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Abstract: Glaucoma is a group of optic neuropathies that leads to irreversible vision loss. The optic
nerve head (ONH) is the site of initial optic nerve damage in glaucoma. ONH-derived lamina cribrosa
(LC) cells synthesize extracellular matrix (ECM) proteins; however, these cells are adversely affected
in glaucoma and cause detrimental changes to the ONH. LC cells respond to mechanical strain by
increasing the profibrotic cytokine transforming growth factor-beta 2 (TGFβ2) and ECM proteins.
Moreover, microRNAs (miRNAs or miR) regulate ECM gene expression in different fibrotic diseases,
including glaucoma. A delicate homeostatic balance between profibrotic and anti-fibrotic miRNAs
may contribute to the remodeling of ONH. This study aimed to determine whether modulation of
miRNAs alters the expression of ECM in human LC cells. Primary human normal and glaucoma LC
cells were grown to confluency and treated with or without TGFβ2 for 24 h. Differences in expression
of miRNAs were analyzed using miRNA qPCR arrays. miRNA PCR arrays showed that the miR-
29 family was significantly decreased in glaucomatous LC cell strains compared to age-matched
controls. TGFβ2 treatment downregulated the expression of multiple miRNAs, including miR-29c-
3p, compared to controls in LC cells. LC cells transfected with miR-29c-3p mimics or inhibitors
modulated collagen expression.

Keywords: optic nerve head; ONH; LC cells; miRNAs; miR-29; ECM

1. Introduction

The glaucomas are a heterogeneous group of optic neuropathies defined by an irre-
versible loss of vision. The cellular and molecular pathophysiology of glaucoma is complex,
as multiple factors contribute to the etiology; however, a universal characteristic of all
glaucomas is damage to the optic nerve head (ONH) and degeneration of retinal ganglion
cell (RGC) axons.

Primary open-angle glaucoma (POAG) is the most prevalent subtype of glaucoma.
Although it is a multifactorial disease, elevated intraocular pressure (IOP) is a strong risk
factor for POAG development [1–3]. Electron micrographs from glaucoma donor eyes
reveal the earliest detectable damage is at the lamina cribrosa (LC) of the ONH [4]. The LC
is a distinct region of the ONH formed by successive, connective tissue plates that provide
essential scaffolding and pores for unmyelinated RGC axons. The connective tissue plates
are composed of extracellular matrix (ECM) macromolecules including collagen, elastin,
proteoglycans and glycoproteins, which together provide the strength and elasticity of
the LC [5–7]. The glaucomatous LC has notably increased collagen type IV deposition as
well as disorganization of collagen type I fibrils and fragmentation of elastin [8–14]. A
weakened LC can lead to excessive forces acting on RCC axons resulting in degeneration
and RGC apoptosis.

Besides RGC axons, there are two major cell types in the ONH—ONH astrocytes and
LC cells [15,16]. LC cells are mechanosensitive cells that interact with the surrounding
ECM [17] and respond to mechanical strain by upregulating gene expression of growth
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factors, including transforming growth factor-beta 2 (TGFβ2) and ECM proteins such
as collagen type IV [15]. Our research group and others have shown that expression
of TGFβ2 is higher in glaucomatous LC tissue compared to normal age-matched con-
trols [18,19] and is implicated in altered gene expression and increased ECM deposition
in glaucoma [12,15,18,20]. Cultured LC cells secrete TGFβ2 and respond to exogenous
TGFβ2 by activating the canonical Smad signaling pathway that increases the synthesis
and secretion of ECM proteins [18], suggesting that these cells have an active role in the
pathological remodeling of the glaucomatous LC. Mechanical stretch of cultured LC cells
increases TGFβ2 expression [15].

We aimed to further explore the mechanisms involved in regulating ECM gene and
protein expression in LC cells. microRNAs (miRNAs or miR) are non-coding regulatory
RNAs that mediate post-transcriptional regulation of protein-coding genes, including the
ECM. miRNAs are tightly regulated to maintain homeostasis; however, their expression
is altered in fibrotic diseases, including glaucoma [21,22]. Furthermore, the expression of
miRNAs is sensitive to growth factor signaling, including TGFβ [23]. TGFβ activation
of SMADs, cofactors, and transcription factors can lead to transcriptional activation or
inhibition of miRNA genes. For example, TGFβ signaling induces differentiation of my-
oblasts to myofibroblasts via SMAD3 binding to the miR-29 promoter and subsequent
downregulation of miR-29 expression [24]. miRNAs can also be modulated at the post-
transcriptional level by R-SMAD proteins, which recruit and interact with members of the
miRNA processing complex, DROSHA and p68, and enhance cleavage of pri-miRNAs
to mature miRNAs [25]. Therefore, miRNAs are important for achieving homeostatic
regulation of TGFβ signaling.

Since TGFβ signaling can directly influence the expression of miRNAs and miRNAs
regulate the translation of proteins, we hypothesized that TGFβ2 deregulates miRNA
expression in LC cells and contributes to LC ECM remodeling. In this study, we used
miRNA PCR arrays to determine miRNA expression in glaucomatous and TGFβ2 treated
LC cells compared to control LC cells. We also evaluated the effects of miR-29 on collagen
type I and IV expression in LC cells.

2. Results
2.1. Differentially Expressed miRNAs in POAG and TGFβ2 Treated LC Cells Compared to
Non-Glaucomatous Control LC Cells

We isolated and characterized primary LC cells from POAG and non-glaucomatous
eyes. The expression of 88 miRNAs were analyzed in non-glaucomatous and POAG LC
cell strains (Figure 1A; Supplementary Table S1). A volcano plot identified differentially
expressed profibrotic or anti-fibrotic miRNAs with statistically significant differences in
expression (Figure 1). Of these, seven were significantly differentially expressed compared
to age-matched non-glaucomatous cells. Hsa-miR-150-5p, hsa-miR-338-5p, hsa-miR-382-
5p, and hsa-miR-451a were significantly upregulated in POAG LC cells compared to
non-glaucomatous LC cells (n = 3; p < 0.05). Hsa-miR-26b-5p, hsa-miR-29a-3p, and hsa-
miR-29c-3p were downregulated in POAG LC cells compared to non-glaucomatous LC
cells (n = 3; p < 0.05).
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Figure 1. Analysis of differentially expressed mature miRNA in LC cells. Volcano plots of fibrosis pathway-related
miRNAs in (A) normal and glaucoma primary human LC cells, or (B) normal human LC cells treated with or without
TGFβ2 for 24 h. Upregulated miRNAs are shown in red to the right, and downregulated miRNAs are shown in green
to the left. The horizontal bar indicates the threshold significance of p < 0.05. miRNAs were considered significantly
upregulated/downregulated if they passed the threshold significance of p < 0.05 (horizontal line). (C) Expression of
the miR-29 family in glaucomatous and TGFβ2 treated LC cells compared to controls. Evaluation of (D) miR-29a-3p or
(E) miR-29c-3p expression in TGFβ2 treated LC cells analyzed by qPCR (p < 0.05), n = 3 biological replicates. * p < 0.05;
** p < 0.005.

Mature miRNA expression was analyzed across three non-glaucomatous LC cell
strains in response to TGFβ2 treatment (Figure 1B; Supplementary Table S2). miRNAs
upregulated included miR-146b-5p, miR-20a-5p, miR-217, miR-324-5p, miR-328-3p, and
miR-377-3p. miRNAs downregulated included miR-10a-5p, miR-122-5p, miR-146a-5p,
miR-19b-3p, miR-200a-3p, miR29b/c-3p, and miR-449a. However, the miRNA expression
changes in LC cells in response to TGFβ2 were not statistically significant.

Since the expression of miR-29c appeared to decrease in glaucomatous and TGFβ2
treated LC cells (Figure 1C), we further explored the role of this candidate miRNA in LC
cells. A q-PCR analysis of LC cells treated with TGFβ2 showed no significant change in
the expression of miR-29a-3p (Figure 1D); however, there was a significant decrease in the
expression of miR-29c-3p (Figure 1E).

2.2. Effects of miR-29c-3p on the ECM

Using miRNet, we determined predicted genes and pathways associated with the miR-
29 family. The miR-29 family targets genes that regulate the synthesis, organization, and
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degradation of ECM proteins, including collagens (Figure 2). We transfected the candidate
miR-29c-3p mimic or inhibitor to confirm efficient upregulation and downregulation,
respectively, of miR-29c-3p expression in LC cell strains (Figure 3 A–C). We next sought to
identify the predicted miRNA-29 binding sites in the 3′-UTRs of collagen 1a1 and collagen
4a1 (Figure 4A) using the TargetScan database. We also sought to validate collagen 1a1 and
collagen 4a1 with overexpression of miR-29c-3p. Overexpression of miR-29c-3p resulted in
a decrease in collagen 1a1 and collagen 4a1 gene expression compared to the non-targeting
control (Figure 4B).

Figure 2. Network analysis of miR-29 regulated genes. miRNet was used to identify target genes
regulated by the miR-29 family: miR-29a, miR-29b, and miR-29c. The miR-29 family interacts with
several genes connected to ECM synthesis. miRNAs are represented in blue and target mRNAs are
represented in yellow.

2.3. Effects of miR-29c on TGFβ2 Induced-ECM Proteins

We next sought to validate the effects of TGFβ2 and miR-29c-3p on the predicted
targets of miR-29c. Previously, we showed that collagen expression was increased with
TGFβ2 in LC cells compared to control [18]. Therefore, we analyzed the potential effects
of using a miR-29c-3p mimic and inhibitor on TGFβ2-induced collagen types I and IV
expression by immunocytochemistry (Figures 5 and 6). TGFβ2 induced the expression
of collagens type I (Figure 5) and IV (Figure 6) in LC cells. Transfection with miR-29c
mimic prevented the TGFβ2-induced expression of collagen types I and IV. In contrast,
the inhibition of miR-29c did not block the upregulated TGFβ2-induced collagen I and
IV protein expression. This suggests that miR-29 may regulate TGFβ2 signaling and
synthesis of ECM proteins. Obtaining additional LC cells from glaucoma patients for the
immunostaining was a limiting factor in our experiments.
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Figure 3. miRNA-29c-3p transfection efficiency in LC cells. Primary human LC cells were transfected with miR-29c-3p
mimic (10 nm), miR-29c-3p inhibitor (10 nm), or non-targeting controls and transfection efficiency as determined by qPCR.
SNORD95 was used as a normalizing control. (A–C) miRNA-29c-3p expression in each LC cell strain (LC1—donor 56
years old, LC2—donor 70 years old, and LC3—donor 74 years old). Error bars show the standard deviation (SD). One-way
ANOVA analysis, Tukey’s multiple comparison test, n = 3 biological replicates, **** p < 0.0001; *** p < 0.0005; ** p < 0.005.

Figure 4. Collagens as prominent targets of the miR-29 family. (A) The TargetScan database was used to identify the 3′-UTRs
of collagen 1a1 and collagen 4a1 as predicted binding sites for miR-29 family members (red). (B) Primary human LC cells
were transfected with miR-29c-3p mimic (10 nm) or non-targeting control (10 nm). Expression of collagens type 1a1 and 4a1
were analyzed by qPCR. GAPDH was used as an internal control for normalization (* p < 0.05).
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Figure 5. TGFβ2 and miR-29c-3p regulate collagen I expression in LC cells. Primary human LC cells were transfected with
miR-29c-3p mimic (10 nM), inhibitor (10 nM), inhibitor control (IC; 10 nM), or non-targeting (NT; 10 nM) control in the
presence or absence or TGFβ2 (5 ng/mL) for 72 h. Cells were fixed and immunolabelled with anti-collagen type I antibody
(green). Nuclei (blue) were stained with DAPI. NP = no primary Ab control. Representative images are shown. Images
taken at 100×magnification.

Figure 6. TGFβ2 and miR-29c-3p regulate collagen IV protein expression in LC cells. Primary human LC cells were
transfected with miR-29c-3p mimic (10 nM), inhibitor (10 nM, inhibitor control (IC; 10 nM), or non-targeting (NT; 10 nM)
control in the presence or absence or TGFβ2 (5 ng/mL) for 72 h. Cells were fixed and immunolabelled with anti-collagen
type IV antibody (red). Nuclei (blue) were stained with DAPI. NP = no primary Ab control. Representative images are
shown. Images taken at 100×magnification.
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3. Discussion

We report the first analyses of miRNA expression in human LC cells. We have
shown that miR-29c-3p is downregulated in glaucomatous and TGFβ2 treated LC cells.
In addition, using miRNet, a web-based tool, to investigate the potential function of miR-
29c-3p, we show that miR-29c-3p targets several ECM proteins and is heavily involved
in tissue remodeling. In vitro analysis shows that inhibition of miR-29c-3p promotes
collagen types I and IV synthesis, while overexpression of miR-29c-3p led to a decrease in
protein expression. Our findings suggest that downregulation of miR-29c-3p in glaucoma
and TGFβ2 treated LC cells disrupts the ONH ECM and may affect the laminar tissue
homeostasis, leading to pathogenic damage to the glaucomatous ONH.

Using TargetScan and miRNet, we were able to predict miRNA-target interactions
for the miR-29 family. The anti-fibrotic miR-29 family targets the mRNA of several ECM
and ECM-related proteins, including the collagens, bone morphogenetic protein 1(BMP1),
and lysyl oxidase, suggesting that it plays a role in ECM and tissue homeostasis. Interest-
ingly, TGFβ2 induces the expression of BMP1 and lysyl oxidase in trabecular meshwork
cells [26,27]. BMP1 converts secreted ECM and ECM-related precursor proteins into mature
functional proteins. Furthermore, miRNA-29b negatively regulated BMP1 and prevented
the processing and synthesis of ECM genes in trabecular meshwork cells [22]. Also, lysyl
oxidase is responsible for increased post-translational covalent cross-linking of ECM pro-
teins. Moreover, Zhang et al. reported that TGFβ decreased miRNA-29b and induced lysyl
oxidase expression in an immortalized human hepatic stellate cell line [28]. These data
suggest that the miRNA-29 family targets BMP1 and lysyl oxidase and is involved in the
tissue remodeling observed in glaucoma. The three main members of miR-29 (miR-29a,
miR-29b, and miR-29c) have several common predicted targets; however, they may have
tissue or cell-specific expression patterns and functions. ONH cells, including LC cells, are
thought to contribute to glaucomatous tissue remodeling of the LC; therefore, it is necessary
to explore the expression and role of fibrosis-related miRNAs. We found that all three
members of the miR-29 family were downregulated in glaucomatous LC cells; however,
only miR-29a-3p and miR-29c-3p were statistically significant. Similarly, these miRNAs
were downregulated in TGFβ2 treated LC cells, and we also confirmed through qPCR
analysis that miR29c-3p is downregulated in LC cells treated with TGFβ2. Overall, our
results suggest that TGFβ2 may negatively affect the expression of miR-29 in LC cells, and
that this miRNA therefore appears to be biologically relevant to ONH cells. Since miR-29 is
negatively associated with ECM synthesis, inhibition of this miRNA may contribute to the
glaucomatous tissue remodeling in the ONH. We need to better understand the expression
pattern of miR-29, including the cellular localization and the functional roles of miR-29 in
the normal and glaucomatous ONH.

Our results, along with those of other independent investigators, have shown that
TGFβ2 remodels the ECM of the ONH and eventually leads to progressive damage to
RGC axons. Our results show that TGFβ2 signaling and miR-29c-3p are important in
regulating ECM synthesis, and that inhibition of miR-29c-3p may lead to aberrant ECM
synthesis. Previous studies have shown that there is increased expression of TGFβ2
in the glaucomatous ONH and that elevated TGFβ2 is associated with increased ECM
deposition [18,19,29]. We show that in the absence of TGFβ2 signaling, overexpression of
miR-29c-3p leads to inhibition of collagen type IV synthesis in cultured LC cells. TGFβ2
treatment increases collagen types I and type IV expression in LC cells. However, the
miR-29c-3p mimic antagonizes this effect by decreasing protein expression of collagen
types I and IV. We also used an miR-29c-3p inhibitor in both the presence and absence of
TGFβ2, and observed increased expression of collagen types I and IV compared to controls.
We observed intracellular collagen in LC cells due to the short miRNA transfection protocol,
as extracellular collagen expression takes time to get synthesized, secreted, and assembled.

These data collectively suggest that miR-29c-3p is an important regulator of ECM
synthesis and may regulate TGFβ2 signaling in LC cells. Future studies will determine how
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miR-29c-3p regulates TGFβ2 signaling, either through inhibition of TGFβ ligands, TGFβ
receptors, receptor SMADs, or by directly inhibiting the synthesis of ECM proteins [30].

Further studies may determine how TGFβ2 regulates miRNA expression in LC cells.
For example, evaluating whether TGFβ2 signaling directly inhibits transcription of miR-
29c or affects the processing of miR-29c [31]. It is possible that TGFβ2 signaling leads
to the recruitment of transcription factors to the miRNA promoter, which can affect the
transcription of miRNAs [24]. Alternatively, TGFβ2 signaling may affect the miRNA
processing complex to alter primary, precursor, and mature miRNAs. Designing primers
to the hairpin loop, precursor and mature miRNAs would be a way to quantify any
differences [32,33]. To address what occurs first, miRNA or TGFβ2 dysregulation, we need
to look at the response to earlier events in glaucomatous optic neuropathy such as elevated
intraocular pressure (IOP). Models predict IOP-related stretch and compression of the
laminar neural tissue, LC, sclera, and pia mater [34]. As IOP levels increased, the cells
within the ONH reached peak strain (15%) at 50mmHg [34]. Further studies have been
performed to investigate gene and protein expression changes in LC cells and astrocytes
exposed to mechanical stretch. LC cells exposed to 15% stretch using the Flexcell system
resulted in upregulation of ECM gene expression, including elastin, collagens, lysyl oxidase,
and TGFβ2 [15]. Other studies analyzed the effects of increasing stretch by 0%, 3%, and
12%, on ONH astrocytes and LC cells [20,35]. In LC cells, protein synthesis increased from
3% to 12% stretch, suggesting LC cells are mechanosensitive and respond to mechanical
strain [20]. To determine whether miRNAs are dysregulated in response to mechanical
strain, we could analyze miRNA expression in response to stretch at low and high strain
conditions. It may be possible that stretch dysregulates miRNAs and leads to enhanced
TGFβ signaling.

4. Materials and Methods
4.1. Cell Culture and TGFβ2 Treatment

LC cell strains were derived from normal and glaucomatous human donor eyes
obtained from the Lion Eye Institute for Transplant and Research (Tampa, FL) as previ-
ously described [15]. Acquisition of donor eyes closely followed the tenets of Helsinki
with donor and/or family written consent. Donor eyes were anonymized to prevent
donor identification. Primary human glaucoma (n = 4) and non-glaucomatous (n = 3) LC
cell strains were generated from human lamina cribrosa explants and characterized and
maintained as previously described [15]. Briefly, lamina cribrosa cells were characterized
by negative expression for GFAP and positive expression for α-SMA and laminin [15].
LC cells were maintained in Ham’s F10 medium (Sigma Aldrich, St. Louis, MO, USA)
supplemented with 10% fetal bovine serum (Atlas Biologicals, Fort Collins, CO, USA),
glutamine (0.292 mg/mL), and penicillin (100 units/mL) and streptomycin (0.1 mg/mL)
(Thermofisher Scientific, Waltham, MA, USA). The medium was changed every 2–3 days.
Cell cultures were maintained at 37 ◦C with 5% CO2 within a humidified incubator. The
ages of the normal donors were 56 years, 70 years, 74 years, and 82 years, while the ages of
the glaucoma donors were 66 years, 73 years, and 97 years.

4.2. miRNA PCR Array

To evaluate glaucoma associated changes in LC cell miRNA expression, we seeded non-
glaucomatous and POAG LC cells into wells of a 6-well plate in medium containing serum.
To determine changes in miRNA expression due to TGFβ2 treatment, we also seeded
non-glaucomatous LC cells into wells of a 6-well plate in medium containing serum, and
when the cells reached 100% confluency, we replaced the medium with serum-free medium
for 24 h. The next day, the cells were treated with recombinant TGFβ2 (5 ng/mL) (R&D
Systems, Minneapolis, MN, USA) or vehicle control in serum-free medium. According to
the manufacturer’s guidelines, total RNA was isolated using QIAzol and the miRNeasy
mini kit (Qiagen, Germantown, MD, USA). RNA was quantified using the Nanodrop 2000
(Thermofisher Scientific, Waltham, MA, USA), and the purity/quality of RNA was assessed
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by 260/280 and 260/230 ratios. miRNA cDNA was synthesized using the HiSpec buffer and
miScript II RT kit (Qiagen, Germantown, MD, USA). The thermoprofile parameters used
were 37 ◦C for 60 min and 95 ◦C for 5 min. cDNA was diluted to 200 µL and we performed
mature miRNA profiling using the miScript miRNA PCR array for Human Fibrosis (MIHS-
117Z, Qiagen, Germantown, MD, USA) that includes 88 mature human miRNA primers.
PCR was performed on the CFX96 real-time PCR system (Bio-Rad Laboratories Hercules,
CA, USA). The thermoprofile parameters were 95 ◦C for 30 s, followed by 40 cycles of
95 ◦C for 10 s, 60 ◦C for 30 s, and concluded with a melting curve step. Representative
data are shown on volcano plots. Statistical analysis was performed using Qiagen’s data
analysis software (https://dataanalysis.qiagen.com/mirna/arrayanalysis.php) (accessed
on 24 June 2020). The miRNAs included in this array target the mRNA of profibrotic, anti-
fibrotic, signal transduction, epithelial-mesenchymal transition and ECM genes. For the
full miRNA list, visit Qiagen’s website (https://geneglobe.qiagen.com/product-groups/
miscript-mirna-pcr-arrays) (accessed on 24 June 2020).

4.3. In Vitro Transfection of LC Cells Using miRNA Mimics and Inhibitors

LC cells were plated 24 h before transfection in Ham’s F10 medium and transfected
at a density of ~50–60% confluency (HiPerFect; Qiagen, Germantown, MD, USA) fol-
lowing the manufacturer’s instructions. In brief, 10 nM of miRNA-29c-3p mimic or
miRNA-29c-3p inhibitor with 2.5uL HiPerFect were diluted in 1mL serum-free OPTI-
MEM medium(Invitrogen), then incubated for 15 min at room temperature and transferred
to the appropriate well with LC cells. The cells were then incubated overnight at 37 ◦C
in 5% CO2–95% air. The efficiency of the transfection was confirmed by qPCR. Negative
controls consisted of cells with no treatment, non-targeting control for mimic experiments,
and inhibitor control (Qiagen, Germantown, MD, USA) for inhibitor experiments. The
miRNA-29c-3p mimic are double-stranded RNA oligonucleotides designed to mimic en-
dogenously mature miRNA-29c activity. The miR-29c-3p inhibitors are single-strand RNA
oligonucleotides designed to inhibit miRNA activity.

4.4. RNA Isolation and qPCR

For miRNA analysis, total RNA was isolated using a miRNeasy isolation kit (miRNeasy
mini kit, Qiagen, Germantown, MD, USA) according to the manufacturer’s guidelines. Using
200 ng RNA, miRNA cDNA was synthesized by reverse transcription (HiSpec buffer and miScript
II RT kit, Qiagen, Germantown, MD, USA). The thermoprofile parameters used were 37 ◦C for
60 min and 95 ◦C for 5 min. cDNA was diluted to 200uL to perform qPCR reactions in a 25 µL
mixture containing miScript SYBR Green, miScript primer, miScript universal primer, RNase free
water and cDNA. The miR-29a-3p (5′UAGCACCAUCUGAAAUCGGUUA) and miR-29c-3p
(5′UAGCACCAUUUGAAAUCGGUUA) primer sequences were obtained from Qiagen.
The expression of miRNA was normalized to SNORD 95 using the ∆∆ cycle threshold
(CT) method.

For mRNA analysis, total RNA was isolated using the RNeasy kit (Qiagen, German-
town, MD, USA). RNA was quantified using the Nanodrop 2000 (Thermofisher Scientific,
Waltham, MA, USA) and purity/quality of RNA assessed by 260/280 and 260/230 ratios.
cDNA was synthesized from total RNA (500ng) by reverse transcription using the iScript
supermix (Bio-Rad Laboratories) according to the manufacturer’s instructions. Q-PCR reac-
tions were performed in a 20µL mixture containing 1µL of the cDNA with 1X SYBR Green
Supermix (Bio-Rad Laboratories), using the following parameters: 95 ◦C for 5 followed by
40 cycles of 95 ◦C for 15 s, and 72 ◦C for 15 s (CFX96 System and CFX Manager Software;
Bio-Rad Laboratories). Primers were designed using Primer3 software (Whitehead Insti-
tute, Massachusetts Institute of Technology, Cambridge, MA) for collagens 1a1 and 4a1.
The expression of mRNAs was normalized to GAPDH using the ∆∆ CT method. Error
bars show the SD. A student’s t-test, n = 3 technical replicates, * p < 0.05.

Collagen 1a1 Forward 5′-AGCCAGCAGATCGAGAACAT-3′

Collagen 1a1 Reserve 5′-TCTTGTCCTTGGGGTTCTTG-3′

https://dataanalysis.qiagen.com/mirna/arrayanalysis.php
https://geneglobe.qiagen.com/product-groups/miscript-mirna-pcr-arrays
https://geneglobe.qiagen.com/product-groups/miscript-mirna-pcr-arrays
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Collagen 4a1 Forward 5′-ATAGACGGATATCGGGGGCCT-3′

Collagen 4a1 Reverse 5′- GGATTTGAAAAAGCAATGGCACTC-3′

GAPDH Forward: 5′-GGTGAAGGTCGGAGTCAAC-3′

GAPDH Reverse: 5′-CCATGGGTGGAATCATATTG-3′

4.5. Immunocytochemistry

LC cells were plated at a density of 8000 cells/well in a 24 well plate with glass
coverslips and incubated in Ham’s F10 medium at 37 ◦C and 95% air. The following
day, the cells were transfected with 10nM of miRNA mimics, inhibitors, or controls in
OptiMem. The next day, the cells were treated with or without TGFβ2 for 48 h in Ham’s
F10 medium. Cells were fixed in 4% paraformaldehyde in Dulbecco’s phosphate-buffered
saline (PBS; Sigma-Aldrich, St Louis, MO, USA) for 10 min at room temperature. Cells
were permeabilized with 0.2% Triton-X 100 at room temperature for 20 min and then
blocked with 10% donkey serum in PBS superblock for 1 h at room temperature, followed
by primary antibody (Table 1) (diluted 1:100 in Superblock PBS) incubation overnight at
4 ◦C under dark conditions. The next day, the cells were washed three times with PBS for
5 min each, followed by incubation with the appropriate secondary antibody conjugated
to a fluorescent 594 or 488 dye (Invitrogen; diluted 1:200 in Superblock PBS) for 1 h at
room temperature in dark conditions. Cells were then washed three times with PBS for
5 min each, followed by two quick rinses with dH2O. Coverslips were mounted carefully
with DAPI prolonged gold (Invitrogen) and left to dry at room temperature for 24 h in
dark conditions. Controls consisted of the omission of primary antibodies. Images were
captured using the Nikon Eclipse TieU microscope (Melville, NY, USA) containing the
Nuance FX imaging system (CRI, Burlington, MA, USA).

Table 1. Antibody list used for immunocytochemistry staining.

Antibody Source Dilution

Rabbit anti-Collagen I Abcam 1:200
Rabbit anti-Collagen IV Abcam 1:200
Donkey anti-Rabbit 488 Invitrogen 1:500
Donkey anti-Rabbit 594 Invitrogen 1:500

4.6. Statistical Analysis

A student’s t-test was performed to determine statistical significance between two
groups. A one-way ANOVA and Tukey’s multiple comparison test was performed to
determine statistically significant differences between three or more independent groups.
GraphPad Prism 9.0 (GraphPad Software, San Diego, CA, USA) was used for data analysis.
A value of p < 0.05 was considered to be significantly different.

5. Conclusions

In summary, we have used an in vitro cell culture to determine the expression of
miRNAs in glaucomatous, non-glaucomatous, and TGFβ2 treated human LC cells. Our
data showed downregulation of the miRNA-29 family in glaucomatous LC cells compared
to normal healthy LC cells. Moreover, there was a decrease in the expression of the miRNA-
29 family upon exogenous treatment with TGFβ2. We believe there is an interaction
between the miR-29 family and mRNAs encoding the collagen genes in LC cells. Moreover,
it is predicted that the miR-29 family target multiple collagen genes using the TargetScan
database and miRNet network analysis. Lastly, transfecting LC cells with miR-29c-3p
inhibited TGβ2 induced collagen I and IV. The dysregulation of TGFβ2 signaling and
aberrant miR-29 expression may contribute to LC tissue remodeling in glaucoma. TGFβ2
can change miR-29c-3p expression, and may eventually contribute to increased ECM
deposition in the glaucomatous LC. Our data suggest that restoration of miR-29c expression
in the ONH may restore homeostatic TGFβ2 signaling and ECM turnover.
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