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ABSTRACT

In response to the COVID-19 global pandemic, recent research has proposed creating deep learning based models that use
chest radiographs (CXRs) in a variety of clinical tasks to help manage the crisis. However, the size of existing datasets of CXRs
from COVID-19+ patients are relatively small, and researchers often pool CXR data from multiple sources, for example, using
different x-ray machines in various patient populations under different clinical scenarios. Deep learning models trained on such
datasets have been shown to overfit to erroneous features instead of learning pulmonary characteristics — a phenomenon
known as shortcut learning. We propose adding feature disentanglement to the training process, forcing the models to identify
pulmonary features from the images while penalizing them for learning features that can discriminate between the original
datasets that the images come from. We find that models trained in this way indeed have better generalization performance on
unseen data; in the best case we found that it improved AUC by 0.13 on held out data. We further find that this outperforms
masking out non-lung parts of the CXRs and performing histogram equalization, both of which are recently proposed methods
for removing biases in CXR datasets.

1 Introduction

The Coronavirus Disease (COVID)-19 pandemic has exposed many vulnerabilities in public health systems around the world.
Atrtificial intelligence (Al) is poised to address some of these challenges with potential applications including early disease
detection, clinical management tools, disease modeling, and vaccine research'. Screening patients for COVID-19 based on
chest radiograph (CXR) imaging is one potential Al application, and deep learning models have been developed to distinguish
COVID-19 pneumonia from normal findings and even rule out other types of pneumonia with high accuracy >*. Due to the
increasing practice of reporting results prior to peer review in the setting of a novel pandemic, many additional models have
been reported as preprint papers> !,

The main challenge with training these deep learning models has been the shortage of COVID-19 CXR imaging data.
Several public datasets are available, but most are small (100-200 patients). A recent review assessed many Al diagnostic
and prognostic models for COVID-19 using the prediction model risk of bias assessment tool (PROBAST) and found that all
but one of the 51 studies were at high risk for analysis bias, mainly overfitting due to small sample size!?. Larger databases
have typically pooled images from different patient populations at multiple research sites and hospitals, or even from different
countries”-!>!# These unbalanced datasets often contain images with source-specific identifiers (anteroposterior versus
posteroanterior positioning, imaging device type, image size, etc) that the models can misidentify as relevant features.

The most common approach for developing COVID-19 CXR diagnostic models is to use transfer and representational
learning techniques to adapt classification models that were trained on labeled CXR datasets (to classify pre-COVID-19
pulmonary findings) or on unrelated image datasets to the new task>* 3. However, due to the problems mentioned above —
small datasets or larger datasets with a latent imbalance — leads to learned models that suffer from a phenomenon summarized as
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“shortcut learning”!®. Here, the models will identify dataset-specific features rather than pulmonary specific features in order to
distinguish between classes, and the reported performance of these models may not be generalizable to other patient populations.
Indeed, recent research proves exactly this!” and further shows that some shortcuts can persist in external datasets. The problem
now is in how to train highly-parameterized deep learning models on publicly available data, without learning shortcuts that are
present in such data. A recent study proposed two preprocessing techniques to solve this problem: histogram equalization, to
correct for issues such as contrast differences between images, and lung masking to remove potential source-specific information
located outside of the lung area'®. See Supplemental Information 1 for an expanded literature review of work that uses CXRs
for COVID-19, domain adaptation and disentangled representation learning.

In this paper, we sought to evaluate the use of feature disentanglement!®, a multi-task training approach for deep neural
networks, to prevent shortcut learning in the context of automated classification of COVID-19 CXR images. Models trained
with this method are forced to learn features that can identify COVID-19+ CXRs and are penalized for learning features that
can identify what sub-population the CXR is from. We further sought to compare feature disentanglement to the previously
proposed histogram equalization and and lung masking methods. Finally, we sought to test all three methods on the ultimate
goal of improving model generalization performance on unseen data. We have released source code to reproduce the models
and results found in this paper: https://github.com/microsoft/xray-feature-disentanglement.

2 Methods

2.1 Datasets

We used two CXR datasets: the open-source COVIDX dataset?” and a dataset received from the China Consortium of Chest
CT CC-CCII?!. These datasets share the same three class labels for CXR images: “normal” (Normal) — collected from patients
without pneumonia, “common pneumonia” (Pneumonia) CXRs — collected from patients with pneumonias other than from
COVID-19, and “novel COVID-19 pneumonia” (COVID-19+). We treated the source dataset of each image as its domain label.
See Table 1 for a breakdown of the number of class labels of each type per dataset. Below we describe each dataset in more
detail.

The COVIDX dataset is a conglomeration of samples from five other datasets: the COVID-CHESTXRAY dataset (also referred
to as the COHEN dataset in related work)?2, the FIGURE 1 COVID-19 CXR dataset?3, the ACTUALMED COVID-19 CXR
dataset?*, the Kaggle RSNA Pneumonia Detection Challenge dataset>, and the STRM samples from the Kaggle COVID-19
radiography database®®. The samples are divided among three classes: “normal” control images, non COVID-19 pneumonia
images, and COVID-19+ images. We used the scripts provided on the COVIDX GitHub repository to create the dataset. We
then merge the training and test sets and filter out all but the first sample for each patient. The label counts in Table 1 for this
dataset therefore equal the number of patients.

The CC-CCII dataset is a large CT dataset encompassing CT images from retrospective cohorts from the China Consortium
of Chest CT Image Investigation (CFC-CCII)?'. This datasets has samples from Sun Yat-sen Memorial Hospital and Third
Affiliated Hospital of Sun Yat-sen University, The First Affiliated Hospital of Anhui Medical University, West China Hospital,
Guangzhou Medical University First Affiliated Hospital, Nanjing Renmin Hospital, Yichang Central People’s Hospital, and
Renmin Hospital of Wuhan University. The dataset we use in this paper consists of CXRs taken from a subset of the patients
included in the CT dataset. These images have been labeled with the same classes as in COVIDX.

Normal Pneumonia COVID-19+

COVIDX (totals) 8,851 6,040 421
COVID-CHESTXRAY - 28 289
FIGURE 1 - - 35
ACTUALMED - - 51
SIRM - - 46
RSNA 8,851 6,012 -

CC-CCI1 11,604 18,236 1,690

Table 1. Dataset overview. Counts of disease label type per dataset.

Ethics Statement. This study was conducted in accordance with the Declaration of Helsinki. The COVIDX dataset is
publicly available. The CC-CCII dataset was de-identified and anonymized and this study was retrospectively approved by the
institutional review board of Sun Yat-sen Memorial Hospital.
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2.2 Model training

Formally, we trained a model, f(g(x;0);¢), where x is a CXR. This model is decomposed into a feature-extractor, g(x;0) =z,
parameterized by 6, and classifier, f(z;¢), parameterized by ¢, where the feature-extractor is responsible for creating an
embedding, z, for a given CXR, and the classifier is responsible for predicting the label from a given embedding. This
representation is helpful in transfer learning settings — frozen feature-extractor models (i.e. models with fixed 0) that have been
pre-trained on large CXR datasets can be used to reduce overfitting when relatively few labeled samples are available.

We fit f(z,) over a dataset, Z = {(x;, y?',, ydomain )1V where each image contains a class label and a domain label.
The class labels are clinically relevant; for example, they describe whether a CXR is from a normal (Normal) patient, a patient
with common pneumonia (Pneumonia), or from a patient that may exhibit novel COVID-19 pneumonia (COVID-19+). The
domain labels are not clinically relevant; they encode information about how the sample was collected, such as the clinical
site and patient cohorts. In our experiments, the domain labels encode which dataset a sample originally came from. An ideal
classifier would not be sensitive to how a sample was collected but would rely on pulmonary features present in the different
types of class labels. However, for the reasons we outline in the Introduction, classifiers can overfit to spurious signals in CXRs
leading to poor generalization to new imagery.

We fit f(z;¢) in two optimization settings: a straightforward baseline setting and a feature disentanglement setting in which
we force the classifier to learn data representations that are not useful in predicting the domain labels, while remaining useful
for predicting the class labels:

Baseline. In this setting, we learned ¢* by minimizing a negative log-likelihood loss, L(§13% y¢l3%$) between the class

gclass class over 2 in a standard setup:

predictions, ¥'**°, and the class labels, y
¢*=argqr>nin Y L(f(g(x):9),y"™) (1)

xyyclass c9

Our hypothesis was that, in this setting, even simple classifiers will overfit to spurious features and exhibit poor generalization
performance.

Feature disentanglement. In this setting we assumed that we can further decompose f into a feature extractor, f,(z; ) = 7,
and two classification heads, f.(z;¢.) = % and f;(7;¢4) = §9°™4" — see Figure 1 for an overview of this setup. We
then follow the methodology proposed in'® for training f in a multi-task setting to transform the initial embedding z into a
compressed form 7’ that is useful for predicting the class label and not useful for predicting the domain label for a given CXR.
Formally, we defined the empirical error with a class loss as above, and an additional domain loss:

E (e, 0c,9a) = Z Le(fe(fe(z (Pe);(ibc)vydass)_A Z La(fa(fe(z; ¢e);¢d)’ydomain) 2)

x7yc1ass c9 x,ydomain c9

Note that the error is defined as the difference between the summed class loss and summed domain loss. Larger loss values
in the second term will contribute to the overall minimization of the total error which influence the model to learn a compressed
representation that is nor predictive of the domain labels. A is a hyperparameter that controls the relative influence of the
domain loss on the error. We optimized for parameters, ¢, according to:

(¢:7 (bc*) = argrq?in E(‘P& ¢c> ¢d) 3)
¢; = arg(;nax E(¢ea¢c»¢d) 4

As described in'?, this can be solved by iterating using gradient-based optimization with an additional “gradient reversal
layer” inserted between f, and f; in the structure of the model (see Figure 1). We considered a modification wherein after
each training epoch we optimize for ¢;, over the whole training set, for the current, fixed values of ¢.. Put simply, we trained
fa(Z;¢4) to convergence at the end of each epoch. As a consequence, the updates to ¢, in the next epoch of training are
done with respect to the domain loss computed at a local minimum for the domain classifier. We found empirically that this
helped reduce variance in results between training runs. This modification is cheap when the parameters of the original feature
extractor remain frozen and the intermediate representations, z, are cached — which was always the case in our experiments.

2.3 Lung masking and histogram equalization preprocessing
Motivated by the same points that we are,'® proposed two preprocessing methods for eliminating signal in CXR imagery that a
classifier might overfit to: lung masking and histogram equalization. Lung masking uses a model to remove the non-lung parts
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Figure 1. Overview of the feature disentanglement modeling approach. We propose to learn a model that simultaneously
predicts the class label and domain label for a given CXR image. The parameters of the model are updated to extract
representations that contain information about the class label but not about domain label.

of CXR images with the assumption that features from the imagery surrounding the lungs should not be used in predictive
models of lung diseases. Histogram equalization is a common technique in computer vision used to improve the contrast of
grayscale images. If histogram equalization is applied to each image in a dataset of CXR image, then a classification model will
not be able to exploit relative differences in the contrast of images in its decisions.

These methods can be used in combination with our proposed method for feature disentanglement. In our experiments we
used the recent SOTA lung VAE model?’ to create lung masks and implementation of histogram equalization from OpenCV?8.

2.4 Experimental setup

Our method depends on a feature extractor model, g(x; ), to create an initial set of embeddings. We considered three different
pre-trained CNNss for this role:

Torchxrayvision pretrained DenseNet121 We used the DenseNet121 model®® weights released in the torchxrayvision pack-
age’%-3!. This model has been trained on CXR imagery, collected before the COVID-19 pandemic, with multi-task
pulmonary disease labels from different datasets. We extracted a 1,024 dimensional feature vector for a given CXR by
applying global average pooling after the last convolutional layer in the DenseNet.

ImageNet pretrained DenseNet121 We also used the DenseNet121 model?® weights from the PyTorch torchvision library32.

This model has been trained on ImageNet, and the only difference in implementation from the torchxrayvision version is
that the first convolutional layer operates over 3 channel images instead of 1 channel images. We duplicated input values
across the 3 input channels in order to run this model on CXR imagery. We extract features from this DenseNet in the
same way as above.

COVID-Net We used the COVID-Net model and the “COVIDNet-CXR Large” pretrained weights from the same repository
that proposed the COVIDX dataset®. We extract a 2,048 dimensional feature vector for an input CXR by applying global
average pooling after the last convolutional layer in the COVID-Net architecture. This is in contrast with the methodology
from??, who flatten the representation after the last convolutional layer to get a 460,800 dimensional representation.

In all experiments we reported average and standard deviation results from 5 x 10-fold cross validation. In Section 3.1 we
stratified by the domain label in order to ensure that there are samples from each dataset in training and testing splits. In Section
3.2 where we report results on the out-of-sample CC-CCII data, we used the out-of-sample data as an additional test set in the
cross-validation folds used to test in-sample performance. Specifically, we split the training set into 10-folds, trained a model
on data from 9 folds, then tested on the held-out fold, as well as the entire out-of-sample dataset.

Our classification problems are all multi-class; we reported an unweighted average of the area under the ROC curve (AUC)
calculated individually for each class in a one-versus-rest manner and average per class accuracy (ACC). Both methods are not
sensitive to the class imbalance which we observe in both our class and domain tasks.
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When using feature disentanglement, we set f,(z) as a fully connected model with the following structure: Dense(256) —
BatchNorm — Dense(64) — BatchNorm, where both dense layers are followed by a ReLU nonlinearity. We set both f.(z)
and f;(7') as logistic regression layers. We trained with the AdamW optimizer using AMSGrad and an initial learning rate of
0.001. We divided the learning rate by a factor of 10 if the validation class loss has stagnated for over 10 epochs and stopped
training either the third time this happens, or after 200 total epochs.

We also decayed A throughout training; we set Ay = 10 and use the following update rule evaluated each epoch (where ¢ is
the epoch) to calculate A:

Ao

1+ (A0 = 1)(50)°

This moves A from Ag to 1 over the course of the maximum 200 epochs of training. We did not thoroughly test this schedule
against other choices. We simply aimed for the domain loss to guide training in the initial epochs of training, and for the class
loss to converge to a local minimum in the later epochs of training.

Finally, all of our experiments are fully reproducible by setting the seed of the random number generators in all component
software packages. We varied this seed over the 5x restarts in our experiments.

A~

3 Experiments and Results

3.1 Identifying domain labels from pre-trained model representations

COVIDx datasets All COVID-19+ samples

Unmasked Images Embedding size AUC ACC AUC ACC

Pixel intensity histogram 256 0.75+0.03 036+£004 083+£0.03 047=+0.07
Torchxrayvision embedding 1024 093+£0.03 0.54+0.09 093£0.03 0.59+0.07
ImageNet embedding 1024 0.95+0.02 0.53+0.07 0.97+0.01 0.66+0.09
COVID-Net embedding 2048 0.89£0.05 0.394+0.05 091+0.03 0.45+0.04
Masked/equalized Images Embedding size AUC ACC AUC ACC

Pixel intensity histogram 256 0.57£0.06 027=£0.06 0.75+£0.02 0.25=+0.04
Torchxrayvision embedding 1024 0.76 £0.05 035+£0.07 0.88+0.02 0.4240.08
ImageNet embedding 1024 0.84 £0.02 0.34+0.04 091+0.02 0.50+0.10
COVID-Net embedding 2048 0.71 £0.04 0.26 £0.04 0.85+0.04 0.35+0.05

Table 2. Results showing how well classifiers can identify which sub-dataset a CXR is from within the COVIDX dataset and
how well classifiers can identify which dataset a “COVID-19+” CXR is from across both the COVIDX and CC-CCII datasets.
We report AUC values as averages of the one-vs-all binary AUCs between all classes, and accuracy (ACC) as the average
accuracy over all classes. We observe that the representations generated by the classifiers, even from masked/equalized inputs,
contain enough information to accurately identify the sources of the imagery in both cases.

In Table 2 we show that all of our existing models extract representations that contain enough information, even when run
on masked/equalized imagery, for discriminating between domain labels throughout the COVIDX dataset, and domain labels
throughout only COVID-19+ samples. For example, we find that a DenseNet121 pre-trained on ImageNet extracts features
from unmasked CXR images that are sufficient to train a logistic regression model that can identify the source dataset among
samples from the COVIDX dataset with a held-out average AUC of 0.95 =+ 0.02. The same embeddings can be used to train a
logistic regression model that can identify the source dataset given COVID-19+ sample, among the constituent datasets of
COVIDX and CC-CCII with a held out AUC of 0.97 & 0.01. While the preprocessing steps help to reduce this performance,
the linear models still perform much better than random guessing, suggesting that overfitting to domain signals in the embedded
representations is trivial.

3.2 Class and domain performance

In Table 3 we show the within-dataset and generalization performance of models, f(z; ), trained on top of the different feature
extractors. Similar to Table 2, the models that are trained in a standard way have high performance on the domain task, and
correspondingly high performance on the actual task labels. At the same time, the poor performance of these models on the
out-of-sample dataset, CC-CCII, shows that they are overfitting to the training dataset. For example, a model trained on
top of torchxrayvision unmasked image embeddings performs similar to random guessing — random guessing performance
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COVIDx CC-CCII

Torchxrayvision Embeddings Task AUC Domain AUC Task AUC Task ACC
Unmasked 097+0.01 094+002 0.55+£0.03 0.34+0.04
Masked/equalized 092+001 085+0.03 0.65+£0.02 0.42=+0.02
Unmasked + Disentanglement 090 +0.03 0.56+0.07 0.68+0.04 0.49+£0.02
Masked/equalized + Disentanglement 0.87 £0.02 053 +£0.06 0.71 £0.03 0.47 +0.02
ImageNet Embeddings

Unmasked 096 £0.01 097+0.02 0.64+0.02 0.37+0.01
Masked/equalized 094 +£001 088=+003 0.67+0.03 041+0.03
Unmasked + Disentanglement 0.85+£003 057+0.07 0.73£0.03 0.43=£0.02

Masked/equalized + Disentanglement 0.85 £0.03 057 £0.04 0.73£0.03 0.46+0.02
COVID-Net Embeddings

Unmasked 096 +0.01 093+0.02 0.59+0.02 0.38+0.01
Masked/equalized 0.89£0.02 0.80+£0.04 0.63+0.02 0.44+0.02
Unmasked + Disentanglement 092+0.02 053+£0.10 0.67+0.03 041+£0.02

Masked/equalized + Disentanglement 0.83 £0.02 0.52+0.07 0.62+0.01 0.45=+0.00

Table 3. Results showing within-dataset class performance, within-dataset domain performance, and out of sample (OOS)
class performance from training models with the COVIDX dataset. The class performance shows how well classifiers are able
to distinguish between ‘“Normal”, “Pneumonia”, and “COVID-19+” disease labels, while the task performance shows how well
classifiers are able to distinguish which constituent dataset an image belongs to. We report AUC values as averages of the
one-vs-all binary AUCs between all classes, and accuracy (ACC) as the average accuracy over all classes. In all cases class
performance (both within-dataset and OOS) is reported from the classifier trained on samples within-dataset, while domain
performance is reported from an additional classifier trained to predict domain labels on top of the learned representations, 7/,
as a measure of how much domain information the representation contains. We observe that using feature disentanglement
decreases within-dataset domain performance as expected, and increases OOS class performance — i.e. improves generalization
performance.

is 0.33 average accuracy, while this model gets 0.34 average accuracy. Lung masking and histogram equalization improves
generalization performance in all cases, however we hypothesize that this may throw out signals that are relevant to the task.

On the other hand, we observe that training f(z; ¢) with feature disentanglement results in better generalization performance
with both unmasked or masked/equalized images in all cases. ImageNet embeddings of masked/equalized images and feature
disentanglement training results in the best generalization performance on CC-CCII. Interestingly, training with feature
disentanglement on masked/equalized images is not always better than training with feature disentanglement on unmasked
images. This supports the idea that lung masking and histogram equalization might throw out relevant task signals. In all
cases, training with feature disentanglement dramatically reduces the domain signal in learned representations. For example,
the domain performance of the model tuned with torchxrayvision embeddings of unmasked images is 0.94 AUC, while using
feature disentanglement reduces this to 0.56 AUC. The increase in performance from training with feature disentanglement
is variable across the pre-trained model used to generate the initial representation. We observe the smallest difference in
generalization performance with the COVID-Net pre-trained model which was initially trained on unmasked images from the
COVIDX dataset — a smaller dataset than either ImageNet or the CXR dataset used by torchxrayvision — and may not function
as an effective feature extractor.

Further experiments are needed to determine if unfreezing the parameters of the feature extractor model during training
with feature disentanglement is beneficial. We specifically avoid this as we have already found that it is possible to overfit to the
training set with a small fully connected model on top of pre-trained embeddings, as well as learn representations that are not
predictive of the within-dataset domain labels. Performance gains of fine-tuning through the feature extractor would only be
potentially visible through increases in generalization performance, i.e. on the CC-CCII dataset. By correlating such design
decisions with CC-CCII performance. We would risk manually overfitting to CC-CClI, and want to avoid doing so in this
work.

3.3 Feature visualization

In Figure 2 we show the UMAP embeddings of the learned feature representations from the models trained on the torchxrayvision
embeddings for images from the COVIDX dataset. This shows how the representations learned without feature disentanglement
clearly separate the images from the RSNA dataset from the images from the other datasets, despite not being trained to do this.
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This is because the RSNA dataset contains most of the samples with “normal” and “pneumonia” disease labels, versus the
other datasets, which contain “COVID-19+" samples. Therefore, when a model is trained to separate these classes, it finds
features that are correlated with which component dataset an image is from. Such biases can be trivial, such as a different in
contrast between the dark and light portions of the image, the position/size of the lungs, markings on the CXR, etc. The same
distinction between datasets is not clear when feature disentanglement is used because the learned representations are forced to
not be predictive of dataset. As a result, the distinction between “COVID-19+” and “pneumonia’ labels becomes less clear
when feature disentanglement is used, however, as we show in Table 3, this can improve the generalization ability of the model.

No Disentanglement Feature Disentanglement

—

* covid-chestxray
- -
3 * Figurel
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@ .
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%) by
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Figure 2. UMAP projections of features learned from models trained with and without feature disentanglement on unmasked
imagery. Each point represents a CXR from the COVIDX dataset. The top row colors points by their domain label — which
subdataset of the COVIDx dataset they are in — while the bottom row colors points by their disease label. We observe that
without feature disentanglement, the learned representations easily separate datasets — despite not being trained for this task —
however, with feature disentanglement, the learned representations do not clearly separate datasets.

4 Discussion

Accurate automated diagnosis of COVID-19 pneumonia based on CXRs has been a research focus since the start of the
pandemic, given its potential use in emergency departments, urgent care, and resource-limited settings. The development of
such devices has been limited by the availability and quality of COVID-19+ datasets, which are typically aggregated from
various sources to increase the number of COVID-19+ examples. In this study we show that previously proposed techniques,
such as isolating the pulmonary region and harmonizing images taken from different x-ray machines, fail to prevent deep
learning models from relying on features that are specific to a particular dataset or image source (e.g. scanner machine type,
age of patient, external artifacts in the image). These models are likely to underperform in real-world clinical settings, when
analyzing images that lack the identifying data the models have learned to rely on.

Since the COVID-19 outbreak, various researchers have developed automated COVID-19 CXR diagnosis models. Most
previous studies have used transfer learning approaches and compared classification performances obtained between several
popular CNN architectures, but all have relied on datasets made up of COVID-19+ CXRs sourced from around the web'2. For
COVID-19 negative cases, data are typically sampled from other open CXR datasets. However, if any bias is present within
these datasets, the model could learn the underlying biases, rather than learning COVID-19 related features. Therefore, we have
presented an application of feature disentanglement for predicting COVID-19 infection even when training on public datasets
containing CXRs from multiple sources. The model showed superior performance when tested on a new and unfamiliar dataset,
suggesting that it was relying on COVID-19 specific pulmonary findings. We applied visualization techniques to show that our
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model relied on imaging features that were not specific to particular groupings of CXR images in the training data, further
suggesting that the model is capable of performing well when analyze CXR data from unfamiliar sources

Although we show that our approach produces a model that is more successful when challenged with real-world data,
our work is still limited by the lack of public datasets available for testing, and we used a private dataset from the CC-CCII
to test generalization performance. Future work should investigate the effects of fine-tuning these models with and without
feature disentanglement approaches, and the effects of controlling for multiple imaging data sources in an expanded multi-task
setting. Finally, when larger CXR datasets that are paired with clinical outcomes become available, further exploration of
the use of feature disentanglement for extracting small sets of clinically relevant features from CXRs should be investigated.
However, the diagnostic performance of any diagnostic model should be carefully evaluated in a real-world setting before
clinical implementation. Misdiagnosis of COVID-19 can lead to inappropriate care, failure to treat, increased transmission,
and many other serious outcomes. Clinicians should be aware of potential limitations and biases when incorporating model
predictions into their clinical assessment.

Finally, our approach has potential clinical applications beyond automated diagnosis. CXR diagnostic models that rely on
relevant pulmonary findings may be also useful for the development of prognostic models, by combining the CXR information
with other clinical and demographic data to predict which patients are at risk for severe disease.
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