
sensors

Article

Hyperspectral Remote Sensing Image Classification
Based on Maximum Overlap Pooling Convolutional
Neural Network

Chenming Li 1 , Simon X. Yang 2 , Yao Yang 1, Hongmin Gao 1,* , Jia Zhao 1, Xiaoyu Qu 1,
Yongchang Wang 1, Dan Yao 1 and Jianbing Gao 1

1 College of Computer and Information, Hohai University, Nanjing 211100, China;
lichenming55@163.com (C.L.); rcyyang@hhu.edu.cn (Y.Y.); zhaojia925@163.com (J.Z.);
quxiaoyu@hhu.edu.cn (X.Q.); wangyongchang@hhu.edu.cn (Y.W.); Yao__Dan@163.com (D.Y.);
15195891861@163.com (J.G.)

2 School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada; syang@uoguelph.ca
* Correspondence: banjamin2006@163.com

Received: 27 September 2018; Accepted: 20 October 2018; Published: 22 October 2018
����������
�������

Abstract: In a traditional convolutional neural network structure, pooling layers generally use an
average pooling method: a non-overlapping pooling. However, this condition results in similarities
in the extracted image features, especially for the hyperspectral images of a continuous spectrum,
which makes it more difficult to extract image features with differences, and image detail features are
easily lost. This result seriously affects the accuracy of image classification. Thus, a new overlapping
pooling method is proposed, where maximum pooling is used in an improved convolutional neural
network to avoid the fuzziness of average pooling. The step size used is smaller than the size of
the pooling kernel to achieve overlapping and coverage between the outputs of the pooling layer.
The dataset selected for this experiment was the Indian Pines dataset, collected by the airborne
visible/infrared imaging spectrometer (AVIRIS) sensor. Experimental results show that using the
improved convolutional neural network for remote sensing image classification can effectively
improve the details of the image and obtain a high classification accuracy.

Keywords: remote sensors; hyperspectral remote sensing image; image classification; convolution
neural network

1. Introduction

Hyperspectral remote sensing imaging is one of the hottest issues in the field of remote sensing.
Remote sensing refers to the non-contact, remote detection of the radiation and reflection characteristics
of electromagnetic waves of objects by means of sensors [1]. Hyperspectral remote sensing images (HSI)
are obtained by high-resolution optical sensors; these images generally consist of tens or even hundreds
of different spectral bands of the same remote sensing target and can be viewed as a three-dimensional
(3D) dataset [2]. Continuous data can be obtained spatially and spectrally. HSIs contain a large amount
of data and can provide hundreds of continuous and subdivided spectral bands. Therefore, HSI has
good application prospects.

The development of hyperspectral remote sensing technology mainly benefits from the
development and maturity of imaging spectrum technology. So far, more than 40 sets of international
aviation imaging spectroradiometer are in running state, including AVIRIS, developed by NASA’s
jet laboratory, HYDICE, developed by the U.S. naval research laboratory, ROSIS, developed by the
reflection imaging spectrometer in Germany, FTHSI, represented by the third-generation hyperspectral
imager, and Hyperion, aboard the EO-1 earth observation satellite launched by the U.S. [3].
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The development of imaging spectrometer in China is closely following the international development.
For example, airborne imaging spectrometers PHI and OMIS [4] have been successfully developed in
China. They can obtain spectral information of 224 and 128 continuous bands, respectively. PHI and
OMIS show the advanced level of the Asian imaging spectrometers among the many high-light spectral
imaging equipment independently developed by China. Therefore, it can be seen that the short-wave
infrared hyperspectral camera is at the forefront of the international imaging spectrum research.

Most scholars initially used traditional processing methods, such as the support vector machine
(SVM) [5], k nearest neighbor classification algorithm (KNN) [6], and the Bayesian network [7], for HSI
to classify surficial objects. However, these classification results were not ideal. In recent years, deep
learning has received a considerable research attention from scholars, such as the Deep Belief Nets
(DBN) [8], Restricted Boltzmann Machine (RBM) [9] and Automatic encoder (AE) [10]. In particular,
convolutional neural network (CNN) has been confirmed to exhibit an excellent image processing
performance [11–14]. However, in the traditional CNN structure, pooling layers generally adopt
average pooling and are non-overlapping pools [15]. This structure mainly refers to using a fixed-size
sampling window in the pooling layer to perform an average pooling operation on all non-overlapping
fixed-size regions in the convolutional layer and output corresponding feature maps. However, using
non-overlapping average pooling tends to result in unclear and difficult-to-distinguish extracted image
features and a serious loss of image detail features, thereby affecting the subsequent classification
accuracy. To avoid this problem, many scholars have selected to adopt the largest pooling method.
For example, Serre et al. applied two-dimensional (2D) maximum pooling for optimization [16],
and Fu et al. proposed a 3D maximum pooling method [17]. However, these researchers did not
observe the effect of the relationship between the step and pooling nuclear sizes on classification
accuracy. That is, when a step size is greater than or equal to a pooling nuclear size, the experimental
results are unsatisfactory, fine experimental results cannot be obtained, many details are overlooked,
expected requirements are unsatisfied, and considerable HSI information cannot be exploited.

To solve the abovementioned problems, in this paper, an improved convolutional neural network
structure was studied. Based on the Alexnet network, the pooling method was improved, in which
the maximum pooling was adopted in the pooling layer to avoid the fuzzy effect of average pooling.
In the maximum overlap pooling CNN, the step size was smaller than the size of the pooling kernel.
Thus, the output of the pooling layer overlapped and covered to form an overlapping pool, thereby
improving the details of the image and the classification accuracy. This study aims to propose an
improved remote sensing image classification algorithm on the basis of CNN and to extract valuable
feature information from this; experiments show that the proposed method is superior to the old one
in performance. This work is critical to improve the classification accuracy of HSI.

2. Convolutional Neural Network

The CNN is mainly composed of input, convolutional, pooling, fully-connected, and output
layers [18]. Figure 1 illustrates a typical model structure of a CNN.
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2.1. Convolutional Layer

The full connection of neurons between two adjacent layers is infeasible when the input of the
neural networks is an HSI. The convolutional layer and neurons in the upper layer are connected in
part through a local receptive field, because the full connection method disregards the spatial structure
of an input image. That is, the neurons of the next layer are connected to a certain part of the neurons
in the previous layer, and thus, indicate that the local features are extracted using the spatial structure
of the input image. In addition, the convolutional layer reduces the number of model parameters by
sharing weights and lessens the complexity of the network model. The convolutional layer in the
CNN is crucial for feature extraction. The feature obtained by the local receptive field method has an
invariance of translation, rotation, and scaling. The output of the convolutional layer is a feature map
of the convolutional layer in the network depicted in Figure 1.

Let the original image of the input of the CNN be P, then Fi is used to denote the feature map of
the i-th layer. A convolutional layer is assumed, and generation process can be described as follows:

If Fi represents a convolutional layer, then the Fi creation process can be defined as

Fi = f (Fi−1 ⊗ Wi + bi) (1)

where Wi represents the weight of the i-th layer convolution, bi represents the offset of the i-th layer,
⊗ represents the convolution of the i-th layer feature map using the convolution kernel, f represents
the activation function, and Fi represents the feature map of the i-th layer. In a conventional CNN,
a saturated nonlinear function, such as a sigmoid or a tanh function, is generally used as an activation
function, and the output value is mapped to (0, 1) or (−1, 1) through an activation function. The sigmoid
function is expressed as

f (x) =
1

1 + e−x (2)

and the tanh function is defined as

f (x) =
ex − e−x

ex + e−x (3)

their curves are shown in Figure 2.
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However, a saturation nonlinear function easily leads to explosion or disappearance of a gradient,
and the convergence is slow. Therefore, in the current CNN structure, an unsaturated nonlinear
function similar to the rectified linear unit (ReLU) function [19] was used as an activation function of
the convolutional layer, and ReLU function expression is f (x) = max(0, x). The curve is exhibited in
Figure 3.
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The ReLU can achieve sparse parameters through a simple thresholding activation function,
and the training is faster than the sigmoid and tanh functions.

The convolutional layer extracts different features of the input image through different-sized
convolutional kernels. An underlying convolutional layer mainly extracts low-level features, such as
lines, edges, and corners, whereas a high-level convolutional layer extracts advanced features, such as
clear semantic information, to improve the recognition accuracy.

2.2. Pooling Layer

The pooling layer is also called the downsampling layer [20]. This layer aims to achieve local
averaging and sampling. Pooling not only reduces the eigenvector dimension and the number of
parameters of a model but also reduces the sensitivity of the output features to factors, such as
translation, rotation, and scaling, to prevent overfitting. The combination of the pooling and
convolutional layers constitutes a two-time feature extraction structure, which strengthens the tolerance
of a network model for distortion and enhances the robustness of the model [21].

Pooling methods include mean, maximum, and random pooling. Mean pooling mainly averages
the pixels in a neighborhood and adopts a method for preserving the background information of an
image to reduce the error caused by an estimation variance given the limited size of the neighborhood.
Maximum pooling uses the maximum value of the pixels in the neighborhood to preserve image texture
information and reduce the error of an estimated mean value offset caused by convolutional parameter
errors. Random pooling between the mean and maximum pooling randomly selects the elements in
a pooling feature layer by the size of a probability value; the probability for selecting a large-valued
element is also high. In accordance with the pooling value, the pixel points are provided with a
corresponding probability, after which downsampling is performed in accordance with the probability.

According to the relevant theory, the error of feature extraction mainly comes from two aspects:
(1) the variance of the estimated value increases due to the size of the neighborhood constraints; (2) the
error of convolution layer parameters causes the deviation of the estimated mean. Generally speaking,
average pooling can reduce the first error and preserve more background information of the image.
Maximum pooling can reduce the second error and retain more texture information. Random pooling
is between the two. By assigning probability to pixels according to their numerical values, and then
sub-sampling according to the probability, it obeys the criterion of maximum pooling in the mean
sense and approximate to the mean pooling in the local sense.
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2.3. Fully Connected Layer

Several fully connected layers were added at the end of the CNN model after several convolutional
and pooling layers. Each neuron in the fully connected layer was fully connected to all neurons in the
previous layer, and the output value of the last fully connected layer was passed to the output layer
that is classified using SoftMax logistic regression classifier [22].

3. Hyperspectral Image Classification Based on Maximum Overlap Pooling CNN

A new hyperspectral image classification based on maximum overlap pooling CNN was designed
in this paper. This chapter mainly introduces the main structure of the CNN designed and the main
contributions made.

3.1. Major Improvement Methods and Advantages

Scholars have slightly focused on the influence of the relative relationship between step and
pooling nuclear sizes on the classification accuracy in previous works. Most scholars have opted
to equalize step and pooling nuclear sizes during experiments. We observed that, if the pooling
step is larger than the pooling kernel size, then the effect is close to the situation where the step and
pooling kernel sizes are equal. However, if the pooling step size is smaller than the pooling kernel size,
then the CNN classification accuracy will be improved. We considered that these results are due to the
outputs of the pooling layer will overlap and cover one another and form overlapping pools, thereby
improving the details of the image and the classification accuracy.

We used this method to design a maximum overlap pooling CNN in which the pooling layer used
the maximum pooling, and the step size was smaller than the pooling kernel size. Thus, the outputs
of the pooling layers overlapped and covered one another and formed overlapping pools. Therefore,
the details of the image were improved, and favorable experimental results were obtained.

3.2. Training Model Design

The CNN training process is mainly divided into two phases. The first stage is the forward
propagation stage, consisting of:

(1) Select training samples.
(2) Randomly initialize weights, offsets, and error thresholds, and set a learning rate. The learning

rate will affect the weight adjustment range. An excessive learning rate will cause the adjustment of
the weights to omit the optimal value and the divergence of the network. A too small learning rate
will cause the model to fall into the local optimal problem. We must initialize the learning rate on the
basis of prior knowledge, analyze specific problems, and set the optimal learning rate.

(3) Select a sample vector from the training sample, and input it into the network. The input vector
enters the model from the input layer, trains the vector gradually to the output layer, and multiplies
the input vector and the weight matrix in layers to obtain the output.

The second stage is the backpropagation stage [23]:
(1) Calculate the error between the actual and the expected output values of a single sample vector.
(2) In accordance with minimization error method, the error value calculated in Step (1) is

propagated consecutively in layers to adjust the weight item and offset term.
(3) Compare the network error value and error threshold after adjusting the weights. If the error

value is less than the threshold, then proceed to the next step. If the error value is greater than the
threshold, then the network model has not reached the expected goal and must proceed to Step (3) of
the first stage to continue training.

(4) The relative ideal CNN is learned after the training, and the network parameters in the steady
state are saved [24].
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3.3. Classification Steps

This study used the concept of the LeNet-5 model [25] in designing an HSI classification model on
the basis of the CNN, as displayed in Figure 4. The model consists of an input layer, two convolutional
layers (C), two pooling layers (S), two full-attachment layers (FC), and a SoftMax regression output
layer [26]. Among these layers, the preprocessing step completes the extraction of samples, normalizes
input samples, and selects a 14 × 14 pixel window as the input sample of the model. The output section
of the convolutional layer used the ReLU activation function to prevent gradient diffusion. The pooling
layer used the maximum overlap pooling, which eliminated the requirement for additional processing
of the raw image input to the CNN. The maximum overlap pooling method after each convolution of
the original image was used to reduce the dimension of the convolution product and reduce the image
size. Stochastic gradient descent method was used to optimize the weights of the network, and weight
attenuation method [27,28] was also adopted.
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The specific learning steps for HSI classification based on the maximum overlap pooling CNN
framework are as follows:

(1) Input layer: The original data undergoes dimension reduction processing to extract a 14 × 14
pixel sample to ensure that the input of the model satisfies the requirements. Image classification
refers to the classification of each pixel in accordance with a specific rule or algorithm based on the
brightness, spatial characteristics, or other information of an image. In training a CNN, the convolution
kernel convolutes each input to extract spatial structural features. A small block containing 145 × 145
pixels is selected as a sample centered on each pixel of the HSI to maintain the consistency with the
input of the CNN; furthermore, each of the small blocks contains the spectral and spatial structure
information of a specified pixel [29].

(2) Convolutional layer C1: The input pictures of the input layer are convolved with six 5 × 5
convolution kernels to obtain six 7 × 7 2D feature maps. The result is output to the next layer after
multiplying the ReLU activation function and adding the offset. The size of the convolution kernel
significantly influences the classification accuracy. If the convolution kernel is small, then local features
cannot be effectively extracted; if the convolution kernel is large, then ideal characteristics cannot
be obtained.

(3) Pooling layer S1: A 3 × 3 pixel sampling window is used through the maximum overlap
pooling to perform the maximum pooling operation on all 2 × 2 areas in C1 and output six 4 × 4
pixel feature maps. The maximum overlap pooling CNN uses the maximum pooling than the average
pooling commonly used in the traditional CNN to avoid the feature blurring caused by the average
pooling. Moreover, the maximum overlap pooling CNN sets a smaller step size than the size of the
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pooling kernel; thus, the outputs of the pooling layer overlap and cover one another, thereby enhancing
the details of the image.

(4) Convolutional layer C2: An S1 output picture is convoluted using 5 × 5 convolution kernels
to obtain 16 4 × 4 pixel 2D feature maps. The result is output to the next layer after multiplying the
ReLU activation function and adding the offset.

(5) Pooling layer S2: A 3 × 3 pixel sampling window is used through the maximum overlap
pooling to perform the maximum pooling operation on all 2 × 2 areas in C2 and output 16 2 × 2
pixel feature maps. Maximum pooling is still used, and the pooling step size is set smaller than the
pooling kernel size to overlap and cover between the pooling layer outputs, thereby resulting in
enhanced details.

(6) Fully connected layer FC1: The number of neurons of the fully connected layer FC1 is set to
120, and the ReLU function is used as an activation function. The number of output neurons is 120.

(7) Fully connected layer FC2: The number of neurons in the fully connected layer FC2 is set to 84,
and the ReLU function is selected as the activation function. The number of output neurons is 84.

(8) Output layer: The number of output neurons is related to the number of categories in the input
image. The experimental data has 16 types of ground objects. Thus, the number of output neuron
nodes is set to 16.

(9) The forward propagation network structure is designed, and the backpropagation algorithm
is used to optimize the network parameters.

(10) The trained CNN model is used to verify the classification of the input test samples.
The HSI classification flowchart based on the CNN is presented in Figure 5.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 20 

 

(4) Convolutional layer C2: An S1 output picture is convoluted using 5 × 5 convolution kernels 
to obtain 16 4 × 4 pixel 2D feature maps. The result is output to the next layer after multiplying the 
ReLU activation function and adding the offset. 

(5) Pooling layer S2: A 3 × 3 pixel sampling window is used through the maximum overlap 
pooling to perform the maximum pooling operation on all 2 × 2 areas in C2 and output 16 2 × 2 pixel 
feature maps. Maximum pooling is still used, and the pooling step size is set smaller than the 
pooling kernel size to overlap and cover between the pooling layer outputs, thereby resulting in 
enhanced details. 

(6) Fully connected layer FC1: The number of neurons of the fully connected layer FC1 is set to 
120, and the ReLU function is used as an activation function. The number of output neurons is 120.  

(7) Fully connected layer FC2: The number of neurons in the fully connected layer FC2 is set to 
84, and the ReLU function is selected as the activation function. The number of output neurons is 84.  

(8) Output layer: The number of output neurons is related to the number of categories in the 
input image. The experimental data has 16 types of ground objects. Thus, the number of output 
neuron nodes is set to 16.  

(9) The forward propagation network structure is designed, and the backpropagation algorithm 
is used to optimize the network parameters. 

(10) The trained CNN model is used to verify the classification of the input test samples. 
The HSI classification flowchart based on the CNN is presented in Figure 5. 

 
Figure 5. Classification flow chart of CNN hyperspectral remote sensing imaging (HSI). 

4. Experiments and Results Analysis 

4.1. Experimental Environment 

This study uses Google’s TensorFlow deep learning framework. TensorFlow supports multiple 
GPUs and distributed operations, supports different hardware platforms such as PCs and mobile 
phones, and has the advantages of an open source code and an active community. These 
advantages provide favorable accuracy and scalability for the experiments in this study. 

This method was applied to actual HSI classification to validate the proposed method 
effectively, and simulation experiments were conducted. We used Intel Core i7 Quad-Core 
processor clocked at 2.50 GHz with 8 GB memory. We selected the 64-bits Windows 10 operating 
system, TensorFlow deep learning framework, and Python 2.7 as the development environment. 
We also utilized the following tools: MultiSpecWin64, MATLAB R2015b, and JetBrains PyCharm ×64. 

In order to reduce the experimental error, the experimental results in this paper were obtained 
from the average of five experiments. Two data sets were adopted, namely, the Indian Pines dataset 
and Salinas dataset, as follows: 

4.2. Experimental Data 

With the development of sensor technology, the resolution of remote sensing image is getting 
higher and higher, which provides a strong support for remote sensing image classification. 
Nowadays, the progress of sensor technology is of great significance to the remote sensing field. 
Due to the development of sensor technology, the Indian Pines dataset and Salinas dataset adopted 

Figure 5. Classification flow chart of CNN hyperspectral remote sensing imaging (HSI).

4. Experiments and Results Analysis

4.1. Experimental Environment

This study uses Google’s TensorFlow deep learning framework. TensorFlow supports multiple
GPUs and distributed operations, supports different hardware platforms such as PCs and mobile
phones, and has the advantages of an open source code and an active community. These advantages
provide favorable accuracy and scalability for the experiments in this study.

This method was applied to actual HSI classification to validate the proposed method effectively,
and simulation experiments were conducted. We used Intel Core i7 Quad-Core processor clocked at
2.50 GHz with 8 GB memory. We selected the 64-bits Windows 10 operating system, TensorFlow deep
learning framework, and Python 2.7 as the development environment. We also utilized the following
tools: MultiSpecWin64, MATLAB R2015b, and JetBrains PyCharm ×64.

In order to reduce the experimental error, the experimental results in this paper were obtained
from the average of five experiments. Two data sets were adopted, namely, the Indian Pines dataset
and Salinas dataset, as follows:
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4.2. Experimental Data

With the development of sensor technology, the resolution of remote sensing image is getting
higher and higher, which provides a strong support for remote sensing image classification. Nowadays,
the progress of sensor technology is of great significance to the remote sensing field. Due to the
development of sensor technology, the Indian Pines dataset and Salinas dataset adopted in this paper
have higher resolution. The data in the Indian Pines dataset and Salinas dataset were all collected by
an airborne visible/infrared imaging spectrometer (AVIRIS) sensor. AVIRIS was flown for the first time
in 1986 (first airborne images), obtained its first science data in 1987, and has been fully operational
since 1989. In June/July 1991, the instrument was flown over numerous European test sites in the
framework of EMAC (European Multi-Sensor Airborne Campaign). AVIRIS uses scanning optics and
a group of four spectrometers to image a 677 pixel swath width simultaneously in 224 contiguous
spectral bands. A spatial image is built up through the scanner motion, which defines an image line
677 pixels wide perpendicular to the aircraft direction, and through the aircraft motion, which defines
the length of the image frame. The sensor is an optomechanical whiskbroom scanner (12 Hz) that
uses line arrays of detectors to image a 677 pixel-wide swath in 224 contiguous bands (four grating
spectrometers). The spectral range is 360–2500 nm with a total of 224 bands [30].

The Indian Pines dataset of AVIRIS mainly covers the entire northwestern part of Indiana,
USA. This dataset was derived from this website (http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes). Its original image size was 145 × 145 pixels, with a spatial
resolution of 20 m. The dataset contains 220 bands and 16 ground object categories, covering a spectral
range of 0.2–2.4 phenotypes, with a spectral resolution of 10 nm. However, since the bands 104–108,
150–163, and 220 cannot be reflected by water, we generally used the remaining 200 bands after
eliminating these 20 bands as the object of study. The number of different types of ground objects is
shown in Table 1.

Table 1. Indian Pines dataset ground object type situation.

Label Name Number of Samples

C1 Alfalfa 46
C2 Corn-notill 1428
C3 Corn-mintill 830
C4 Corn 237
C5 Grass-pasture 483
C6 Grass-trees 730
C7 Grass-pasture-mowed 28
C8 Hay-windrowed 478
C9 Oats 20

C10 Soybean-notill 972
C11 Soybean-mintill 2455
C12 Soybean-clean 593
C13 Wheat 205
C14 Woods 1265
C15 Buildings-Grass-Trees-Drives 386
C16 Stone-Steel-Towers 93

Total 10,249

Partial bands were deleted on the Indian Pines dataset to facilitate the conversion of space-spectral
information of an HSI to a gray image with the same height and width. The (CVIE, Coefficient of
Variation for Interclass)2/CVIA (Coefficient of Variation for Interclass) minimum 104–109, 149–164,
219, and 220 bands (for a total of 24 bands) were excluded, and the remaining 196 bands were retained.
In addition, the 24 bands rejected by this method include the largest 20 bands that were affected by
water and air noise in this dataset, that is, the 104–108, 150–163, and 220 bands. This result effectively
enhances the reliability of the data and significantly reduces interference factors. The training and test

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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samples obtained by pretreatment are shown in Figure 6. Table 1 shows the number of samples from
the Indian Pines dataset.Sensors 2018, 18, x FOR PEER REVIEW  9 of 20 
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The Salinas dataset of AVIRIS mainly covers the Salinas Valley. This dataset is derived from the
same website as Indian Pines dataset. Its original image size was 512 × 217 pixels, and the spatial
resolution was 3.5 m. The dataset contains 204 bands and 16 ground object categories. The number of
different types of ground objects is shown in Table 2.

Table 2. Salinas dataset ground object type situation.

Label Name Number of Samples

C1 Brocoli_green_weeds_1 2009
C2 Brocoli_green_weeds_2 3726
C3 Fallow 1976
C4 Fallow_rough_plow 1394
C5 Fallow_smooth 2678
C6 Stubble 3959
C7 Celery 3579
C8 Grapes_untrained 11,271
C9 Soil_vinyard_develop 6203

C10 Corn_senesced_green_weeds 3278
C11 Lettuce_romaine_4wk 1068
C12 Lettuce_romaine_5wk 1927
C13 Lettuce_romaine_6wk 916
C14 Lettuce_romaine_7wk 1070
C15 Vinyard_untrained 7268
C16 Vinyard_vertical_trellis 1807

Total 54,129

Both of the two experimental data included 16 ground object categories. From all datasets,
25% were selected randomly as training samples, and the remaining 75% were used as test samples.
The training and test samples obtained by pretreatment are shown in Figure 7. Table 2 shows the
number of samples from the Salinas dataset.
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4.3. Classification Results and Analysis

On the basis of the traditional and maximum overlap pooling CNNs, two kinds of CNN models
were designed and used in this study to classify HSIs. The two methods were compared with the
network-in-network (NIN) classification methods for HSIs. The network parameters of the traditional
and maximum overlap pooling CNNs designed in this study are listed in Tables 3 and 4.

Table 3. Traditional CNN parameter table.

Number of Layers Species Number of
Output Features

Size of Output
Features

Convolution
Kernel Size

0 Input layer 1 14 × 14 /
1 Convolutional layer C1 6 7 × 7 5 × 5
2 Maximum pooling layer S1 6 4 × 4 2 × 2
3 Convolutional layer C2 16 4 × 4 5 × 5
4 Maximum pooling layer S2 16 2 × 2 2 × 2
5 Fully connected layer FC1 1 120 /
6 Fully connected layer FC2 1 84 /

Table 4. Maximum overlap pooling CNN parameter table.

Number of Layers Species Number of
Output Features

Size of Output
Features

Convolution
Kernel Size

0 Input layer 1 14 × 14 /
1 Convolutional layer C1 6 7 × 7 5 × 5
2 Maximum pooling layer S1 6 4 × 4 3 × 3
3 Convolutional layer C2 16 4 × 4 5 × 5
4 Maximum pooling layer S2 16 2 × 2 3 × 3
5 Fully connected layer FC1 1 120 /
6 Fully connected layer FC2 1 84 /
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4.3.1. Comparison of Convergence Rates

All experiments in this paper were carried out under the same experimental environment.
The variation of the training error with the increase in the number of iterations is exhibited in Figure 8
when two kinds of CNN are applied to the Indies Pines dataset.
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Figure 8. Training error of traditional CNN and maximum overlap pooling CNN iteration in the Indian
Pines dataset.

Figure 8 displays that the training loss during training probably stabilized after 80 iterations
in the Indian Pines dataset. Clearly, the maximum overlap pooling CNN converges more quickly
than the traditional CNN during training. The maximum overlap pooling CNN may converge to the
final loss accuracy of the traditional CNN approximately at the 50th iteration, which is nearly half of
the time required by the traditional CNN. The maximum overlap pooling CNN, which has a lower
training loss accuracy than the traditional CNN, can achieve better training results and fully learn the
characteristics of the images. The maximum overlap pooling CNN demonstrates advantages over the
traditional CNN in terms of training loss, with faster convergence speed and higher accuracy.

Figure 9 displays that the training loss during training probably stabilized after 80 iterations in
the Salinas dataset. Clearly, the maximum overlap pooling CNN converges more quickly than the
traditional CNN during training. The maximum overlap pooling CNN may converge to the final
loss accuracy of the traditional CNN approximately at the 30th iteration, which is less than half of
the time required by the traditional CNN. The maximum overlap pooling CNN, which has a lower
training loss accuracy than the traditional CNN, can achieve better training results and fully learn the
characteristics of the images. The maximum overlap pooling CNN demonstrates advantages over the
traditional CNN in terms of training loss, with faster convergence speed and higher accuracy.
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4.3.2. Comparison of Time and Classification Accuracies

Experiments were performed to verify the performance of the different methods in terms of
accuracy. The experimental results where the Indian Pines dataset was used are summarized in Table 5,
and the experimental results where the Salinas dataset was used are summarized in Table 6.

Table 5. Convergence time and accuracy of different classification methods used Indian Pines dataset.

Method Time/s Kappa Coefficient Overall Accuracy Average Accuracy

Traditional CNN 114.60 0.8302 85.12% 84.96%
Densenet 124.20 0.8397 85.92% 82.52%

Maximum overlap pooling CNN 118.80 0.8714 88.73% 87.62%

Table 6. Convergence time and accuracy of different classification methods used Salinas dataset.

Method Time/s Kappa Coefficient Overall Accuracy Average Accuracy

Traditional CNN 584.40 0.9303 93.75% 97.22%
Densenet 609.00 0.9372 94.35% 97.18%

Maximum overlap pooling CNN 615.00 0.9416 94.76% 97.45%

Figure 10 demonstrates the results of the final classification accuracy based on the traditional
CNN that used the Indian Pines dataset. Figure 11 exhibits the results of the final classification accuracy
based on the maximum overlap pooling CNN that used the Indian Pines dataset.

Figure 12 demonstrates the results of the final classification accuracy based on the traditional
CNN that used the Salinas dataset. Figure 13 exhibits the results of the final classification accuracy
based on the maximum overlap pooling CNN that used the Salinas dataset.
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Figure 10. (a) Traditional CNN classification results. (b) Traditional CNN classification accuracy results.
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Figure 11. (a) Maximum overlapping pooling CNN classification results. (b) Maximum overlapping
pooling CNN classification accuracy results.
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Figure 12. (a) Traditional CNN classification results. (b) Traditional CNN classification accuracy results.
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Table 5 displays that, in the time accuracy analysis, the training and classification times when
using the traditional CNN was the shortest, at only 114.60 s. The Densenet training recorded the
longest time of 124.20 s. The classification time of the maximum overlap pooling CNN was 118.80 s has
exhibited no obvious increase compared with the traditional CNN. Therefore, if the time accuracy is
considered, the traditional CNN, Densenet, and maximum overlap pooling CNN method can be used.

The overall classification accuracy value reached 85.12%, the average accuracy reached 84.96%,
the Kappa coefficient value was 0.8302, and the classification effect was poor. The analysis of the
classification accuracy indicates that the overall classification accuracy reached 85.92%, the average
accuracy reached 82.52%, the Kappa coefficient was 0.8397, and the classification effect was normal
when the Densenet training was used. The classification accuracy reached 88.73%, the average accuracy
reached 87.62%, the Kappa coefficient was 0.8714, and the accuracy was relatively favorable when the
maximum overlap pooling CNN was used. The classification accuracy value is acceptable when the
overall accuracy was higher than 85%, and the Kappa coefficient was more than 0.8. Therefore, if the
classification accuracy is used as the evaluation basis, then the methods in the experiment all satisfy
the requirements.

As can be seen from Table 6, from the time accuracy analysis, the training, and classification
time of traditional convolution neural network training was the shortest, which only needed to be
584.40 s. The time required for Densenet training was 609 s. The classification time of the improved
convolution neural network was 615.00 s. Compared to the traditional convolution neural network,
the classification time did not increase significantly. Therefore, the traditional convolution neural
network, Densenet and the improved convolution neural network method can be realized on the basis
of time accuracy.

From the classification accuracy analysis and the training conducted by the traditional
convolutional neural network, the overall classification accuracy reached 93.75%, the average accuracy
reached 97.22%, the Kappa coefficient value was 0.9303, and the classification effect was poor; in the
training conducted by Densenet, the overall classification accuracy reached 94.35%, the average
accuracy reached 97.18%, the Kappa coefficient was 0.9372, and the classification effect was medium.
Using the improved convolutional neural network classification training, the overall classification
accuracy reached 94.76%, the average accuracy reached 97.45%, the Kappa coefficient was 0.9416,
and the accuracy performance was relatively good. The overall accuracy of these three methods is
above 93% and the Kappa coefficient is above 0.93. Therefore, if the classification accuracy is used as
the evaluation basis, the methods in this experiment have met the requirements. Table 7 presents the
confusion matrix of the traditional CNN classification that used the Indian Pines dataset, and Table 8
displays the corresponding mapping accuracy for when the Indian Pines dataset was used.
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Table 7. Confusion matrix for traditional CNN classification used Indian Pines dataset.

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 20 0 0 0 4 0 0 9 0 0 1 1 0 0 1 0
2 0 913 34 23 0 0 0 0 2 18 84 9 0 0 0 0
3 0 9 518 40 0 0 0 0 1 2 24 16 0 0 1 0
4 0 5 18 033 0 4 0 3 1 2 4 3 0 0 0 0
5 3 5 1 2 326 3 0 0 0 0 5 3 0 1 1 0
6 0 0 0 0 0 523 0 0 0 0 3 0 0 4 12 0
7 0 0 0 0 0 0 19 1 0 0 1 0 0 0 0 0
8 11 0 0 0 2 0 0 350 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 11 0 0 0 0 0 1 0
10 0 23 3 1 0 3 0 0 0 608 88 2 0 0 1 0
11 0 70 106 6 0 0 0 0 0 30 1587 18 1 0 11 0
12 0 7 33 15 0 0 0 1 0 4 28 366 0 0 2 1
13 0 0 1 0 0 0 0 0 1 0 0 0 157 0 0 0
14 0 0 0 1 7 1 0 0 0 0 0 0 1 930 14 0
15 0 0 2 0 9 18 0 0 3 1 3 0 1 87 176 1
16 0 3 1 0 0 0 0 0 0 0 3 1 0 0 1 58

Table 8. Statistics of traditional CNN classification chart accuracy used Indian Pines dataset.

No. Ground Category Total Number of
Pixels

Correct
Classification

Classification
Accuracy

1 Alfalfa 36 20 55.56%
2 Corn-notill 1083 913 84.30%
3 Corn-min 611 518 84.78%
4 Corn 73 33 45.21%
5 Grass/Pasture 350 326 93.14%
6 Grass/Trees 542 523 96.49%
7 Pasture-mowed 21 19 90.48%
8 Hay-windrowed 363 350 96.42%
9 Oats 12 11 91.67%

10 Soybeans-notill 729 608 83.40%
11 Soybeans-min 1829 1587 86.77%
12 Soybeans-clean 457 366 80.09%
13 Wheat 159 157 98.74%
14 Woods 954 930 97.48%
15 Building-trees- 301 176 58.47%
16 Stone-steel 67 58 86.57%

/ Overall classification accuracy / / 86.93%

From the results in Tables 7 and 8, we can conclude that the traditional CNN has achieved a
favorable classification effect for the Indian Pines dataset. That is, there are 159 pixels in the 13th place
category (Wheat) and 954 pixels in the 14th category (Woods) that have higher classification accuracy,
achieving 98.74% and 97.48% in classification accuracy. The types of ground categories that were
misclassified are mainly the first land category (Alfalfa) and the fourth land category (Corn), mainly
because the total number of pixels in the two land categories was relatively small.

Table 9 lists the confusion matrix of the maximum overlap pooling CNN classifications that used
the Indian Pines dataset. Table 10 summarizes the corresponding classification accuracy for when the
Indian Pines dataset was used.
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Table 9. Confusion matrix for maximum overlap pooling CNN classification used Indian Pines dataset.

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 22 0 0 0 1 0 0 11 0 0 1 1 0 0 0 0
2 0 844 21 7 1 0 0 0 3 54 103 9 0 0 1 0
3 0 14 475 36 0 0 0 0 1 6 63 15 0 0 1 0
4 0 4 11 136 0 1 0 0 2 0 13 5 0 0 1 0
5 1 0 0 1 321 8 0 0 0 0 10 2 0 3 4 0
6 0 0 0 2 0 521 0 0 0 0 2 0 0 3 14 0
7 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0
8 1 0 0 0 00 0 0 360 0 0 1 0 0 0 1 0
9 0 0 0 0 00 0 0 0 12 0 0 0 0 0 0 0
10 0 24 3 3 3 2 0 0 0 619 70 4 0 0 1 0
11 0 40 46 4 2 2 1 0 0 56 1661 8 0 0 9 0
12 0 9 19 4 4 1 0 0 0 2 27 387 0 0 3 1
13 0 0 0 0 0 0 0 0 1 0 1 0 156 0 1 0
14 0 0 0 0 6 1 0 0 0 0 0 0 1 918 28 0
15 0 0 0 0 8 21 0 0 4 0 2 0 4 63 198 1
16 0 0 0 0 1 0 0 0 0 0 4 0 0 0 1 61

Table 10. Statistical tables for maximum overlap pooling CNN classification charting accuracy used
Indian Pines dataset.

No. Ground Category Total Number of
Pixels

Correct
Classification

Classification
Accuracy

1 Alfalfa 36 22 61.11%
2 Corn-notill 1043 844 80.92%
3 Corn-min 611 475 77.74%
4 Corn 173 136 78.61%
5 Grass/Pasture 350 321 91.71%
6 Grass/Trees 542 521 96.13%
7 Pasture-mowed 21 21 100.00%
8 Hay-windrowed 363 360 99.17%
9 Oats 12 12 100.00%

10 Soybeans-notill 729 619 84.91%
11 Soybeans-min 1829 1661 90.81%
12 Soybeans-clean 457 387 84.68%
13 Wheat 159 156 98.11%
14 Woods 954 918 96.23%
15 Building-trees 301 198 65.78%
16 Stone-steel 67 61 91.04%

/ Overall classification accuracy / / 87.78%

From the results provided in Tables 9 and 10, we can conclude that the maximum overlap pooling
CNN for the Indian Pines dataset achieves an improved classification effect. Among the result,
the accuracy of the seventh land object type (Pasture-mowed) and the ninth land object type (Oats)
reached 100.00%; thus, these land object types are not representative, because the total number of
pixels was small. The total number of pixels in the eighth land category (Hay-windrowed) was high,
and the accuracy is 99.17%. The types of ground objects that were mainly misclassified are the first
floor object category (Alfalfa) and the fifteenth floor class (Building-trees).

Table 11 presents the confusion matrix of the traditional CNN classification that used the Salinas
dataset. Table 12 displays the corresponding mapping accuracy for when the Salinas dataset was used.
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Table 11. Confusion matrix for traditional CNN classification used Salinas dataset.

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1470 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2789 0 0 0 0 0 1 0 0 0 0 1 0 0 1
3 0 0 1458 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 1 1048 2 0 0 0 0 0 0 0 0 0 0 0
5 0 0 99 10 1896 0 0 0 2 0 0 0 0 0 0 0
6 0 0 0 0 1 2981 0 0 0 0 0 0 0 0 0 0
7 0 1 0 0 0 0 2641 1 0 0 0 0 1 4 0 1
8 0 0 0 0 0 0 0 7540 1 25 0 0 0 5 873 1
9 0 0 0 0 0 0 0 0 4666 1 0 0 0 0 0 0

10 0 0 3 1 3 0 0 16 27 2389 2 4 1 13 0 6
11 0 0 0 0 0 0 0 0 0 0 805 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 2 1430 0 2 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 703 2 0 0
14 0 0 0 0 0 0 0 1 1 2 0 0 13 815 0 0
15 0 0 2 0 1 0 1 1416 0 20 0 0 0 0 4021 1
16 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 1349

Table 12. Statistics of traditional CNN classification chart accuracy used Salinas dataset.

No. Ground Category Total Number of
Pixels

Correct
Classification

Classification
Accuracy

1 Brocoli_green_weeds_1 1485 1470 98.99%
2 Brocoli_green_weeds_2 2793 2789 99.86%
3 Fallow 1462 1458 99.73%
4 Fallow_rough_plow 1051 1048 99.71%
5 Fallow_smooth 2007 1896 94.47%
6 Stubble 2982 2981 99.97%
7 Celery 2649 2641 99.70%
8 Grapes_untrained 8445 7540 89.28%
9 Soil_vinyard_develop 4667 4666 99.98%

10 Corn_sensced_green_weeds 2465 2389 96.92%
11 Lettuce_romaine_4wk 805 805 100%
12 Lettuce_romaine_5wk 1434 1430 99.72%
13 Lettuce_romaine_6wk 705 703 99.72%
14 Lettuce_romaine_7wk 832 815 97.96%
15 Vinyard_untrained 5462 4021 73.62%
16 Vinyard_vertical_trellis 1354 1349 99.63%

/ Overall classification accuracy / / 93.60%

From Tables 11 and 12, it can be concluded that for the Salinas dataset, CNN obtained a good
classification effect. In which the classification accuracy of most ground objects was higher, reaching
above 96%. Ground objects category 5, Fallow_smooth, category 8, Grapes_untrained, and category 15,
Vinyard_untrained, were mainly misclassified; it is believed that this was caused by the geographical
proximity of these three types of ground objects and their similar spectra.

Table 13 lists the confusion matrix of the maximum overlap pooling CNN classifications that
used the Salinas dataset. Table 14 summarizes the corresponding classification accuracy for when the
Salinas dataset was used.
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Table 13. Confusion matrix for maximum overlap pooling CNN classification used Salinas dataset.

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1479 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2
2 0 2792 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3 0 0 1546 0 2 0 0 0 0 4 0 0 0 0 0 0
4 0 0 0 1046 5 0 0 0 0 0 0 0 0 0 0 0
5 0 0 1 8 1997 0 0 0 0 0 1 0 0 0 0 0
6 0 1 0 0 1 2980 0 0 0 0 0 0 0 0 0 0
7 0 1 0 0 0 1 2642 0 0 0 0 0 0 3 0 1
8 0 0 0 0 0 0 0 7576 1 7 0 0 0 0 861 0
9 0 0 0 0 0 0 0 0 4666 1 0 0 0 0 0 0

10 0 0 0 1 1 2 0 19 24 2399 1 2 0 8 3 5
11 0 0 0 0 0 0 0 0 1 0 802 2 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1432 2 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 703 2 0 0
14 0 0 0 0 0 0 0 1 0 5 0 0 12 814 0 0
15 0 0 0 0 2 0 0 1069 0 4 0 0 0 0 4387 0
16 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1350

Table 14. Statistical tables for maximum overlap pooling CNN classification charting accuracy used
Salinas dataset.

No. Ground Category Total Number of
Pixels

Correct
Classification

Classification
Accuracy

1 Brocoli_green_weeds_1 1485 1479 99.60%
2 Brocoli_green_weeds_2 2793 2792 99.96%
3 Fallow 1552 1546 99.61%
4 Fallow_rough_plow 1051 1046 99.52%
5 Fallow_smooth 2007 1997 99.50%
6 Stubble 2982 2980 99.93%
7 Celery 2648 2642 99.77%
8 Grapes_untrained 8445 7576 89.71%
9 Soil_vinyard_develop 4667 4666 99.98%

10 Corn_sensced_green_weeds 2465 2399 97.32%
11 Lettuce_romaine_4wk 805 802 99.63%
12 Lettuce_romaine_5wk 1434 1432 99.86%
13 Lettuce_romaine_6wk 705 703 99.72%
14 Lettuce_romaine_7wk 832 814 97.84%
15 Vinyard_untrained 5462 4387 80.32%
16 Vinyard_vertical_trellis 1354 1350 99.70%

/ Overall classification accuracy / / 94.90%

From Tables 13 and 14, it can be concluded that for the Salinas data set, the improved CNN
achieved better classification effect. The classification accuracy of most ground objects was higher,
reaching over 97%. Ground objects category 8, Grapes_untrained, category 15, Vinyard_untrained,
were mainly misclassified; it is believed that this was caused by the geographical proximity of these
two types of ground objects and their similar spectra.

Based on the above experimental data, the maximum overlap pooling CNN has a high
classification accuracy, which also achieves an ideal classification effect, and the training network
model consumes less time.

5. Conclusions

This study proposes a framework for classifying the maximum overlap pooling CNN of HSI,
which improve the pooling layer. The maximum overlap pooling CNN classification method was
compared with the traditional CNN through experimental simulation. It can be concluded from the
experimental results that the improved convolutional neural network is faster in loss convergence
than traditional convolution in training, and that the training loss accuracy is lower, which can
achieve a better training effect. Referring to the main results given in the experimental results section,
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the maximum overlap pooling CNN has a high classification accuracy, which also achieves an ideal
classification effect, and the training network model consumes less time. Therefore, we conclude that
the maximum overlap pooling CNN model has less training error, and the improved algorithm has a
better effect on improving the classification accuracy of HSI and network convergence. The pooling
layer can still be improved during the experiment, and further research on the improvement method
will be conducted in the future.
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