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Abstract

For a variety of infectious diseases, the richness of the community of potential host species has emerged as an important
factor in pathogen transmission, whereby a higher richness of host species is associated with a lowered disease risk. The
proposed mechanism driving this pattern is an increased likelihood in species-rich communities that infectious individuals
will encounter dead-end hosts. Mosquito-borne pathogen systems potentially are exceptions to such ‘‘dilution effects’’
because mosquitoes vary their rates of use of vertebrate host species as bloodmeal sources relative to host availabilities.
Such preferences may violate basic assumptions underlying the hypothesis of a dilution effect in pathogen systems. Here,
we describe development of a model to predict exposure risk of sentinel chickens to eastern equine encephalitis virus
(EEEV) in Walton County, Florida between 2009 and 2010 using avian species richness as well as densities of individual host
species potentially important to EEEV transmission as candidate predictor variables. We found the highest support for the
model that included the density of northern cardinals, a highly preferred host of mosquito vectors of EEEV, as a predictor
variable. The highest-ranking model also included Culiseta melanura abundance as a predictor variable. These results
suggest that mosquito preferences for vertebrate hosts influence pathogen transmission.
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Introduction

Greater richness of host species has been associated with

lowered risk of transmission in many studies of vector-borne

pathogens (reviewed in [1,2]). The mechanism underlying these

associations may be either a lowering of competent host density

that accompanies an increase in species richness [3,4] or an

increase in the proportion of ‘‘wasted’’ interactions – interactions

of infectious individuals with noncompetent hosts [4]. Some

researchers refer to the phenomenon of decreased pathogen

transmission with greater species richness as a ‘‘dilution effect’’,

a concept closely related to that of zooprophylaxis [4–8]. Others

reserve use of ‘‘dilution effect’’ strictly for lowered disease risk that

accompanies increased species richness by means of a greater

proportion of abortive interactions [4,9].

Despite the evidence of dilution effects (in the broader sense),

whether or not they are characteristic of all vector-borne diseases

is currently a topic of debate in disease ecology [4,8]. One

argument against the ubiquity of dilution effects pertains to

whether host reservoir competence is related to numerical

dominance of the host. A dilution effect is expected for a pathogen

system if the loss of biodiversity is accompanied by the removal of

species that are poor reservoir hosts, leaving a more concentrated

pool of competent hosts [2]. However, empirical evidence of such

a relationship between numerical dominance and reservoir

competence is currently lacking [9].

Other arguments against the generality of dilution effects for

vector-borne disease pertain to vector ecology. For example,

increases in abortive transmission events that accompany increases

in species richness may be offset by increases in vector

abundances, and this factor was not considered in initial dilution

effect models [4,9]. High variability in vector preferences for

individual host species may also invalidate assumptions that

underlie the dilution effect relationship between species richness

and disease risk, and this variability has been invoked as a possible

explanation for failure to detect a dilution effect in one study of

mosquito-borne pathogen transmission [10].

A better understanding of the ubiquity of dilution effects in

vector-borne pathogen systems is important both to advance

a better conceptual framework for disease ecology, and to develop

better predictive models of disease risk at specific locations.

Advances in remote sensing technologies over the past 20 years,

combined with an increased sophistication of occupancy modeling

approaches, have allowed for more accessible and accurate maps

of vertebrate distributions [11–13]. This increased availability of

vertebrate distribution maps provides researchers with greater
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opportunities for using vertebrate community attributes to develop

models to predict vector-borne diseases. Greater knowledge of the

pathogen systems for which dilution effects are expected would

identify host species richness as a candidate predictor with strong

support for inclusion in model development for some pathogen

systems, and at the same time, highlight pathogen systems where

other attributes of the vertebrate community serve as better

predictors of disease risk.

Alternative variables that may be derived from vertebrate

distribution maps and may be potentially useful for predicting

disease risk in lieu of host species richness are abundances of focal

host species implicated in transmission. For example, in a study of

transmission of West Nile virus (WNV; a pathogen that typically

cycles between birds and mosquitoes) that found little support for

a dilution effect, densities of focal host species were the primary

factor identified as influencing disease risk [14]. The focal avian

host species that were found to be influential were species assumed

to be ‘‘high amplification hosts’’, given field estimates suggesting

that they had high amplification fractions (Fi) relative to other

species. Amplification fraction (Fi) is calculated for host species i as

the product of its relative abundance (Bi), its selection index, i.e., its

rate of use by mosquitoes as a bloodmeal source controlled for its

availability relative to other host species (Pi), and its reservoir

competence (Ci), i.e. Fi = Bi*Pi*Ci [15]. Despite its practical

implications, the extent to which host species serve as better

predictor of disease risk than host species richness in the specific

cases of vector-borne pathogens wherein mosquitoes serves as the

vectors is relatively unknown.

Here, we report the development of a spatially-explicit model

for risk of exposure to eastern equine encephalomyelitis virus

(EEEV) in sentinel chickens between 2009 and 2010 in Walton

County, Florida. EEEV is among the rarest of the North American

encephalitides but is of public health concern in the United States

because of the risk it poses to humans and horses [16]. EEEV has

a complex life cycle that involves multiple vertebrate reservoir

hosts, primarily avian species, and vector mosquitoes [17,18]. As

such, avian species richness could play an important role in

transmission of the virus. Our goals in this analysis were to

determine the relative strength of evidence for an influence of

avian species richness with risk of EEEV exposure in the

southeastern United States compared to abundance of potentially

influential individual host species and to develop a simple

predictive model of EEEV exposure risk.

Our analysis focused specifically on EEEV exposure risk in

sentinel chickens (Gallus domesticus), which are routinely used in

surveillance for EEEV and play an important role in Early

Warning Systems. Seroconversions of sentinel chickens to EEEV

antibodies are associated with of EEEV infections in humans

[19,20]. Thus, a model predicting rates of EEEV exposure risk in

chickens has the potential to be an important tool for predicting

eastern equine encephalitis (EEE) risk to humans and horses at

locations over broad geographic areas.

We used a multi-model inference approach to develop models

of EEEV exposure risk in sentinel chickens during 2009 and 2010.

Our decision to use multi-model inference reflects a paradigm shift

currently underway in the fields of ecology and evolution (among

others) away from null-hypothesis testing towards an analytical

approach that considers multiple, competing hypotheses repre-

sented by statistical models [21–24]. We used a narrow set of

plausible predictor variables in model development of EEEV

exposure risk in sentinel chickens in an effort to minimize the risk

of an unimportant variable occurring in our final selected model

given our limited sample size [22].

We first considered the potential influence of avian species

richness on EEEV exposure risk in sentinel chickens. To predict

a dilution effect of avian species richness on EEEV transmission,

we predicated our analysis on a set of simple assumptions.

Following the classic understanding of EEEV transmission

dynamics described by Scott and Weaver [18], we assumed that

Culiseta melanura is the primary enzootic mosquito vector of the

virus, that Cs. melanura is strictly ornithophilic and exhibits no host

preferences when feeding on birds, and that only birds transmit

EEEV to Cs. melanura. Recent research suggested deviation from

some of these simple assumptions regarding the EEEV system

[25–28], but these assumptions are broadly reasonable for the

EEEV system and enable us to proceed with our efforts to predict

virus transmission.

We next considered the influence of individual avian host

species in model development. We used the densities of European

starlings (Sturnus vulgaris) and northern cardinals (Cardinalis

cardinalis) as candidate predictor variables in development of

a model of EEEV exposure risk in chickens because both of these

species potentially serve as high amplification hosts for EEEV.

Data on the reservoir competences and selection indices of avian

host species are available from only two studies [28,29], and are

limited to in the number of species for which such estimates exist.

Nonetheless, northern cardinals and European starlings stand out

as potential high amplification hosts. European starling is an

invasive species in North America that has been shown to have the

highest reservoir competence amongst all species tested in

experimental inoculations with the virus [29]. We unfortunately

do not have estimates of the selection index for this species. Thus,

this species was considered to be potential high amplification host

on the basis of its high reservoir competence alone. Similarly, we

identified northern cardinal Cardinalis cardinalis, the second avian

host species whose densities we considered in model development,

on the basis of only one characteristic: its selection index. Northern

cardinal was the only species present on study plots in the current

study that was also identified as highly preferred host species of

Culiseta melanura in a previous study [28]. Thus, we included

northern cardinal density in model development given its strong

likelihood of being a high amplification host because if its high

attractiveness to Culiseta melanura.

In addition to contributions of avian community components,

we also considered the influence of EEEV vector abundances on

EEEV exposure risk in sentinel chickens. Specifically, we

considered the influence of the abundance of Culiseta melanura–

the putative primary enzootic vector of EEEV in North America –

in model development. Because of their ornithophilic feeding

habits and vector competences for the virus, Culex restuans, Culex

nigripalpus, and Culex erraticus, have recently been proposed to

influence enzootic transmission of EEEV, in addition to Cs.

melanura [25,26,30,31]. However, these proposed mosquito vectors

all have lower vector competences than Cs. melanura for EEEV [30]

and act more as generalists in their vertebrate feeding patterns

than Cs. melanura, which feeds almost exclusively on birds

[27,28,32]. As such, we expected that a unit change in the

abundance of Cs. melanura would exert the greatest net change on

EEEV exposure risk in birds, such that it was the candidate

mosquito species with the most support for inclusion in model

development.

Materials and Methods

Ethics Statement
Care of chickens at sentinel sites followed husbandry guidelines

detailed by the Florida Department of Health [33]. These chickens
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are used for public health surveillance activities and are

maintained by the county mosquito control districts. Blood was

drawn from these chickens weekly as part of routine surveillance

activities and not specifically for this study. Sentinel chicken

monitoring conducted by these districts does not qualify as

research, testing, or experimentation and thus does not require

ethics committee approval [34]. We acquired permission from

landowners to access sites for avian point-count surveys on private

property.

Data Collection
We collected data on the frequency of EEEV seroconversions in

sentinel chickens as part of the North and South Walton County

Mosquito Control Districts arbovirus surveillance programs. In

total, we monitored 26 sentinel chicken flocks in 2009 and 2010

(Figure 1). Sentinel flocks were originally established as part of

a statewide program for monitoring of St. Louis encephalitis virus

(SLEV) in Florida in the late 1970s [19]. Although sentinel flock

locations were chosen to optimize the success of that particular

monitoring program, sentinel flocks are now used for routine

surveillance for a range of arbovirus including EEEV and WNV.

Blood samples drawn weekly from sentinel chickens were tested for

the presence of EEEV neutralizing antibodies via hemaglutinnin

inhibition and serum neutralization assays [35]. EEEV-positive

chickens were removed from sentinel flocks following a positive

test result and replaced with naı̈ve chickens. The number of

chickens monitored at sentinel sites varied between 2 and 6

(mean = 3.75, median = 3), with number of chickens monitored at

individual sentinel sites held constant over the course of this study

(Table S1). Constraints on the size of sentinel flocks included the

number of chickens that can be successfully monitored by one full-

time technician and the size of cages permitted on private

properties.

We quantified Cs. melanura abundance at the sentinel sites.

These data originated from overnight collections of mosquitoes

from New Jersey light traps and CDC light traps baited with CO2

located directly adjacent to each sentinel site location between

April and October of 2009 and 2010. Collected mosquitoes were

stored on wet ice for transport to district laboratories and were

then identified using standard morphological keys [36]. We used

the average number of Cs. melanura collected during the April-

October period in 2009 and 2010 at each trap as the Cs. melanura

abundance candidate predictor variable in model development

described below. Culiseta melanura abundance averages across both

2009 and 2010 were used as overall abundance estimates because

there was no evidence to suggest that the ranking of sites in order

of Cs. melanura abundances differed between these years (Spearman

Rank Test, rS = 0.56, p = 0.004; Figure 2).

We quantified the avian communities surrounding sentinel sites

using point-count surveys [37]. These avian surveys were

conducted at 96 sites, with quartets of avian survey sites clustered

around sentinel chicken flock sites. Specifically, individual avian

survey sites in the quartet surrounding each sentinel flock were

located at regular intervals along the perimeter of a buffer zone

with radius-length 250 meters centered on the flock and the

angular offset from north of each buffer randomized between 0 and

90 degrees. Point counts were not conducted directly next to

sentinel cages due to interference from the chickens. A single

observer trained in the vocal and visual identification of avian

species that breed in southeastern United States visited survey sites

between 0500 and 1000 EDT of June 2010. Each visit was divided

into five 3-minutes during which species identification of all birds

seen or heard within 100 m of the observer were recorded. We

used this sampling protocol to keep our avian survey results

consistent with the sampling scheme of a larger study of avian

habitat associations, the results of which will be reported

elsewhere. For this study, we estimated avian species richness at

a sentinel site as the sum across all four surrounding survey sites

and all 3-minute sessions, with species that were detected more

than once only represented in counts once. We used the average

densities across the four surrounding survey sites to estimate

European starling and northern cardinal densities at each sentinel

site.

Model Development
We conducted our analysis in a multi-model inference

framework [21–24], specifying a candidate set of general linear

models for EEEV exposure risk in the sentinel chickens. Our

measure of EEEV exposure risk was EEEV seroconversion

incidence rate in the chickens: the ratio of the number of chickens

that seroconverted at a site over the two-year study period to the

chicken-time at risk, i.e. the product of number of chickens

monitored at any one time at the site and 104 weeks. Mosquito

and avian survey data were available for 24 of the original 26

sentinel sites monitored, such that we used this subset of the full set

of 26 sentinel sites in model development.

The candidate model for seroconversion incidence rate in each

year set consisted of fifteen models representing all possible

combinations of four candidate predictor variables: avian species

richness, European starling density, northern cardinal density, and

average Cs. melanura abundance (2009–2010). We additionally

included an intercept-only model in the candidate model set,

whereby the mean response was modeled as constant across all

sentinel sites. All predictor variables were standardized to have

zero-means and standard deviations equal to unity.

We weighted candidate models by the difference in their bias-

corrected Akaike Information Criterion (AICc, [38]) from that of

the top-ranked model, i.e. the one with the lowest AICc. We based

inference on weights assigned to individual models in the

candidate set, and exclusion of zero in the 95% unconditional

confidence intervals [UCIs] for coefficients of predictor variables,

as averaged over all models in the candidate set. Models with

AICc values within two units of the AICc of the top-ranked model

were considered to be models with strong support [22]. Variables

with coefficient 95% UCIs that excluded zero were inferred to be

useful for prediction of EEEV exposure risk [22].

Results

A total of 68 chickens seroconverted from a status of naive to

positive for EEEV antibodies in 2009 across the 24 sites used in

our analyses; 48 seroconverted in 2010 (Table S1). The average

EEEV seroconversion incidence rate observed across all 24

sentinel sites was 0.013 seroconversions/chicken-week (medi-

an = 0.010, min = 0.000, max = 0.058) in 2009. Incidence rates

of seroconversions in chickens during 2010 averaged 0.009

seroconversions/chicken-week (median = 0.008, min = 0.000,

max = 0.032).

Culiseta melanura was present at 21 of the 24 sentinel sites for

which mosquito data were available for the period of April-

October of 2009 and was present at 22 of these sites in 2010.

Average mosquito abundance across all sites was 3.23 individuals/

trap-night (median = 1.02, min = 0.00, max = 12.16) in 2009 and

6.15 individuals/trap-night (median = 2.33, min = 0.00,

max = 45.59).in 2010 (Table S2).

Individuals from 60 avian species were detected during point-

count surveys, 38 of which were passerine species. Average avian

species richness across all 24 sentinel sites was 22.83 (median = 21,

EEEV Risk Increases with Northern Cardinal Density
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min = 14, max = 41). The most common species detected were

mourning dove Zenaida macroura and northern cardinal Cardinalis

cardinalis, both of which occurred at all sites (Table S3). Blue jay

Cyanocitta cristata, and Carolina wren Thryothourus ludovivianus

occurred at all but one of the sentinel sites, and northern

mockingbird Mimus polyglottis occurred at all but two. The rarest

species, each detected at only one site, were black vulture Cyoragyps

atratus, cliff swallow Petrochelidon pyrrhonota, house sparrow Passer

domesticus, northern flicker Colaptes auratus, yellow-breasted chat

Icteria virens, and yellow-throated vireo Vireo flavifrons. European

starling occurred at 16 sites (Table S2). European starling density

averaged 2.19 birds/km2 (median = 1.59, min = 0.00, max = 9.55)

and the mean density of northern cardinal across all sentinel sites

was 26.79 birds/km2 (median = 24.67, min = 6.37, max = 65.25).

The model of EEEV exposure risk in sentinel chickens that had

the strongest support included one predictor: northern cardinal

density (Figure 3). One other model had strong support, i.e.

DAICc ,2; it included northern cardinal density and Cs. melanura

abundance as predictor variables (Table 1, Figure 4).

The model-averaged estimate for the coefficient of northern

cardinal density in the EEEV exposure risk model was positive

(0.007) with an unconditional standard error (USE) = 0.002. We

inferred this variable to be useful for predictive model de-

velopment given exclusion of zero from its 95% UCI:

[0.0025,0.0107]. The coefficient estimate for Cs. melanura abun-

dance was also positive: 0.0028 (USE = 0.0020), as was the

coefficient estimate for avian species richness: 0.0016

(USE = 0.0024). The coefficient estimate for European starling

density was negative: 20.001 (USE = 0.0022); however, we

inferred neither Cs. melanura abundance, avian species richness,

nor European starling density to be useful for prediction, given

that their estimated coefficient 95% UCIs included zero:

[20.0012, 0.0068], [20.0032, 0.0063], [20.0049, 0.0037], re-

spectively (Table 2).

Results of diagnostic tests of the final predictive model of 2009–

2010 EEEV exposure risk in sentinel chickens, i.e. that which

included northern cardinal density as a predictive variable,

indicated general compliance with standard regression assump-

tions [39]: We detected no discernible patterns in residual plots.

The null hypothesis of homoscedasticity of error variance was not

rejected using the Breusch-Pagan test (BP = 3.83, df = 1, p.0.05).

The deviance residuals of this model were not spatially auto-

correlated (Moran’s I=20.03, p.0.05). However, assessment of

the influence of points on regression coefficients estimates and

model fitted values using the criteria of and DFFITS, Cook’s

distance, and DFBETAS measures revealed one potentially

influential point. The first two of these measures assesses the

influence of an observation on its fitted values and overall model

fit, respectively, and DFBETAS assesses the influence of observa-

tions on coefficient estimates [39]. The point that was inferred to

be highly influential based on these diagnostics was from a site

where chickens had the highest EEEV exposure risk. This point

Figure 1. Walton County, Florida. Circles represent sentinel traps locations, where turquoise represents sites where EEEV exposure risk in sentinel
chickens #0.010 seroconversions/chicken-week (median seroconversion incidence rate) and pink represents sites where EEEV exposure risk .0.010
seroconversions/chicken-week. Yellow star shows location of DeFuniak Springs, the Walton County seat. Subsetted image shows the location of
Walton County within the state of Florida.
doi:10.1371/journal.pone.0057879.g001

Figure 2. Association between annual Culiseta melanura abun-
dances. Scatterplot showing the relationship between Cs. melanura
abundance from April to October 2009 at 24 sentinel sites in Walton
County, Florida with Cs. melanura abundance from the same sentinel
sites and the same sampling period during 2010. Abundances from the
two years are highly correlated (Spearman Rank Test, rS = 0.63,
p = 0.001). The best-fit line from simple linear regression is overlaid.
doi:10.1371/journal.pone.0057879.g002

Figure 3. Association between EEEV exposure and northern
cardinal density. Scatterplot showing the relationship between EEEV
exposure risk in chickens during 2009 and 2010 and northern cardinal
density at 24 sentinel sites in Walton County, Florida. The estimate for
the slope of exposure risk regressed on northern cardinal density was
0.006 with a 95% UCI of [0.0025, 0.0107]. This estimated slope, when an
influential observation (indicated by the arrow) was removed from the
dataset, was 0.004 [20.001, 0.009]. The best-fit line from simple linear
regression of exposure risk residuals on northern cardinal density are
overlaid, with the solid line fit to the full dataset, and the dashed line fit
to the dataset that excluded the influential observation.
doi:10.1371/journal.pone.0057879.g003
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had a DFFITS value of 1.51 and a DFBETAS value of 1.43, both

of which are above the standard cutoff criterion of 1for small

datasets, and a Cook’s distance value of 1.03, which also exceeds

the criterion for classification as an influential observation [39].

There was no reason to discard the influential observation from

the analysis despite its potentially high influence, as no errors in

data entry were associated with this point upon further checking.

Nonetheless, we repeated model development excluding this point

from the dataset, as is recommended in such circumstances [39],

towards the goal of a thorough presentation of modeling results.

Inference based on model selection and parameter estimates using

this reduced dataset were similar to that using the full dataset,

whereby the top-ranked model included northern cardinal as the

sole predictor variable (Table 1). None of the predictor variables

considered in model development were inferred to be useful for

prediction of EEEV exposure rates using this reduced dataset.

However, signs of the coefficients of variables, and well as the rank

of variables in terms of their importance weights were also

consistent with the results of analysis of the full dataset (Table 2).

Discussion

Vertebrates play integral roles in the transmission of vector-

borne pathogens either enhancing or reducing pathogen cycling in

natural communities [40]. In recent research on the role of

vertebrate hosts in vector-borne disease, two competing hypoth-

eses have emerged. The dilution effect hypothesis proposes that

the entire community of vertebrate hosts collectively shapes disease

risk and thus that indices of species diversity can be used to

characterize disease risk [5–7]. The alternative hypothesis is that

the abundance of individual species, or subsets of species, of the

vertebrate host community determine disease risk [14]. Our

analysis of these two competing hypotheses in a mosquito-borne

pathogen system revealed strong support for the latter. We found

evidence that the abundance of one preferred host of a primary

vector of EEEV, the northern cardinal, determined pathogen

exposure risk in sentinel chickens in the EEEV system.

A strong influence of specific vertebrate hosts has also been

found in studies of transmission of West Nile virus, another

Figure 4. Association between EEEV exposure and Cs. melanura
abundance. Added-variable plot showing the relationship between
EEEV exposure risk in chickens during 2009 and 2010 and Culiseta
melanura abundance at 24 sentinel sites in Walton County, Florida. The
estimate for the slope of EEEV exposure risk regressed on Cs. melanura
was 0.0028 with a 95% UCI of (20.0012, 0.0058). Cs. melanura
abundance residuals = residuals from regression of northern cardinal
density on Cs. melanura abundance, EEEV exposure risk residuals = re-
siduals from regression of EEEV exposure risk residuals on Cs. melanura
abundance. The best-fit line from simple linear regression of EEEV
exposure risk residuals on northern cardinal density residuals are
overlaid, with the solid line fit to the full dataset, and the dashed line fit
to the dataset that excluded the influential observation shown in
Figure 3.
doi:10.1371/journal.pone.0057879.g004

Table 1. Attributes of highest-ranking models in candidate
set used in spatial modeling of EEEV exposure risk in sentinel
chickens in Walton County, Florida in 2009 and 2010.

Model log(L) AICc K Di wi

NOCA 80.52 2153.84 3 0.00 0.36

mel+NOCA 81.66 2153.21 4 0.63 0.26

avian+NOCA 80.64 2151.17 4 2.67 0.09

EUST+NOCA 80.59 2151.07 4 2.77 0.09

avian+mel+NOCA 82.08 2150.82 5 3.02 0.08

EUST+mel+NOCA 81.66 2149.99 5 3.86 0.05

avian+EUST+NOCA 80.75 2148.18 5 5.67 0.02

avian+EUST+mel+NOCA 82.10 2147.26 6 6.59 0.01

avian 76.83 2146.46 3 7.39 0.01

null 75.22 2145.87 2 7.97 0.01

avian+EUST 77.72 2145.34 4 8.50 0.01

EUST 75.93 2144.65 3 9.19 0.00

avian+mel 77.37 2144.63 4 9.21 0.00

mel 75.27 2143.35 3 10.50 0.00

avian+EUST+mel 78.15 2142.98 5 10.87 0.00

EUST+mel 75.94 2141.78 4 12.06 0.00

NOCA 78.34 2149.41 3 0.00 0.18

null 76.76 2148.92 2 0.49 0.14

mel+NOCA 79.47 2148.72 4 0.69 0.13

avian 77.76 2148.26 3 1.15 0.10

avian+mel 78.92 2147.62 4 1.79 0.07

mel 77.18 2147.10 3 2.31 0.06

avian+NOCA 78.61 2147.00 4 2.41 0.05

EUST 77.08 2146.89 3 2.52 0.05

avian+mel+NOCA 80.19 2146.85 5 2.56 0.05

EUST+NOCA 78.42 2146.61 4 2.80 0.04

avian+EUST 78.21 2146.20 4 3.21 0.04

EUST+mel+NOCA 79.48 2145.42 5 3.99 0.02

avian+EUST+mel 79.24 2144.95 5 4.46 0.02

EUST+mel 77.41 2144.60 4 4.81 0.02

avian+EUST+NOCA 78.78 2144.04 5 5.37 0.01

avian+EUST+mel+NOCA 80.23 2143.22 6 6.19 0.01

Models described below the dotted line are those that were developed using
the dataset that excluded an influential observation.
AICc = bias-corrected Akaike Information Criterion.
K = no. parameters estimated.
Di = difference in AICc from the model that minimized the AICc.
wi = AICc weight.
Variable names: mel = Cs. melanura abundance, avian = avian species richness,
EUST = European starling density, NOCA=northern cardinal density.
doi:10.1371/journal.pone.0057879.t001
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mosquito-borne pathogen system. The American robin (Turdus

migratorius) is the species most frequently identified as contributing

to transmission of West Nile virus both because it is a highly

preferred host and has relatively high reservoir competence [41–

44]. However, other studies of this system have also found strong

evidence for dilution effects, whereby increasing avian species

richness is associated with reduced disease risk [45–47]. Thus,

more studies are needed to determine whether the effect on of

a single dominant species on EEEV pathogen transmission is

stronger than the total composition of the avian community such

as we found in this study.

Although our analysis revealed that the risk of EEEV exposure

in sentinel chickens was strongly affected by the abundance of

northern cardinals, the exact mechanism that underlies this

association is still unclear. We based our hypothesis of a potential

influence of northern cardinal abundance on two observations: 1)

cardinals would qualify as a ‘‘high amplification’’ species in

communities with uniform relative abundances of avian hosts and

2) the abundances of host species that met this same criterion in

studies of WNV were associated with disease risk [15]. Species

with high amplification fractions are the same species that would

be expected to have the greatest change in the relative R0 (R0, rel),

the increase in the pathogen reproductive ratio due to heteroge-

neity in vector feeding and reservoir competences of hosts,

associated with changes in its relative abundance [41]. This

pattern emerges because the amplification fraction ultimately

reduces to Fi =Bi
2*Ci, whereby Ci is host reservoir competence and

Bi is the proportion of bloodmeals derived from host species i [42].

For each host species, Bi
2*Ci is divided by its relative abundance to

determine its individual contribution to (R0, rel), such that species

with large values for this product (i.e. larger amplification

fractions), will make greater contributions to (R0, rel) per unit of

relative abundance than those with small amplification fractions.

In the case of WNV, R0, rel is associated with pathogen

transmission at multiple study sites [41]. Thus, by extension, the

relative abundances of species with large amplification fractions

may contribute the most to variation in pathogen transmission by

dominating spatial variability in R0, rel.

The relative abundance of northern cardinals was strongly

associated with northern cardinal density in this study (post-hoc

analysis: rS = 0.52, p,0.001), so the observed association between

northern cardinal density and EEEV exposure risk is confounded

by cardinal abundance. Additionally, although the reservoir

competence of northern cardinal in a laboratory study was above

average compared to other species tested, this species differed

more in terms of attractiveness to Cs. melanura compared to other

host species than it did terms of reservoir competence based on

percentile ranks (0.76 and 0.60, respectively) [28,29]. The

attractiveness of northern cardinals to EEEV vectors, rather than

reservoir competence of northern cardinals, may be responsible for

the association between northern cardinal density and EEEV

exposure risk in sentinel chickens.

Identification of the mechanism driving the positive relationship

we observed between northern cardinal density and EEEV

exposure risk clearly warrants further research. Our results suggest

that northern cardinal density may be useful for predicting EEEV

exposure risk among sentinel chickens in Florida. Florida has

reported the highest number of human and equine cases of EEEV

in the North America over the past half-century [48]. If the rate of

exposure in sentinel chickens covaries with the rate of exposure in

humans and other mammals, then models such as ours, based on

assessment of bird communities, could be used to make decisions

about EEEV control measures within the state of Florida.

Culiseta melanura has long been hypothesized to be the primary

enzootic vector of EEEV [14,15], and our results lend support to

this hypothesis. The abundance of Cs. melanura emerged as

a predictor variable in one of the two models that had strong

support. Additionally, Cs. melanura had the second highest

importance weight of the four variables considered in model

development. However, Cs. melanura abundance was not inferred

as a variable useful for prediction of EEEV exposure rates in

sentinel chickens. Thus, these observations suggest that the

influence of Cs. melanura abundance on EEEV transmission has

the potential to be obscured by variability in northern cardinal

abundances in spatial analyses of EEEV disease risk. Additionally,

an association between EEEV exposure risk and Cs. melanura

abundance may have been obscured by measurement error

present in the Cs. melanura abundance data due to the use of two

different mosquito trap types used throughout the study area.

This study is based on a limited number of sampling sites, such

that we considered only the most biologically reasonable variables

for which data were available in model development. Un-

Table 2. Importance weights and results of model averaging for predictor variables in spatial modeling of EEEV exposure risk in
sentinel chickens in Walton County, Florida in 2009 and 2010.

Model-averaged Weighted 95% Confidence Interval Importance

Variable Estimate Unconditional SE Lower Upper Weight

Intercept 0.0113 0.0019 0.0075 0.0150 1.00

NOCA 0.0066 0.0021 0.0025 0.0107 0.97

mel 0.0028 0.0020 20.0012 0.0068 0.41

avian 0.0016 0.0024 20.0032 0.0063 0.23

EUST 20.0006 0.0022 20.0049 0.0037 0.19

Intercept 0.0102 0.0019 0.0065 0.0140 1.00

NOCA 0.0040 0.0025 20.0010 0.0090 0.50

mel 0.0025 0.0020 20.0015 0.0064 0.38

avian 0.0025 0.0022 20.0017 0.0068 0.36

EUST 20.0011 0.0021 20.0051 0.0029 0.21

Results below the dotted line are based on the development of models using the dataset that excluded an influential observation.
Variable names: mel = Culiseta melanura abundance, avian = avian species richness, EUST = European starling density, NOCA=northern cardinal density.
doi:10.1371/journal.pone.0057879.t002
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fortunately, however, the small sample size of this study precluded

us from considering a wider range of variables that may influence

EEEV transmission. For example, mosquito species other than Cs.

melanura found in Walton County (detailed recently in [49]) may

play a role in EEEV transmission [25,26,30,31]. Supplementary

evidence of high seroprevalences of EEEV in both Cs.melanura and

northern cardinal populations in the study area relative to other

species would also be useful to confirm results of this study. Also,

the limited number of sentinel sites prohibited us from splitting the

dataset to create a validation dataset. Nonetheless, this study

provides important insight in supporting for a role of northern

cardinal density in predicting EEEV exposure risk. Such insight

will be important in informing model development in future

studies investigating patterns of occurrence of EEE in humans and

horses, and concurrently, provides evidence counter to a dilution

effect in mosquito-borne pathogens systems.
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