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Summary. Background: Public health systems today face the dual challenges of controlling infections and 
curbing the increase in antimicrobial resistance manifested in drug-resistant microorganisms in hospitals and 
elsewhere. In the last ten years, research has been conducted to develop new materials with antimicrobial 
properties to be used in medical devices, increasingly found to harbour critical nosocomial infections. Meth-
ods: Two next-generation composites using the antimicrobial qualities of silver were tested against Escherichia 
coli, Staphylococcus aureus and Candida albicans with the purpose of evaluating their antimicrobial and anti-
fungal activity. These tests applied the standardized method according to ISO-2216: Plastics-Measurement 
of Antibacterial Activity on Plastics Surfaces. Testing was carried out using polyethylene (PE) enriched with 
AgNO3 as a positive control and PE as a negative control. Results: The antimicrobial activity of the compos-
ites proved to be between medium (bacteriostatic) and very good (bactericidal). In particular, PE2 showed 
the highest scores against all microorganisms, with values ranging from good to very good. Instead, PE1 had 
lower scores, with a value of medium for Escherichia coli and slight for Candida albicans. Statistical analysis 
carried out with the t-test for unpaired data showed a statistically significant difference between the positive 
control and the other polymers (p< .0001). Conclusions: Based on our findings, we conclude that the test, con-
ducted to ISO-2216 standards, could be extended to include fungal strains and that the new composites could 
be used to produce antimicrobial surfaces for medical devices, for example, intubation tubes, urinary catheters, 
vascular prostheses, and mechanical heart valves. This would reduce the risk of microbial contamination and 
biofilm formation, ensuring better health outcomes for patients treated with these devices. Further testing 
should be done to evaluate potential future applications of these composites and the possibility of adding 
fungal strains to the IS0-2216 standard. (www.actabiomedica.it)
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Introduction

Even today, infectious diseases, especially in hos-
pitals, continue to present a major public health prob-
lem with socio-economic and cultural consequences 
(1-5). Even though the standards of health care and 

medical technology have risen significantly, the World 
Health Organization (WHO) declared that infections 
occur in 15% of patients under medical care in hospi-
tal, particularly in Intensive Care Units (ICUs) (2,6).

In 2015, the European Center for Disease 
Control reported that 8.3% of hospitalized patients in 

O r i g i n a l  a r t i c l e
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intensive care for more than two days acquired at least 
one healthcare associated infection (HAI). Specifically, 
6% of patients were affected by pneumonia, 4% by 
bloodstream infections (BSI), and finally 2% by urinary 
tract infections (UTIs) (7). Intubation is the cause 
of infection in 97% of patients, catheters have been 
associated with 43% of BSIs, and urinary catheters 
with 97% of UTIs (7). Regarding the most common 
bacteria, Pseudomonas aeruginosa was identified in 
pneumonia episodes, Staphylococcus spp in bloodstream 
infections, and Escherichia coli in urinary catheter 
infections. In fact, the surfaces of medical devices that 
remain in place for days provide a substrate for biofilm 
production and the growth of these microorganisms 
(4-7). In the last decade, Candidemia has also been 
defined as a severe and often life-threatening infection. 
Candida strains can cause invasive candidiasis (IC) in 
tertiary care hospitalized patients and also in catheter-
associated urinary tract infections (CAUTI) (11,12). 

Hospital-acquired infections can be caused by 
contamination due to incorrect conduct on the part of 
healthcare workers, for example, failure to wash their 
hands properly, to store food at the correct tempera-
ture, or prepare it in properly hygienic conditions (11-
14). This superficial attitude can be attributed to the 
high levels of stress to which these professional cat-
egories are subjected and the speed required for the 
performance of their duties (15-24). 

Another factor in the spread of infections is the 
public’s limited awareness and understanding of the 
proper use of medicines. Better education about this 
would improve the effectiveness of treatment and re-
duce costs for patients and society, thus avoiding risks 
for health and the waste of resources (25, 26). One of 
the first steps to take in encouraging the correct use 
of medicines is to improve the public’s health literacy, 
defined by the WHO as “the cognitive and social skills 
which determine the motivation and ability of indi-
viduals to gain access to, understand and use informa-
tion in ways which promote and maintain good health” 
(27,28). One area in particular to be improved is the 
understanding of the medical terminology commonly 
used in manuals or package inserts.

Furthermore, in the last decade the over-prescrib-
ing of antibiotics or their misuse by patients has in-
creased the risk of hospital infections caused by drug-

resistant microorganisms (29). The WHO has recorded 
an increase in antimicrobial resistance (AMR) among 
clinical bacteria and has defined this phenomenon one 
of the most critical threats for human health, in par-
ticular in vulnerable patients (29). 

At the same time, the European Center for Dis-
ease Control highlighted the very rapid increase of 
infections caused by bacteria like carbapenemase-pro-
ducing Enterobacteriaceae (CPE) in patients hospital-
ized in Italian and in European institutions from 2014 
to 2017 (30-32). Therefore, public health services are 
facing a double challenge: controlling infections and 
limiting AMR diffusion (33, 34).

As part of the efforts to tackle these problems, 
researchers have been developing polymers with anti-
microbial activity, and in the last decade, a new group 
of materials including antimicrobial peptides (AMPs), 
cationic synthetic polymers, and nanoparticles has 
been created (7, 35). In particular, antimicrobial-bio-
compatible polymers have been developed for medical 
devices in order to prevent the formation of biofilms 
and the insurgence of nosocomial infections, and as 
such provide an innovative method to combat these 
problems that is both gentle and safe. Two types of 
antimicrobial polymers can be used for the production 
of medical devices: polymers that already exhibit an-
timicrobial activity and polymers that are modified to 
confer antimicrobial properties (10). 

In particular, among the wide range of existing 
antimicrobial plastics, metal-polymer-nano compos-
ites and in particular silver-polymers are the subject 
of increasing interest (36,37). Silver compounds are 
known to show strong antibacterial activity towards 
a broad spectrum of bacteria, and the interest in sil-
ver derivatives and their potential application as an-
timicrobial agents has led researchers to investigate 
different classes of ligands in order to obtain novel 
silver(I) complexes. The aim of this study was to evalu-
ate possible antibacterial and antifungal activity of 
new silver-containing polymers (I) synthesized by the 
Chemistry Department of the University of Camerino 
(UNICAM), specifically as a potential antibacterial 
and antifungal agent to embed in plastics. The results 
obtained against Escherichia coli and Staphylococcus au-
reus were compared with the results obtained against 
Candida albicans. 
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Methods 

1. Novel composites containing silver (I) acyl 
pyrazolonate additives

The polyethylene composite materials named 
PE1 and PE2 were prepared, by the Chemistry De-
partment of UNICAM. PE1 was obtained by mixing, 
at 150 °C, the complex [Ag(Qfb)]n with polyethylene  
in a 1:1000 weight ratio, the final product was shaped 
into 50x50 mm square (10 mm thick). PE2 was simi-
larly obtained by using the complex [Ag(Qcy)]n which 
differs only for the R substituent (Figure 1). The de-
tailed preparation procedure and the complete charac-
terization have been previously reported (39, 40). 

The antimicrobial action of the composite materi-
als PE1 and PE2 has been tested against two micro-
bial strains (E. coli, S. aureus) and one fungal strain (C. 
albicans).

Molecular structures of silver(I) acylpyrazolonato 
additives 1 and 2, respectively used in the composite 
polyethylene materials PE1 and PE2. 

2. ISO-2216: Plastics-Measurement of Antibacterial 
Activity on Plastics Surfaces

The antimicrobial activity by contact exerted by 
each of the PE composites was measured according to 
ISO standard-2216 (ISO-22196: Plastics – Measure-
ment of Antibacterial Activity on Plastics  Surfaces) (38). 
Square pieces of the composites measuring 50x50 mm 
(10 mm in thickness) were tested against two bacteria 

strains and one fungal strain in triplicate: (Gram-posi-
tive) Staphylococcus aureus ATCC 25923, (Gram-nega-
tive) Escherichia coli ATCC 25922 and the fungal strain 
Candida albicans ATCC 24433. Unloaded PE samples 
were used as negative control; PE loaded with AgNO3 

was used as positive control. The appropriate culture 
medium was inoculated with the test microbes and 
cultivated for 24 h at 35±1°C under aerobic conditions 
to achieve the concentration of 107 CFU/mL. Bacte-
rial suspensions (0.4 mL) were inoculated onto the test 
surface (in triplicate) and the inoculums were covered 
with a piece of polyethylene film (40x40mm), gently 
pressed down to spread the inoculum to the edges. The 
Petri dishes containing the inoculated test specimens 
were incubated at (35±1)°C with a relative humidity 
of no less than 90% for 24±1h. After the incubation 
time, the inoculum was processed by adding 10 mL 
SCDLP broth (Soybean casein digest broth with leci-
thin and polyoxyethylene sorbitan monooleate). From 
the SCDLP broth, tenfold serial dilutions were made 
in phosphate-buffered physiological saline (PBS-
saline) and aliquots of 1 mL for each dilution were 
placed in Petri dishes, and 15 mL of plate count agar 
(PCA) was added to disperse the bacteria. The invert-
ed Petri dishes were incubated at (35±1)°C for 48 h. 
After incubation, the number of colonies in the Petri 
dishes was counted. The number of bacteria surviving 
on the specimens tested was compared to the number 
of colonies present on the negative controls. Antimi-
crobial performance (R) was determined according to 
the Japanese industrial standards method (JIS L-1902: 
2002, Testing Method for Antibacterial Activity of Tex-

Figure 1. 
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tiles) (41) and based on the following classification: 
no antimicrobial activity = ≤0.5 log microbial growth 
reduction (<68.4% reduction); slight antimicrobial ac-
tivity = 0.5-1log microbial growth reduction  (<68.4% 
to<90% reduction); medium antimicrobial activity 
= >1 to ≤ 2 log microbial growth reduction (90% to 
<99% reduction); good antimicrobial activity = 2 to <3 
log microbial growth reduction (99% to <99.9% reduc-
tion); very good antimicrobial activity = >3log micro-
bial growth reduction (>99.9% reduction). In addition, 
the % of reduction was interpreted for bacteria strains 
in terms of the bactericidal activity (>99.9% of inocu-
lum reduction) or bacteriostatic activity (90 to 99.9% 
of inoculum reduction) of each composite.

3. Statistical analysis

To verify whether there may be a difference be-
tween the resilience and coping values before and after 
rescue, the unpaired t-test was used and data was pro-
cessed with the XLstat software (XLSTAT. Statistical 
software and data analysis add-on for Excel. Addinsoft 
(2017)) (42). 

Results 

To verify the antimicrobial activity of the loaded 
composites by contact, the results of the experiments 
were elaborated according to the JIS L-1902:2002: 
Testing Method for Antibacterial Activity of Textiles 
(41), applying the standardized method (ISO-2216) 
(38). After an incubation of 24h, the data obtained 
relating to microbial charge found on different types 
of composites was transformed into logarithmic units 
to calculate antimicrobial performance as Log reduc-
tion (R value). The evaluation of bactericidal, bacterio-
static and antifungal activity provided us with much 
more detailed information about the behavior of the 
substances tested against two microbial and a fungal 
species. 

In general, an inhibition of microbial growth on 
the contact surface between the PE composite squares 
and the inoculums of the microorganisms was revealed. 

Our data show that within 24h of exposure, both 
PE1 and PE2 exhibited antimicrobial activity against 

both bacteria, ranging between a medium and very 
good level, in line with the behavior shown by the 
positive control (PEAgNO3). Tested against C. al-
bicans, PE1, unlike PE2, showed only slight activity, 
measuring between 68% and 90%. The positive control 
(PEAgNO3) achieved a medium-good antibacterial 
performance against all bacteria strains.

In detail, tested against E. coli, composites PE1 
and PE2 show bacteriostatic activity (<99.9%), with 
PE2 performing better than PE1 (Figure 2). In fact, 
PE1 achieved an R value from 90% to <99%, cor-
responding to good antimicrobial performance. The 
R value of PE2, instead, was within 99% to 99.9%. 
In addition, compared with the positive control 
(PEAgNO3), PE1 achieved only 1.59 log microbial 
growth reduction, whereas PE1 showed a value of 2.81 
against the 2.21 reached by PEAgNO3 (Figure 2).

Tested against S. aureus, composites PE1 and PE2 
achieved very good antimicrobial performance, corre-
sponding to bactericidal activity largely exceeding a log 
value of 3. Instead, PEAgNO3 showed only a medium 
antimicrobial performance, with a range of antimicro-
bial performance from 90% to <99% (Figure 3). 

Tested against Candida albicans, only PE2 
achieved good antimicrobial performance. PE1 showed 
only slight antimicrobial activity. The observation that 
PE2 and PEAgNO3 had similar activity suggests that 
the ISO standard test can be used to test new polymers 
against fungi (Figure 4). 

Figure 2. R-values obtained for Escherichia coli; unpaired t test 
of PE1 vs PAgNO3 was t=131.5 with a ***p value< .0001, and 
of PE2 t=127.3 with a ***p value <.0001
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Discussion  

All experiments performed on the composites 
against two bacterial and one fungal strain in accord-
ance with the ISO 22196:2007 (38) confirmed the an-
timicrobial and antifungal activity of all polymers test-
ed. In general, the results showed that the composites 
embedded in PE maintain the broad-spectrum activity 
of silver, targeting both gram-positive (Staphylococcus 
aureus) and gram-negative (Escherichia coli) bacteria 
and the Candida albicans fungus.

The positive results of the contact test, [standard-
ized by the ISO 22916:2007 (38)], against two bac-
teria strains and also against a fungal strain (Candida 
albicans) suggest that these composites can be used 
against fungal strains as well. In depth, analysis of the 
results indicates some differences between the antimi-
crobial activities displayed by the various PE compos-
ites. The most important result was recorded for PE1, 
which showed very good antimicrobial performance 
measured as bactericidal activity against Escherichia coli 
and Staphylococcus aureus, and the highest performance 
(good) against Candida albicans. Even though PE1 
showed only medium and slight performance against 
Candida albicans and Escherichia coli respectively, it 
performed very well against Staphylococcus aureus. 

The higher performance of PE1 may indicate that 
the mechanism of interaction between this compos-
ite and the bacteria cell is stronger than that of the 
PE2 composite. The silver in the structure of polymer 
1 probably exhibits stronger antimicrobial activity. In 
fact, the hypothesis that silver may act against micro-
organisms (43) is based on the observation that the 
oxidized form of silver (Ag+) can bind strongly to thi-
ols, phosphates, and other electron donating function-
al groups, in an interaction that disrupts the microbial 
cell membrane, causing leakage of cellular contents 
and finally cell death. A consequence of this interac-
tion is the disruption of the cell membrane, followed 
by the leakage of cellular contents and finally microbial 
cell death (44).

Our results confirmed the possible application of 
the novel polymers to control nosocomial infections 
and AMR. In fact, new polymers characterized by 
antimicrobial activity are being investigated for use as 
materials for medical devices (45). In particular, silver 
has been widely used as an alternative antimicrobial 
agent in medical devices such as vascular prostheses, 
urinary catheters, and mechanical heart valves, and the 
results obtained in the present research confirm this 
application (46,47). 

In addition, this feature is useful in that the vari-
ous PEs can be used in place of plastic composites of 
AgNPs, in order to avoid the negative side effects of 
the latter, such as silver release and harmful environ-
mental impact. “Contact action by polymer/polymer 
composites,” achieved by embedding insoluble silver 

Figure 3. R-values obtained for Staphylococcus aureus; Unpaired 
t test of PE1 vs PAgNO3 was t=983.6 with a ***p value< .0001, 
and of PE2 t=1041 with a ***p value <.0001

Figure 4. R-values obtained testing PE, PE1, PE2 and PAg-
NO3 against Candida albicans; unpaired t test of PE1 vs PAg-
NO3 was t=575.29 with a ***p value<.0001, and of PE2 t=26.99 
with a ***p value <.0001



Evaluation of the antimicrobial activity of novel composite plastics containing containing two silver (I) additives 375

(I) coordination polymers in a polymeric matrix offers 
a new concept in the field of plastics endowed with 
permanent antimicrobial activity. Thus our composite 
plastics may prove useful in a number of different situ-
ations in which the accumulation of unwanted mate-
rial is often overlooked. 

Conclusions

In the last decade, there has been increased re-
search to develop new antimicrobial polymeric materi-
als free of negative effects on human health. Study of 
the mechanisms of interaction between such polymers 
and microorganisms should move forward with the use 
of standardized protocols. For this reason, we tested the 
antimicrobial and antifungal activity of two silver (I) 
coordination polymers, applying the standard meth-
odology reported in ISO-22196: Plastics – Measure-
ment of Antibacterial Activity on Plastics  Surfaces. 
For future clinical applications, it will be important to 
test the composites against clinically isolated microbes, 
especially multidrug-resistant strains, and evaluate the 
in vitro and in vivo biocompatibility of composites.
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