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Background: Machine learning (ML) algorithms are increasingly explored in glioma
prognostication. Random survival forest (RSF) is a common ML approach in analyzing
time-to-event survival data. However, it is controversial which method between RSF and
traditional cornerstone method Cox proportional hazards (CPH) is better fitted. The
purpose of this study was to compare RSF and CPH in predicting tumor progression
of high-grade glioma (HGG) after particle beam radiotherapy (PBRT).

Methods: The study enrolled 82 consecutive HGG patients who were treated with PBRT at
Shanghai Proton and Heavy Ion Center between 6/2015 and 11/2019. The entire cohort was
split into the training and testing set in an 80/20 ratio. Ten variables from patient-related,
tumor-related and treatment-related information were utilized for developing CPH and RSF for
predicting progression-free survival (PFS). The model performance was compared in
concordance index (C-index) for discrimination (accuracy), brier score (BS) for calibration
(precision) and variable importance for interpretability.

Results: The CPH model demonstrated a better performance in terms of integrated C-
index (62.9%) and BS (0.159) compared to RSF model (C-index = 61.1%, BS = 0.174). In
the context of variable importance, CPHmodel indicated that age (P = 0.024), WHO grade
(P = 0.020), IDH gene (P = 0.019), and MGMT promoter status (P = 0.040) were
significantly correlated with PFS in the univariate analysis; multivariate analysis showed
that age (P = 0.041), surgical completeness (P = 0.084), IDH gene (P = 0.057), and MGMT
promoter (P = 0.092) had a significant or trend toward the relation with PFS. RSF showed
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that merely IDH and age were of positive importance for predicting PFS. A final nomogram
was developed to predict tumor progression at the individual level based on CPH model.

Conclusions: In a relatively small dataset with HGG patients treated with PBRT, CPH
outperformed RSF for predicting tumor progression. A comprehensive criterion with
accuracy, precision, and interpretability is recommended in evaluating ML prognostication
approaches for clinical deployment.
Keywords: high-grade glioma, random survival forest, machine learning, particle beam radiotherapy,
predictive analytics
INTRODUCTION

High-grade glioma (HGG), including WHO grade III and IV class,
is the most common and lethal primary cancer in central nervous
system (1). Particle beam (e.g., proton and carbon ion) radiotherapy
(PBRT), with both biological and physical advantages (2, 3), can
potentially improve the outcome of HGG. Our recent results
showed promising efficacy of PBRT in HGG (4). However, the
inherent high heterogeneity of HGG, as the dominant factor
contributing to general poor treatment efficacy, induces markedly
variation of individual outcome (5–7). Adequate outcome
prediction, particularly at individual level, is essential but remains
challenging for developing precision strategy of PBRT for HGG.

Machine learning (ML), a branch of artificial intelligence, has
been employed to predict prognosis in a variety of cancer types.
Noticeably, series of studies applying ML algorithms to predict the
survival of HGG under standard photon-based radiotherapy have
reported good performance in recent years (8–13). However, it is
still controversial that which methods among ML algorithms and
conventional modeling can achieve better performance in survival
analysis, particularly in terms of time-to-event censored data (14–
16). Hence, it is a critical need to explore which model can
contribute to higher accuracy and precision of survival
prediction at patient-level for HGG with PBRT.

The most typical and commonly used model of ML and
conventional statistics for cancer censored survival data are
random survival forest (RSF) and Cox proportional (CPH),
respectively. The RSF is an ensemble ML method constructed
with numerous independent decision trees, each of which
receives a random subset of samples and randomly selects a
subset of variables at each split in the tree for prediction. The
final prediction results of a RSF model are the average of the
prediction of each individual tree. The CPH model is a well-
recognized statistical technique to explore the correlation
between the survival time and covariates.

To our knowledge, there was no study to explore whether
conventional statistics and ML method differ in the ability to
predict progression or survival for HGG patients treated with
PBRT. Therefore, we retrospectively collected important clinical
characteristics of HGG patients underwent PBRT, as well as
fundamental molecular markers and treatment information.
Then, all HGG patients were randomly split into training set
or testing set, and CPH model and RSF model were compared
with their performance to predict progression-free survival
2

(PFS). The model with superior performance was then utilized
to build a nomogram as in individual prediction tool of
progression for HGG patient underwent PBRT.
METHODS AND MATERIALS

Study Population and Data
Institutional review board (IRB) approval was obtained from the
Shanghai Proton and Heavy Ion Center (SPHIC) prior to
conducting this study. Variables from three categories: patient-
related, disease-related and treatment-related information was
retrospectively collected. Patient-related data collected included
age, gender, and Karnofsky Performance Score (KPS). Disease-
related features included tumor location that was classified as
invasion of subventricular zone (SVZ) or non-SVZ (17) invasion
and molecular markers, including Isocitrate dehydrogenase
(IDH) gene and O[6]-methylguanine-DNA methyltransferase
(MGMT) promoter status. Treatment-related information
consisted of surgical completeness that was divided into gross-
total resection (GTR) and non-GTR (subtotal resection, partial
resection, and biopsy), and the target volume for PBRT.

Particle Radiotherapy
Conventional MR was fundamental images for radiation
planning of HGG. The l-[methyl-()11C]methionine (MET)/O-
(2-[18F]fluoroethyl)-L-tyrosine (FET)-positron emission
tomography (PET) was optional and further required after the
latest escalating boost trial initiated. In the case of incomplete
resection, dose escalation trials utilizing proton followed by
carbon-ion boost were encouraged to target residual lesion.
Doses of PBRT were measured by Gray Relative Biological
Equivalent (GyE) to account for the RBE differences compared
to photon beam The clinical target volume (CTV) of high risk
(CTVhr) was defined as gross-tumor volume (GTV) in residual
lesion detected on imaging studies and surgical bed plus 5-mm
expansion, and the CTV for lower risk (CTVlr) consisted of GTV
plus 15-mm margin and edema area. The standard protocol of
PBRT for all patients was CTVhr with proton beam to 60 GyE,
and CTVlr with proton beam to 50 GyE.

Statistical Analysis and Modeling Process
Progression-free survival (PFS) time is defined as the duration
between the time of diagnosis and the date of progression. The
October 2020 | Volume 10 | Article 551420
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Response Assessment in Neuro-Oncology (RANO) criteria (18)
with interpretation modifications (19), including parameters for
changes in T1-weighted enhancing lesion and non-enhancing
T2/fluid attenuated inversion recovery (FLAIR) lesion, were used
to determine disease progression.

The statistical analysis was performed using the R software.
Baseline differences between the training set and testing set were
assessed using the Mann-Whitney U test for continuous
variables. Survival curves were plotted using the Kaplan-Meier
method and compared using log-rank test.

Prior to constructing CPH and RSF models, the data set was
split into two mutually exclusive sets. Nearly 80% of the entire
dataset was assigned as the training set, which was utilized to
generate the prediction model. The remaining 20% of the data
was designated as the testing set, for use in estimating the
model’s accuracy. During this procedure, a five-fold cross-
validation that putted the dataset stratified by progression
status and then sorted by survival time was performed for the
purpose that the number of patients with progression and the
range of survival time should be (roughly) equal across all folds.
By creating folds in this way models would be tested on dataset
that was mostly representative of what they saw in the
training data.

CPH and RSF models were trained using the RandomForestSRS
and survival R packages, respectively. The hyperparameter tuning
of RSF model was performed with five-fold cross-validation on the
training set. In particular, the RSF model, as an extension of
random forest (RF) that ensembles tree method for analyzing
time-to-event data, must select two central hyperparameters:
number of randomly drawn candidate variables (mtry) and
number of trees. Given several studies on the influence of
hyperparameters on RF model regarding performance and
variable importance, mtry= or mtry=p/3 for regression with p
being the number of predictor variables is reasonable (20, 21). As
our dataset contained 10 predictor variables, the mtry was set to 3.
Considering the number of trees, two studies using real datasets
show that 100 trees can often achieve the biggest gain of RF model
performance (22, 23). Thus, the present study used 100 trees for
RSF approach.

Predictive performance of model was measured with five-fold
cross-validation by discrimination and calibration via the pec R
package. The concordance index (C-index), which ranges from
0.5 (random prediction) to 1 (perfect prediction), reflects the
discrimination power to rank individuals from low to high risk.
The brier score (BS) is a metric of calibration, with lower value
representing improved model accuracy. A final nomogram was
developed using the method with the greatest predictive accuracy
for individualized estimation of survival.
RESULTS

Demographics, Clinical Characteristics,
and Treatment of Patients
The entire study cohort consisted of 82 consecutive HGG
patients, who underwent PBRT at Shanghai Proton and Heavy
Frontiers in Oncology | www.frontiersin.org 3
Ion Center, between 6/2015 and 11/2019. All 82 patients
underwent tumor resection, then PBRT with concurrent TMZ
of the Stupp protocol. In total, 10 features, including age, sex,
symptom duration, tumor location, WHO grade, surgical
intervention, IDH status, MGMT promoter status, CTVhr
volume, and CTVlr volume, were collected from each patient.
The demographics, molecular markers and PBRT information of
the dataset are detailed in Table 1.

Survival Analysis of the Entire Cohort
of Patients
The median follow-up period was 16.6 months. At the last
follow-up, 37 patients (4 grade III, 33 grade IV) had tumor
progression. Progression-free survival (PFS) time was censored
for 45 patients (54.9%). The 6-, 12-, and 18-month PFS rates
were 93.4%, 68.3%, and 46.6% for the total dataset, respectively.
The entire cohort was exclusively split into a training set and a
testing set of 65 patients (79.3%) and 17 (20.7%) patients,
TABLE 1 | Characteristics of all 82 patients, their condition, and treatment.

Characteristics No. of patients (N = 82, %)

Sex
Male 48 (58.5%)
Female 34 (41.5%)

Age (years)
Median 55.5
Range 19–76

KPS before radiotherapy
>80 64 (78.0%)
≤80 18 (22.0%)

Tumor Location
Lesion involving the SVZ 58 (70.7%)
Lesion not involving the SVZ 24 (29.3%)

Histology grade (WHO grade)
Grade IV 59 (72.0%)
Grade III 23 (28.0%)

Surgical intervention
Partial resection/Biopsy 17 (20.7%)
Subtotal resection 36 (43.9%)

Total resection 29 (35.4%)
MGMT promoter
Methylated 27 (32.9%)
Un-methylated 31 (37.8%)
N/A 24 (29.3%)

IDH mutation
Wild type 16 (19.5%)
Mutant type 66 (80.5%)

CTVhr volume (cm3)
Median 98.47
Range 3.72–300.89

CTVlr volume (cm3)
Median 220.32
Range 24.00–494.21

Doses of particle radiation (GyE/fractions)
Proton-60GyE/30 48 (58.5%)
Proton-50 GyE/25+ C-ion-10-12GyE/4-5 14 (17.1%)
Proton-60 GyE/30+ C-ion boost to 9–18 GyE/3 18 (22.0%)
Proton-34 GyE/10+ C-ion boost 9 GyE/3* 2 (2.4%)
October 2020
*For patients ≥ 65 years only. CTVhr, Clinical target volume of high risk; CTVlr, Clinical
target volume of low risk; GyE, Gray relative biological equivalent; IDH, Isocitrate
dehydrogenase; KPS, Karnofsky Performance Score; MGMT, O[6]-methylguanine-DNA
methyltransferase; SVZ, Subventricular zone.
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respectively. No significantly different PFS was revealed between
the training and testing datasets by Kaplan-Meier survival curve
(P = 0.680, Figure 1).

Comparing the Performance of Cox
Proportional Hazard Model With
Random Survival Forest
The training set was utilized to build CPH and RSF model. The
prediction performance of different models was compared in
testing set with both C-index and BS. Figures 2A, B respectively
illustrated the C-index and BS plots for PFS at various time
points. The integrated C-index of CPH and RSF model was
62.9% and 61.1%, respectively. The integrated BS of CPH and
RSF was 0.159 and 0.174, respectively (reference = 0.181). Figure
3 showed the PFS probability with a series time points at 6-, 12-,
18-, and 24- month for each individual in the testing cohort,
Frontiers in Oncology | www.frontiersin.org 4
based on the predicting results of CPH (Figure 3A) and RSF
(Figure 3B) models.

Identification of Prognostic Factors Using
CPH and Random Survival Forest
The clinico-pathological features were compared for the
correlation to PFS in the training set. According to the CPH
model (Table 2), univariate analysis documented that age (P =
0.024), WHO grade (P = 0.020), IDH gene (P = 0.019), and
MGMT promoter status (P = 0.040) were significantly correlated
with PFS; multivariate analysis showed that age (P = 0.041),
surgical completeness (P = 0.084), IDH gene (P = 0.057), and
MGMT promoter (P = 0.092) had a significant or trend toward
the relation with PFS. The RSF model (Figure 4) ranked the
features in order of importance for PFS, with merely age and
IDH status being significantly important variables; meanwhile,
FIGURE 1 | Kaplan-Meier survival curves of progress-free survival for the training and testing set.
October 2020 | Volume 10 | Article 551420
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A B

FIGURE 2 | Plots of concordance index (C-index) and brier score (BS) for comparing Cox proportional hazards (CPH) models and random survival forest (RSF) in
the testing dataset. (A) Plot of C-index; (B) Plot of BS.
A B

FIGURE 3 | The probability of progress-free survival for each individual in the training data set, according to the results of Cox proportional hazards model (A) and
random survival forest model (B).
Frontiers in Oncology | www.frontiersin.org October 2020 | Volume 10 | Article 5514205
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tumor grade showed negative importance, meaning that
removing a given feature from the model actually improved
the performance.

Nomogram Based on Cox Proportional
Hazard Model for Individual PFS
Prediction
Given that the CPH model outperformed RSF model in both
discrimination and calibration, a nomogram was built on the
Frontiers in Oncology | www.frontiersin.org 6
base of CPH model to predict the progression probability of
HGG patients underwent PBRT at individual level. The variables,
including age, MGMT promoter, IDH gene, WHO grade and
surgical completeness, that were indicated as significant in
univariate analysis or significant (or trend forward) in
multivariate analysis, were utilized to conduct the nomogram.
In the present nomogram (Figure 5), each of the variables was
given a point according to hazard ratio (HR). By adding up the
total score from each variable and locating it onto the total points
TABLE 2 | Cox proportional hazard regressions for progression-free survival in the training set.

Variables* Uni-variate analysis Mulit-variate analysis

HR (95% CI) P- value HR (95% CI) P- value

Sex 1.299 (0.616–2.738) 0.492 1.229 (0.510–2.965) 0.646
Age 1.040 (1.005–1.075) 0.024 1.040 (1.002–1.081) 0.041
KPS 1.665 (0.7356–3.770) 0.221 2.233 (0.788–6.321) 0.131
WHO Grade 3.468 (1.200–10.020) 0.020 1.450 (0.418–5.034) 0.559
Tumor Location 0.435 (0.162–1.167) 0.098 0.554 (0.178–1.721) 0.307
Surgical Completeness 1.177 (0.721–1.922) 0.515 1.835 (0.923–3.647) 0.084
IDH gene 4.281 (1.289–14.220) 0.019 4.158 (0.958–18.051) 0.057
MGMT promoter 2.387 (1.041–5.472) 0.040 2.555 (0.857–7.622) 0.092
CTVhr 1.003 (0.998–1.009) 0.253 1.011 (0.997–1.026) 0.123
CTVlr 1.002 (0.999–1.006) 0.236 0.994 (0.985–1.003) 0.195
October 2020 | Volume 10 | Articl
*The variables were compared in the following ways: sex, female as reference; age as continuous variable; KPS, >80 as reference; WHO grade, grade III as reference; Surgical
Completeness, gross total resection as reference; IDH gene, mutant-type as reference; MGMT promoter, methylation as reference; CTVhr (CTVhighrisk), volume as continuous variable;
CTVlr (CTVlowrisk), volume as continuous variable. CI, Confidence interval; CTVhr, Clinical target volume of high risk; CTVlr, Clinical target volume of low risk; GyE, Gray relative biological
equivalent; HR, Hazard ratio; IDH, Isocitrate dehydrogenase; KPS, Karnofsky Performance Score; MGMT, O[6]-methylguanine-DNA methyltransferase; SVZ, Subventricular zone.
FIGURE 4 | Variable importance of indicated by random forest survival model.
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scale, the probability of 6-, 12-, and 18- month PFS would
be obtained.
DISCUSSION

Prognosis prediction plays a critical role in clinical and personal
decision-making for HGG patients, particularly in the condition
of considering the rare source of PBRT as alternative treatment.
There have been attempts to conduct traditional statistics and
ML methodology to predict individual survival. CPH and RSF
model are extensively used in application of cancer survival that
generally refers to time-to-event censored data. The main
objective of this study was to compare the performance
between CPH and RSF models for predicting HGG’s
progression underwent PBRT. Our results showed that CPH
model present better fit to predict individual PFS in accuracy,
precision, and interpretability. Then, we constructed an
individual prediction research tool of nomogram based on
CPH model for PFS in HGG patients treated with PBRT.
Frontiers in Oncology | www.frontiersin.org 7
The main advantage of our study is that it approached
progression prediction based on a time-to-event dataset.
Indeed, there is increasing studies integrating various ML
algorithms into improving the predictability of prognosis for
cancer. However, most of ML approaches assume that event
status is known for all subjects with the utility limited to
continuous or binary model. Indeed, right-censored data,
referring to the follow-up ends on a subject prior to a patient
experiencing an event (i.e., tumor progression or death), is
universal in cancer survival. In application of ML approaches
analyzing cancer survival, common strategy is to split the
patients’ outcome into ordered categorical data based on
measuring the disease status at a particular time point.
However, this relatively ad hoc method does not take the
element of time-to-event into account, can merely provide
point estimates of outcome and may incur the risk of biasing
predication accuracy in the clinical realm (24). The method of
RSF utilized in the present study is an extension of random forest
for time-to-event data, represents an attractive ML approach that
allows for the computation of personnel-level survival prediction
FIGURE 5 | A nomogram of predicting the probability of 6 month-, 12 month-, and 18 month- progression free survival (PFS) at personnel level. The scores of each
variable are as follows: age (years) presented as continuous value, MGMT promoter (1 = methylation, 2 = unmethylation/not known), IDH gene (1 = mutant, 2 = wild),
WHO grade (3 = Grade III, 4 = Grade IV), resection completeness (1 = gross total resection, 2 = non gross total resection).
October 2020 | Volume 10 | Article 551420
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through more granular insight and mitigates the systemic bias
associated with incomplete follow-up.

Another advantage of our study is that the performances of
different models were graphically compared with a comprehensive
aspect of discrimination and calibration at various time points,
rather than a fixed time. Discrimination represents the ability of a
model to separate observations on subjective-level, whereas
calibration is a descriptor of a predictive model that
characterizes the agreement between the observed and predicted
outcome on a population level. C-index, the main metric
quantified of discrimination in this study, reflects the
probability that for a random selection of any 2 HGG patients,
the patient with earlier tumor progression is ranked with higher
risk of progression according to the model. Hence, the C-index
takes into account of both the occurrence of the event and the
length of follow-up and is particularly well suited for time-to
event data analysis. Indeed, any model (i.e., CPHmodel) with the
ability to forecast properly ordered but proportional event times
can score high value of C-index (25). Hence, the evaluation of
calibration, another metric of prediction accuracy, is essential but
unfortunately under-explored in time-to-event models for many
studies. Even in studies that performed the assessment of
calibration, the method of a calibration plot can only provide
information at a specific time point (e.g., 1-year survival
probability). Here, in our study, we presented a measurement
of BS plot to assess the model performance at various time
points. In precise, the BS measures the mean squared difference
between the predicted progression probability and the actual
outcome for all HGG patients at group level. Note that BS takes
on a value between 0 and 1, and the lower of BS indicates that
better predictions are calibrated.

The most important finding of the present study is that CPH
outperformed RSF with both C-index and BS in the predictability
of progression for HGG patients underwent PBRT in a relatively
small sample. In terms of C-index, our result was consistent with
a study enrolling 289 cases as a testing set and 98 cases as a
validation test conducted by Gittleman et al. (16), in which C-
index for predicting survival of lower-grade glioma at 60, 90, and
120 months were measured for CPH (0.844, 0.843, 0.841) and
RSF (0.806, 0.791, 0.782), respectively. However, it is still
controversial which method can consistently achieve better
accuracy of predicting prognosis via the measurement of C-
index in glioma. Audureau et al. (26) conducted a retrospective
multi-centric study enrolling 777 patients with recurrent
glioblastoma, split into a training set of 407 cases and an
external validation set of 370 cases; the results presented the
discrimination C-indexes of CPH and RSF as 69.80% and 70.14%
in the external validation set, respectively. Based on a larger
population from the Surveillance, Epidemiology, and End
Results (SEER) database that comprised 20,821 glioblastoma
cases split into a training and validation test set with an 80/20
ratio, Senders et al. (14) revealed the integrated C-index of CPH
and RSF as 0.69 and 0.68, respectively. On the hands of model
calibration, neither of the studies performed such analysis. All
these three studies lack the assessment of BS, or any other
methods of calibration, for the comparison of CPH and RSF.
Frontiers in Oncology | www.frontiersin.org 8
Our study, to our knowledge, is the first study to directly
compare the discrimination and calibration for CPH and RSF
in glioma.

In looking at variables with significant relation to survival in
our results, CPH model documented that age, MGMT promoter,
surgical completeness, IDH gene and KPS had a significant or
trend toward relation with tumor progression. In comparison,
only IDH status and age were indicated with significant
importance affecting PFS according to the RSF model. It
should be noted that all the significant variables in our CPH
model are well-known prognostic factors in the clinical decision-
making of HGG. In brief, the CPH model identified more
statistically significant prognostic factors that are generally
considered important in decision making in a clinical setting.
Hence, we believe that CPHmodel had a better interpretability as
compared to RSF in terms of exploring the critical factors for
predicting tumor progression after PBRT. There is a possibility
that the relatively small sample and/or the different mathematical
underpinnings contributed to this different effect. In principle,
RSF model is based on searching for the best variables used to
split the node by maximizing the log-rank methods, and the
variable importance refers to a measurement of the increase of
predicting error when perturbation is added to the variable.
While in CPH model, the importance of variables can be
interpreted as HR and P-value. Indeed, one common drawback
of RSF is a bias toward inclusion of variables with many split
points that may lead to a bias in resulting summary of variable
importance (27–29).

We also constructed a nomogram based on CPH model due
to its superior performance over RSF model. As a pictorial
representation that uses various potential prognostic markers
to depict a scoring model, nomogram is provided as a visual tool
to generate a probability of a clinical outcome for a given
individual. Patients’ survival-related nomograms for HGG have
been developed in series of studies (30–35), but with a common
drawback that some critical patient-related, tumor-related or
treatment-related information were not incorporated. Moreover,
all these studies were only applied for patients treated with
photon-based radiotherapy, but not PBRT. In the context of
PBRT, previous results from Germany and Japan showed that
photon radiation combined with carbon ion boost improved the
outcome of HGG patients (3); and recently, we reported our
early experience with an encouraging efficacy of PBRT in HGG
(4). It is well known that PBRT has been increasingly spread
worldwide to treat cancer, and great expectation has been placed
with PBRT to improve the dismal outcome of HGG. The present
nomogram in our study can provide a tool of reference for
counseling PBRT as a treatment option for HGG based on
common-used prognostic markers, and may be informative of
future precise medicine of PBRT in HGG.

There are several limitations of this study to be discussed.
First, due to the retrospective nature of this study, our results
were derived from a relatively limited observation database that
may introduce some inevitable bias. Statistically, it is of better
generalizability to compare methods with a prospective design,
or at least external validation dataset. Meanwhile, with a phase III
October 2020 | Volume 10 | Article 551420
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clinical trial going in our institution (36), the present study
provided a blueprint of methodology to perform a prospective
validation in the future. Second, our study was designed as a
purely academic research to compare the prediction
performance of CPH and RSF in discrimination, calibration
and interpretability. The present nomogram based on CPH
model should not be directly implemented in the clinical
practice prior to a prospective validation. Nevertheless, based
on our results, we recommend evaluating fitted ML models on
several criteria rather than a singular focus on prediction
accuracy. Third, though the variables in our studies consisted
of systematical information occupying important role in the
management of HGG, it should be noted that the critical issue
of inherent high heterogeneity within HGG could not be well
settled through these features. Noticeably, radiomic, particularly
referring to functional brain imaging technique, can provide an
integrative and dynamic view of the whole tumor tissue and serve
as a reliable tool to tackle the issue of heterogeneity. In this
context, our ongoing phase III trial adopts multi-modal imaging,
including MET-PET, perfusion weighted imaging (PWI),
diffusion tensor imaging (DTI), and MR spectroscopy (MRS),
for each patient (36). Thus, more comprehensive models that
include imaging parameters will be assessed in the future.
CONCLUSION

This study indicated a superior accuracy of CPH as compared to
RSF in a relatively small sample data of HGG patients for
predicting tumor progression after PBRT. As more approaches
about ML techniques are implemented to glioma prognostication
purposes, comprehensive criteria with discrimination and
calibration, as well as interpretability, is recommend in
evaluating fitted models for clinical deployment.
Frontiers in Oncology | www.frontiersin.org 9
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