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Abstract: Given the non-labile, terminal differentiation of inner-ear sensory cells, preserving their
function is critical since sensory cell damage results in irreversible hearing loss. Gentamicin-induced
cytotoxicity is one of the major causes of sensory cell damage and consequent sensorineural hear-
ing loss. However, the precise molecular mechanisms and target proteins involved in ototoxicity
are still unknown. The objective of the present study was to identify target proteins involved in
gentamicin-induced cytotoxicity to better characterize the molecular pathways involved in sensory
cell damage following ototoxic drug administration using House Ear Institute-Organ of Corti 1 (HEI-
OC1) cells and high-performance liquid chromatography coupled with tandem mass spectrometry
(HPLC-MS/MS). We identified several unique proteins involved in gentamicin-induced cytotoxicity,
expression of which were further confirmed using confocal microscopy. Further investigation of these
pathways can inform the design and discovery of novel treatment modalities to prevent sensory cell
damage and preserve their function.

Keywords: HEI-OC1; organ of Corti; gentamicin ototoxicity; mass spectrometry; high-performance
liquid chromatography; confocal microscopy

1. Introduction

Hearing loss is one of the most common neurosensory disorders affecting humans [1,2].
In the United States alone, more than 48 million individuals over 12 years old, approxi-
mately 20% of the population, are affected by some type of hearing loss (HL) [3]. Moreover,
the prevalence of HL continues to increase with each decade of life. Approximately 25% of
adults between 65 and 74 years old and 50% of adults older than 75 report disabling HL.
These figures make HL one of the top four chronic health conditions affecting older adults.
Given the widespread prevalence of HL and its profound impact on an individual’s physi-
cal, psychological, and social well-being, identifying and understanding the contributing
factors to HL can have a profound personal and societal impact [4–6].

One common yet poorly understood cause of sensorineural HL is the ototoxic effects of
frequently prescribed medications. Based on data from the National Health and Nutrition
Examination Survey (NHANES), 25% of adults between 20 and 69 years old used ototoxic medi-
cations such as NSAIDs, antineoplastic drugs, loop diuretics, and aminoglycoside antibiotics [7].
A study showed that the prevalence of potentially ototoxic medication use reached 91% among
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older adults [8]. Moreover, while drug-induced ototoxicity for many drugs often resolves after
their discontinuation, the use of platinum-derived chemotherapy and aminoglycosides can
lead to permanent HL [9,10]. The present study specifically seeks to characterize the proteins
involved in the apoptotic pathway of one such aminoglycoside, gentamicin.

Aminoglycosides are a potent broad-spectrum antibiotic with particularly effective
activity against Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae,
and Enterobacter cloacae [11,12]. Given its high efficacy and low cost, gentamicin is one of
the most commonly used aminoglycosides against severe infections such as sepsis and
endocarditis [13,14]. Despite these advantages, aminoglycosides such as gentamicin have
a notoriously narrow therapeutic index due to their dose-dependent nephrotoxic and
ototoxic effects [5,15]. Specifically, gentamicin ototoxicity has been found to occur in as
many as 20% of patients undergoing treatment over multiple days and is characterized by
both vestibular and hearing dysfunction [5,16].

Aminoglycosides are believed to induce ototoxicity through the generation of reac-
tive oxygen species (ROS), which subsequently cause widespread cellular damage and
thereby induce apoptosis in cochlear hair cells (HCs) [17,18]. Interestingly, this mecha-
nism is hypothesized to be shared by many causes of sensorineural hearing loss (SNHL),
including noise-induced hearing loss and other ototoxic drugs such as cisplatin and ac-
etaminophen [19]. Since cochlear HCs cannot regenerate, their apoptosis causes permanent
SNHL. While several studies have identified and hypothesized these mechanisms for
hearing loss [20–22], the precise molecular apoptotic pathways remain unclear.

Much of the current literature examining drug-induced ototoxicity focuses on the mediators
of cellular damage and the apoptotic pathways to identify mechanisms to reduce cellular
damage or inhibit the key apoptotic steps [23]. For example, the production and effect of
reactive oxygen species in cellular damage, the subsequent activation of caspase pathways, and
the role of calcium channels have been well-described. However, there is increasing evidence
that aminoglycoside ototoxicity is regulated by processes before extensive cellular damage is
present and before activation of main apoptotic pathways [24,25]. There is a need to identify
novel targets involved in gentamicin-induced cytotoxicity that will pave the way to developing
effective therapeutic strategies.

Given the prevalence and impact of HL and the role of ototoxic drugs such as gentam-
icin, identifying the critical mediators of sensory cell death presents a unique opportunity
for intervention along their apoptotic pathway. Identifying downstream apoptotic medi-
ators may help develop effective treatment modalities to reduce HC death. Among the
techniques used to identify and characterize host pathways, tandem mass spectrometry
(MS/MS or MS) has recently become a powerful tool [26,27]. MS has proven increasingly
valuable for cellular research due to its exceptional ability to characterize molecular path-
ways in detail by obtaining a significant amount of quantitative and qualitative data on
biological substances [28,29]. In the present study, MS was chosen to identify potential
target proteins following gentamicin exposure given its high sensitivity, high accuracy,
and broad analytical potential. Additionally, HEI-OC1 cells were selected as a model for
HCs as they represent a progenitor for both HCs and the supporting cells of the organ of
Corti, expressing cochlear HC markers such as prestin, Myo7a, ATOH1, BDNF, calmodulin,
and calbindin [30]. Identifying critical cellular mediators of HC damage will allow the
development of more effective otoprotective therapies for gentamicin ototoxicity and even
other causes of HL.

2. Materials and Methods
2.1. Cell Culture

HEI-OC1 cells (kindly provided by Dr. Federico Kalinec, UCLA) were cultured
under permissive conditions (33 ◦C, 10% CO2) in high-glucose Dulbecco’s Eagle’s medium
(DMEM) containing 10% fetal bovine serum (FBS) without antibiotics, as described in
previous studies [31–34].
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2.2. Gentamicin Treatment

HEI-OC1 cells were treated with 1 mM and 3 mM concentrations of gentamicin for
8 h and 24 h. In this study, the concentrations of 1 mM and 3 mM gentamicin used were
based on previous studies [35,36]. After incubation, cells were washed, and lysates were
prepared, followed by the determination of protein concentration, as described in previous
studies. A schematic representation of the experimental design is shown in Figure 1.
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2.3. Sample Denaturation/Reduction/Alkylation

To denature, 15 µL of 10 M urea in 50 mM ammonium bicarbonate was added to
the samples. Then, 2 µL of 125 mM DTT in 50 mM ammonium bicarbonate was added
to reduce the proteins. Samples were then incubated at room temperature for 1 h. After
incubation, 5 µL of 90 mM Iodoacetamide in 50 mM ammonium bicarbonate was added to
each of the samples for alkylation. Samples were then incubated in the dark and at room
temperature for 30 min. Next, 3.33 µL of 125 mM DTT in 50 mM ammonium bicarbonate
was added to the samples for iodoacetamide quenching. Samples were then incubated
in the dark and at room temperature for 1 h. Following this, to dilute the urea to 1 M,
116.67 µL of 50 mM ammonium bicarbonate was added, leaving the samples at a volume
of 150 µL.

2.4. Sample Enzymatic Digestion

For digestion, a trypsin stock solution of 0.1 µg/µL was prepared. Then, 3.33 µL of
the stock solution was added to each sample. The samples were incubated overnight at
37 ◦C. After incubation, 50% formic acid (FA) was added to each sample. Samples were
then stored at −20 ◦C until they were ready for MS.

2.5. Desalting and Protein Enrichment

Before the proteins were run through MS, they were desalted using Pierce C18 Spin
Tips. Desalting is critical because salt and urea in the sample can interfere with MS
ionization. TFA solutions were then prepared (2.5% TFA, 0.1% TFA in 80% ACN, 0.1% TFA,
and 0.1% TFA in 5% ACN). To adjust the overall TFA concentration to 0.5%, 40.6 µL of 2.5%
TFA was added to each sample. C18 spin tips were then inserted into the spin adapter that
was seated in a microcentrifuge tube. Next, 20 µL of 0.1% TFA in 80% ACN was added
to the C18 tip to wet it and then centrifuged at 1000× g for 1 min. Next, to equilibrate
the tip, 20 µL of 0.1% TFA was added to the tip; then, it was centrifuged at 1000× g for
1 min. These steps prepared the column to bind to the proteins in the following steps. The
C18 spin tip and adapter were then transferred to a new microcentrifuge tube. Briefly,
50 µL of one of the samples was added to the C18 tip and centrifuged at 1000× g for one
minute. In addition, a 50 µL volume of the sample was added, and the centrifugation was
repeated until all of the samples had run through the tip. Then, the tip was washed with
20 µL 0.1% TFA, followed by a 1 min centrifuge at 1000× g, repeated one additional time.
By this point, the salts should have eluted, and the majority of the proteins should have
been bound inside the column. Then, the C18 spin tip and adapter were transferred to a
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new microcentrifuge tube. The sample was eluted by adding 20 µL of 0.1% TFA in 80%
ACN and was centrifuged at 1000× g for 1 min. This step was repeated once more. This
process was conducted for all the samples. At this point, the desalted protein samples were
collected, speed-vacuumed to near dryness, and then resuspended in 50 µL of 0.1% FA, 2%
ACN, in MilliQ for MS analysis. Samples were aliquoted in a mass spec tube and run on a
Q Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer.

2.6. Data Analysis

The data analysis was performed using Proteome discoverer (ThermoFisher scientific,
Waltham, MA, USA) and MetaboAnalyst (https://www.metaboanalyst.ca/MetaboAnalyst/
upload/StatUploadView.xhtml, accessed on 1 December 2020) software programs, with
parameters as described in detail in previous studies [37–39].

2.7. Confocal Microscopy

For immunofluorescence, HEI-OC1 cells were cultured in 8-well chamber slides and
treated with 1 mM and 3 mM concentrations of gentamicin for 8 h and 24 h. After incubation,
cells were washed three times with PBS buffer, followed by fixation and permeabilization
with BD cytofix and cytoperm reagent (BD Biosciences, San Jose, CA, USA) for 30 min. After
washing, the cells were blocked with 3% normal goat serum (NGS) for 20 min and then
incubated with either anti-Sap30bp antibody, TAO1 kinase antibody, or cleaved caspase
3 antibody (Abcam, Cambridge, MA, USA) overnight at 4 ◦C, followed by washing and
incubation with Alexa Fluor 568 secondary antibody (Life Technologies, Carlsbad, CA,
USA) for 90 min at room temperature. After washing, samples were mounted in an antifade
Vectashield solution containing 4, 6-diamidino-2-phenylindole (DAPI) (Vector Laboratories,
Burlingame, CA, USA). The cells were viewed with a Zeiss LSM 710 microscope (Carl Zeiss,
Germany), and images were assembled using Adobe photoshop 7.0.

To determine mean signal intensity, the mean green signal intensity was measured
as the average of 10 regions of interest (ROI) and normalized using the mean signal
background intensity. The size and location of each ROI were consistent for all images. The
mean signal intensity was measured and calculated using ImageJ version 1.52 k software
(Bethesda, MD, USA) [40–42].

2.8. Cleaved Caspase 3 Determination

The levels of cleaved caspase 3 were quantitatively determined in HEI-OC1 cell ho-
mogenates using an ELISA kit as per the manufacturer’s instructions (Abcam, Cambridge,
MA, USA).

2.9. Statistical Analysis

Two-tailed Student’s t-test was used to establish significant differences between groups.
p values of less than 0.05 were considered significant. All statistical analyses were performed
using SPSS software version 28 (IBM, Armonk, NY, USA).

3. Results
3.1. Upregulated Proteins in Response to Gentamicin Ototoxicity in HEI-OC1 Cells

We observed that several host proteins were upregulated following treatment with
gentamicin, compared with untreated control samples. We identified various novel target
proteins, as summarized in Table 1, such as Sap30-binding protein, serine/threonine-protein
kinase TAO1, myocyte-specific enhancer factor 2D, Bcl-2 homologous antagonist/killer,
caspase-9 (Fragment), targeting protein for Xklp2, microtubule-associated protein 1S,
MKIAA0655 protein (Fragment), growth arrest-specific protein 2 (GAS-2), DNA-directed
RNA polymerase II subunit, nucleolysin TIA-1, caspase-4 (CASP-4), and FAS-associated
death domain protein. There were differences in the levels of upregulation of host pro-
teins depending on the exposure time and concentration of gentamicin. The majority of
upregulated proteins were regulators of apoptosis pathways.

https://www.metaboanalyst.ca/MetaboAnalyst/upload/StatUploadView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/upload/StatUploadView.xhtml
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Table 1. A summary of upregulated target genes and corresponding protein profiles in HEI-OC1
exposed to 1 mM and 3 mM concentrations of gentamicin. Red, yellow, and green colors denote high,
intermediate, and low expression profiles.

Gene Names 1 mM 3 mM Protein Names

Sap30bp Hcngp 27 38 SAP30-binding
protein

Taok1 24 37 TAO1 kinase

Mef2d 20 37 Myocyte-specific
enhancer factor 2D

Bak1 Bak 35 35 Bcl-2 homologous
antagonist/killer

Casp9 27 34 Caspase-9 (Fragment)

Tpx2 33 32 Targeting protein for
Xklp2

Map1s Mtap1s 20 26
Microtubule-

associated protein
1S

Hip1r mKIAA0655 16 26 MKIAA0655 protein
(Fragment)

Gas2 Gas-2 28 24 Growth arrest-specific
protein 2 (GAS-2)

Polr2g 18 23 DNA-directed RNA
polymerase II subunit

Tia1 Tia 11 21 Nucleolysin TIA-1
Casp4 Casp11 Caspl

Ich3 24 21 Caspase-4 (CASP-4)

Fadd Mort1 11 20 FAS-associated death
domain protein

Bik Biklk 28 18 Bik protein

Ddit3 Chop Chop10
Gadd153 18 17

DNA
damage-inducible
transcript 3 protein

Csnk2a1 Ckiia 11 16
Casein kinase II

subunit alpha (CK II
alpha)

Dap3 15 16 28S ribosomal protein
S29, mitochondrial

Epo 20 15 Erythropoietin

Cyfip2 Kiaa1168 Pir121 14 15
Cytoplasmic

FMR1-interacting
protein 2

Pim3 13 13
Serine/threonine-

protein kinase
pim-3

Nsg1 NEEP21 11 12 Neuronal vesicle
trafficking protein 1

Birc6 7 12 UBIQUITIN_CONJUGAT_2
domain protein

Hip1r 8 11
Huntingtin-

interacting protein
1

Rock1 12 9 Rho-associated
protein kinase 1

Fas 7 9 Fas

Bcl2l13 Mil1 18 8 Bcl-2-like protein 13
(Bcl2-L-13)

Cckbr 10 8 Gastrin/cholecystokinin
type B receptor
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3.2. Common Target Proteins Upregulated Following Treatment of HEI-OC1 with Two Doses
of Gentamicin

We selected top proteins upregulated at 1 mM and 3 mM doses of gentamicin. At 1 mM,
we observed upregulation of serine/threonine-protein kinase pim-3, whereas enhanced
levels of ERCC3 XBP protein were observed at 3 mM (Table 1). Interestingly, we observed
that Sap30bp and TAO1 kinase were upregulated at both 1 mM and 3 mM concentrations
of gentamicin, as shown in the Venn diagram in Figure 2.
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3.3. Sap30bp Immunostaining in HEI-OC1 via Confocal Microscopy

To confirm the results of MS, we treated HEI-OC1 with 1 mM and 3 mM concentrations
of gentamicin for 8 h and 24 h, stained with an anti-Sap30bp antibody, and subjected to
confocal microscopy. In agreement with our MS results, we observed intense immunos-
taining of Sap30bp in HEI-OC1 exposed to 3 mM concentration compared with 1 mM
gentamicin for 24 h (Figure 3A). The mean signal intensity for Sap30bp immunostaining
was significantly higher in samples subjected to 3 mM gentamicin treatment for 24 h com-
pared with cells treated for 8 h (p < 0.05). In addition, the mean signal intensity for Sap30bp
immunostaining was significantly higher in HEI-OC1 treated with 3 mM compared with
cells exposed to 1 mM gentamicin concentration for 24 h (p < 0.01) (Figure 3B).

3.4. TAO1 Kinase Expression in HEI-OC1 via Confocal Microscopy

Since we also observed increased levels of TAO1 kinase using MS, we confirmed
its expression with confocal microscopy following exposure of HEI-OC1 to 1 mM and
3 mM gentamicin concentrations for 8 and 24 h. At 1 mM gentamicin concentration, there
was no TAO1 kinase expression at 8 h, whereas increased expression was observed at
24 h (Figure 4A). On the other hand, when the cells were exposed to 3 mM gentamicin,
there was TAO1 kinase expression at 8 h that further increased at 24 h. As observed with
Sap30bp immunostaining, the mean signal intensity for TAO1 kinase immunostaining
was significantly higher in samples subjected to 3 mM gentamicin treatment for 24 h than
in cells treated for 8 h (p < 0.05). In addition, the mean signal intensity for TAO1 kinase
immunostaining was significantly higher in HEI-OC1 treated with 3 mM than in cells
exposed to 1 mM gentamicin concentration for 24 h (p < 0.01) (Figure 4B).
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3.5. Cleaved Caspase 3 Determination

To confirm that apoptosis was occurring in conjunction with increased expression of
Sap30bp and TAO1 kinase, cleaved caspase 3 was assayed in HEI-OC1 cells via confocal
microscopy. As a convergent point for both the intrinsic and extrinsic apoptotic pathways,
cleaved caspase 3 is an ideal marker for cellular apoptosis. With increasing exposure and
concentration of gentamicin, elevated cleaved caspase 3 expression levels were observed
in HEI-OC1 cells (Figure 5A). In addition, the mean signal intensity for cleaved caspase
3 immunostaining was significantly higher in HEI-OC1 treated with 3 mM than in cells
exposed to 1 mM gentamicin concentration for 24 h (p < 0.01) (Figure 5B). To further confirm
the results of confocal microscopy, we quantitatively determined cleaved caspase 3 levels
using an ELISA kit. In agreement with our confocal microscopy data, quantification of
cleaved caspase 3 levels via ELISA confirmed that its enhanced expression coincides with
increasing exposure to gentamicin (Figure 6).
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cleaved caspase 3 immunostaining. * p < 0.05 or ** p < 0.01.
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4. Discussion

In this study, we identified novel target proteins involved in gentamicin-induced
cytotoxicity using tandem mass spectrometry (MS/MS, referred to as MS from here on).
We observed significant upregulation of TAO1 kinase in HEI-OC1, especially after treat-
ment with high doses of gentamicin for 24 h. TAO-1 is a serine/threonine-protein kinase
known to activate the MAPK cascade, regulating vital cellular processes such as mitosis,
proliferation, differentiation, and immune responses [43]. Within the cell cycle, previous
studies demonstrate that TAO-1 can shorten the G1 phase and skip a transient G0-like
state to accelerate cell cycle progression [44]. TAO-1 has also been shown to regulate
apoptotic changes such as cell contraction, pyknosis, karyorrhexis, membrane blebbing,
and apoptotic body formation via the MAPK8/JNK pathway [45,46].

It is important to note that under physiologic conditions, cochlear HCs are terminally
differentiated and in a quiescent state. However, an analysis of transcriptomic changes
in mouse cochlea after gentamicin administration found increased expression of genes
involved in cell cycle progression, G2 phase, and G2/M phase, indicating a disruption in
HC’s quiescent state. Interestingly these transcriptomic changes occurred before a signifi-
cant stress response was seen and before the initiation of apoptosis [24]. Additionally, the
JNK and NF–κB signaling pathways were implicated as early responders after gentamicin
exposure, while genes involved in the initiation and execution of apoptosis were not signif-
icantly induced. These findings indicate that early responders within the cell cycle may be
key regulators of aminoglycoside ototoxicity. This is supported by Karasawa et al., who
identified HSP73 and calreticulin as key gentamicin binding proteins via pull-down assays.
These regulatory proteins have essential functions in protein folding and are otoprotective
against gentamicin [25,47]. Their loss of function after gentamicin binding further supports
the instability of HC’s post-mitotic state as a key regulator of HC apoptosis. The results
of the present study echo this hypothesis. In the absence of gentamicin, there was very
low TAO-1 activity. However, after exposure to gentamicin, TAO-1 expression rapidly
increased. These results, along with TAO-1′s known role in apoptosis, further implicate
TAO1 kinase in gentamicin-induced cell damage.

In addition to TAO1 kinase, we observed significant upregulation of Sap30bp when
HEI-OC1 cells were exposed to 300 µM gentamicin for 24 h. Sap30bp, also known as HTRG,
HTRP, or HCNGP, encodes a transcriptional regulator protein that localizes to the nucleus
where it interacts with Sap30, a component of the histone deacetylase complex (HDAC) and,
therefore, is believed to repress transcription by promoting HDAC activity [48–50]. While
it is relatively understudied, Sap30bp is ubiquitously present in a wide range of tissues and,
in the current literature, has been associated with increased cell death, suggesting that it
represses pro-survival pathways [51–53]. Thus, in the context of this study, and the existing
literature implicating significant transcriptional changes in HC death, regulators such as
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Sap30-bp are particularly interesting targets. However, it is important to note that more
research is needed to verify this role.

Given the implicated functions of both Sap30bp and TAO1 kinase, cleaved-caspase-3
was assayed as a marker of apoptosis. Caspase-3 is a well-validated cochlear HC apoptotic
marker [54,55]. It is activated by initiator caspases such as caspase-8 or caspase-9 via
the extrinsic and intrinsic pathways, respectively. Both pathways result in the release of
cytochrome c from the mitochondria, which oligomerizes with other cytosolic factors to
form a complex that cleaves procaspase 3 into active cleaved-caspase-3, which then propa-
gates the apoptotic pathway [54,56]. Given its role as one of the late downstream effector
enzymes for both the intrinsic and extrinsic apoptotic pathways, cleaved-caspase-3 is an
ideal marker for apoptosis [54,57]. Indeed, in the present study, there was significant upreg-
ulation of cleaved-caspase-3 following gentamicin exposure, particularly after treatment
with high doses of gentamicin for 24 h. These findings are supported by previous studies
demonstrating increased caspase 3-like activity in TAO1 kinase transfected cells [45].

Notably, the cleaved-caspase-3 confocal microscopy images were visually less im-
pressive than the images for TAO-1 and Sap30bp, only appearing to show the presence
of cleaved-caspase-3 at the 3 mM 24 h dose/timepoint. This is likely the result of several
factors related to cleaved-caspase-3. Given its role as a late downstream effector protease in
the apoptotic pathway, cleaved-caspase-3 is minimally expressed until late in the apoptotic
process, only being visualized in conjunction with pyknotic nuclei [54]. This tends to
result in an “all or nothing” visual effect. Additionally, there is significant variation in the
onset of cleaved-caspase-3 activation between different experimental conditions, varying
widely with different models and exposures. For example, in a study of chinchilla cochlea
explants, confirmation of cleaved-caspase-3 expression was seen as soon as 6 h after noise
exposure, while in a study of gentamicin-treated chick cochlea, cleaved-caspase-3 was not
seen on confocal microscopy until at least 30 h post-exposure [54,57]. In the present study,
despite the apparent lack of cleaved-caspase-3 on confocal microscopy, its presence and
relative increase after gentamicin exposure was confirmed via ELISA, which can take a
larger sample into account.

This study also demonstrated the importance of mass spectrometry. MS is the cur-
rent technology of choice for detecting and quantifying proteins and metabolites, as it is
adaptable to virtually any type of sample, ranging from cells and neurons to subcellular
organelles, tissues, and even whole embryos [58–64]. Mass spectrometers can directly
detect intact proteins, peptides, post-translational modifications, and metabolites with high
specificity, usually sub-mDa (sub-ppm) mass accuracy, and the capability for both discovery
(untargeted) and targeted studies. MS does not require functional probes, antibodies, or a
priori knowledge of molecules produced in the system. Additionally, MS workflows can be
highly reproducible (such as quantitative error <5% relative standard deviation), allowing
for both absolute and relative quantification [65].

The advent of high-resolution MS has led to the discovery of novel, specifically
expressed protein biomarkers that may be involved in the pathophysiology of diseases that
are difficult to identify by immunohistochemistry and histologic morphology alone [66].
The importance of MS in identifying the target proteins involved in virtually any disease
process makes it an invaluable discovery tool since MS can provide a catalog of novel target
proteins implicated in health and disease.

In summary, our results showed that gentamicin exposure upregulates Sap30bp and
TAO1 kinase in HEI-OC1 cells in a concentration and time-dependent manner. This en-
hanced expression of TAO-1 and Sap30bp mediates cell damage and cytotoxicity through
the upregulation of cleaved caspase 3. While these in vitro results are promising, in vivo
confirmation in animal models is a necessary next step to replicate the complex physio-
logical environment of the mammalian cochlea and is desired for future drug screening.
In future studies, it will be worthwhile to investigate the efficacy of pharmacological in-
hibitors or RNAi-based approaches to block the functions of these proteins, as has been
demonstrated with other targets [67–73].
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