
(J = 22.0 Hz, C-3′); 122.0 (J = 8.8 Hz, C-4′); 126.0 (J = 0.7 Hz, C-6′); 126.2 (J = 9.4 Hz, C-1′);
128.7 (J = 3.3 Hz, C-5′); 136.5 (J = 10.0 Hz, C-5); 144.8 (C-3); 154.3 (J = 257.2 Hz, C-2′); 161.6,
161.9 (2COO).

1-(2,4-Dibromo-6-fluorophenyl)-3,4-dicarbomethoxypyrazole (5c). Colorless crystals with
mp 151–154 ◦C were obtained by crystallization from ethanol; Yield 71%. Anal. Calc.
C13H9Br2FN2O4: C 35.81, H 2.08, N 6.42. Found: C 36.11, H 2.34, N 6.71. 1H NMR
(300 MHz, CDCl3) δ: 3.88, 3.97 (2s, 6H, OCH3); 7.43 (dd, 1H, J = 8.3, 1.9 Hz, H-3′); 7.71 (t,
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1H, J = 1.9 Hz, H-5′); 8.07 (s, 1H, H-5). 13C NMR (75 MHz, CDCl3) δ: 52.1, 52.8 (OCH3);
116.4 (C-4); 119.7 (J = 22.0 Hz, C-3′); 123.2 (C-6′); 125.0 (J = 10.1 Hz, C-4′); 126.7 (J = 14.8 Hz,
C-1′); 131.7 (J = 3.6 Hz, C-5′); 137.1 (C-5); 145.1 (C-3); 157.9 (J = 262.2 Hz, C-2′); 161.4,
161.5 (2COO).

4. Conclusions

In conclusion, new polyhalogenated N-arylglycines, 3-arylsydnones and 1-arylpyrazoles
having a fluorine atom on the ortho position of the phenyl ring were obtained and struc-
turally characterized by 1H and 13C NMR spectroscopy. The NMR spectra were not trivial
and present corresponding features of heteronuclear spin-spin coupling. The long range
coupling between the H-4 or H-5 of the sydnone/pyrazole and the fluorine atom could
test the presence of the hindered rotation between the phenyl and the sydnone/pyrazole
in compound 3 having a bromine atom in position 6′. Halogen–halogen or halogen–π
type contacts were identified either in phenylglycines or sydnones. In some cases, even
the fluorine atom participates in a synergic mode to the halogen–halogen interactions.
Pyrazoles are important benchmarks for the investigation of the halogen bonding, and
we will continue to synthesize and investigate such molecules in order to bring some new
information regarding its predictability.

Supplementary Materials: The following are available online. Figure S1: Partial view of 3D network
in the crystal structure of compounds 3 (a), and 4b (b). Interlayer centroid-tocentroid distances are
showing in dashed-orange lines, Figure S2: Partial view of the crystal structure for compounds 4a (a),
and 4c (b) showing the parallel packing of 2D double layers, Table S1: Deviations (Å) of the atoms
from mean least-squares plane for molecule 3, Table S2: Deviations (Å) of the atoms from mean
least-squares plane for molecule 4a, 4b and 4c.
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