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The rapidly growing field of mechanobiology demands for robust and reproducible
characterization of cell mechanical properties. Recent achievements in understanding
the mechanical regulation of cell fate largely rely on technological platforms capable of
probing the mechanical response of living cells and their physico–chemical interaction
with the microenvironment. Besides the established family of atomic force microscopy
(AFM) based methods, other approaches include optical, magnetic, and acoustic
tweezers, as well as sensing substrates that take advantage of biomaterials chemistry
and microfabrication techniques. In this review, we introduce the available methods with
an emphasis on the most recent advances, and we discuss the challenges associated
with their implementation.

Keywords: cell mechanics, cell-generated forces, AFM, tweezing methods, MEMS, traction force microscopy,
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INTRODUCTION

Cells are complex biological units that can sense the physico-chemical cues and stimuli from their
surrounding environment, and actively respond to them by triggering biomechanical reactions
that include cell growth, proliferation, differentiation, motility and even apoptosis (Galbraith and
Sheetz, 1998; Huang and Ingber, 1999). Forces generated by cells regulate several biological activi-
ties such as cell adhesion, signaling, biochemical routes and metabolic functions, and can be pivotal
mechanisms in orchestrating and coordinating the morphogenetic pathways that control tissue and
organ development and homeostasis (Mammoto and Ingber, 2010; Maugeri-Saccà and De Maria,
2018; Miroshnikova et al., 2018). In the last decade, several studies focused on the generation,
transmission and regulation of signaling pathways and molecular mechanisms within single cells
and tissue environments (Geiger and Bershadsky, 2001; Chen et al., 2004; Maloney et al., 2010;
Nardone et al., 2017). Advances in cell mechanics have fuelled the development of tools for the
mechanical characterization of biological entities at the cellular and subcellular scale (Norman et al.,
2008; Zheng and Zhang, 2011). The study of how mechanical properties influence cell behavior in
relation to their surrounding microenvironment both in healthy conditions and in disease requires
a profound knowledge of extracellular and/or intracellular forces, stiffness values and mechani-
cal stresses from micro- to nano-scales (Butcher et al., 2009; Alcaraz et al., 2018). This knowledge
would allow researchers to better understand both the evolution of intracellular architectures
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and how cells interact with the external environment. This will
lead to the investigation of the biomechanical regulation of cell
fate in the framework of development, physiology and disease, at
the physico-chemical level (Park et al., 2010; Hoffman et al., 2011;
Moulding et al., 2012; Sun Y. et al., 2012).

Cells are viscoelastic, and as such they have both an elastic
and a time-dependent, viscous behavior. A viscoelastic material
typically possesses characteristics such as stress-relaxation, creep,
strain-rate sensitivity and hysteresis (Pal, 2014). Stress relaxation
occurs when a material is subjected to a fixed strain, and the
stress developed by the material is decreasing with time. Creep,
on the contrary, is the behavior of a material subjected to constant
stress and experiencing a time-dependent elongation. Strain rate
sensitivity means that the stress-strain response of a material
depends upon the speed at which strain is applied (strain rate).
Lastly, hysteresis describes the fact that loading and unloading
curves for a viscoelastic material do not follow the same path.
The areal difference between the two curves represents the loss
of energy due to internal friction in the material.

Recent advances in the development of novel techniques
and tools for cell mechanics characterization, and the design of
ad hoc technological platforms have introduced the possibility
to accurately trap and manipulate single cells at the microscale
level (Finer et al., 1994; Park et al., 2005; Roth et al., 2013;
Guo et al., 2016; and reviewed in Rajagopalan and Saif, 2011;
Zheng and Zhang, 2011; Polacheck et al., 2013), for application
in many interdisciplinary areas of research, such as biophysics,
biomedicine, tissue engineering, and materials science.

Here, we will summarize the latest advances in the
research area of cell biomechanics, and we will focus on
the modern technological approaches and mechanical testing
systems developed in the last decade by combining theoreti-
cal, experimental, and numerical models, for pursuing a realistic
description of cell mechanical behavior. First, we will introduce
the established techniques and available tools, highlighting the
differences between active and passive stimulation methods. We
will provide a brief description of atomic force microscopy
(AFM) and AFM-derived methods, and then we will explore
thoroughly the tweezing methods, including optical, magnetic
and acoustic tweezers. Also, we will outline the role of microengi-
neered platforms, such as Micro-Electro-Mechanical Systems,
micro/nanopillars, microfluidic devices, and hydrogel stretching
methods (highlighting the underlying technology and mathemat-
ical modeling) for cellular force measurements. Finally, we
will critically discuss the future outlooks of such technologi-
cal tools and the challenges that still need to be addressed to
understand the structural and mechanical complexity of living
tissues.

CLASSIFICATION

Measuring forces at the cell–extracellular matrix (ECM) interface
is a critical aspect for fully understanding cell–ECM interac-
tions and how the ECM regulates cellular function. This has
boosted the development of technological platforms achieving
force measurements at the cellular and subcellular scale.

It is possible to divide these technologies in two broad
categories: (i) active stimulation methods, which measure cell
response to mechanical force application, and (ii) passive
stimulation methods, which can only sense mechanical forces
generated by cells without applying any external force.

Mechanical cell responses to external inputs have largely been
studied using active single-cell manipulation approaches, such as:

• Atomic force microscopy (AFM) (Lam et al., 2011): AFM
relies on microcantilevers to induce a deformation in the
cell. From the deflection of the cantilever, it is possible to
measure local mechanical properties and to generate maps
across the cell surface.
• Tweezing methods, which encompass three main

techniques.

– Optical tweezers (OTs) (Galbraith et al., 2002): OTs rely
on a laser beam to create a potential well for trapping
small objects within a defined region. Optical tweezers
can be used to micromanipulate cells as well as intracel-
lular components (i.e., organelles) and quantitatively
measure the binding force of a single cell to diverse types
of ECM substrates (Guck et al., 2001; Wang et al., 2005),
or to evaluate physical interactions between subcellular
structures (Sparkes et al., 2018)

– Magnetic tweezers (MTs) (Hu et al., 2004): these devices
rely on the use of magnetic microbeads. Magnetic fields
are produced either by movable permanent magnets or
by electromagnets (Ziemann et al., 1994).

– Acoustic tweezers (ATs) (Guo et al., 2015): ATs can
manipulate biological samples using sound waves with
low intensity power and low impact on cell viability, and
without the need for any invasive contact, tagging, or
biochemical labeling.

In the passive methods, the main goal is the evaluation of cell-
generated forces using flexible substrates:

• Microengineered platforms: these are microfabricated
platforms, including both silicon-based devices (micro-
electro-mechanical systems, MEMS) produced through
integrated circuit manufacturing processes, as well as
elastomeric (i.e., polydimethylsiloxane, PDMS) devices
produced through replica molding (Tan et al., 2003; Kim et al.,
2009).
• Traction Force Microscopy (TFM): TFM exploits elastic

substrates with known mechanical properties and fluores-
cence/confocal microscopy. In its original version, cells were
cultured on flexible silicone sheets with different compliance.
During cell action, silicone patterns wrinkled and this could
be visualized under a light microscope (Harris et al., 1980). An
evolution of this method implies the use of flexible sheets with
embedded beads. Positions of the beads are tracked during
the experiments and cell-generated foces are derived from the
analysis of bead displacement field (Lee et al., 1994).

A summary of the available techniques with a brief description
of their advantages and disadvantages, their range of detection,
and a simple sketch is reported in Table 1.
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TABLE 1 | Summary of the most relevant techniques for cell mechanical characterization.

Mode Technique Sketch Typ. force range Strengths/limitations References

ACTIVE AFM

Adapted from: Liu et al. (2012)

5 pN ÷ 10 nN X Wide force range –well
established technique
× Direct contact with the
specimen otherwise tip must
be labeled

Lam et al., 2011

TWEEZING OPTICAL

Adapted from: Håti et al. (2015)

0.1 ÷ 100 pN X High sensitivity
X Wide force range
× Heating issues

Guck et al., 2001;
Galbraith et al., 2002;
Wang et al., 2005

MAGNETIC

Adapted from Poh et al. (2009)

0.01 ÷ 100 pN X High sensitivity
X Wide force range
× Custom equipment – little
standardization

Wang et al., 1993;
Ziemann et al., 1994;
Hu et al., 2004

ACOUSTIC

Adapted from: Topal et al.
(2018)

0.1 ÷ 30 nN X Highly cytocompatible
× Fewer force and stress
application modalities

Ding et al., 2013; Guo
et al., 2015; Li et al.,
2015

PASSIVE MICRO-ENGINEERED PLATFORMS 10−12
÷ 10−3 N X Different designs translate

into extremely wide force range
X Stability, scalability of
manufacturing process
X Sophisticated
microfabrication
procedures/facilities

Yang and Saif, 2005;
Polacheck and Chen,
2016

TRACTION FORCE MICROSCOPY 2 ÷ 120 nN X Widespread (needs standard
lab equipment)
X Easily coupled with
microscopy equipment (i.e.,
fluorescence/confocal)
X 2D/3D measurements
× Computationally demanding
× Non-linear behavior of
ECM-mimicking hydrogels

Polacheck and Chen,
2016

For each technique, the force range and a brief description of the main strengths and limitations are reported.
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ATOMIC FORCE MICROSCOPY (AFM)

Among the available techniques for measuring the mechanical
properties of biological tissues, AFM has been extensively used
over the years thanks to its capability to cover, with nanome-
ter resolution, the pathophysiological range of stiffness values of
tissue samples, while probing local cell-ECM mechanical interac-
tions (Dufrêne and Pelling, 2013).

AFM is a very powerful technique that allows cell biologists to
probe the morphology of living cells, mechanical and adhesive
properties of single biomolecules, as well as to quantify and
to spatially map cell mechanics and physical properties. AFM
can operate under a wide variety of physiological conditions:
biological samples can be imaged in fluid environments, and
live-monitored in real-time. Moreover, AFM can be combined
with many optical microscopy techniques (e.g., correlated
fluorescence-AFM studies) (Kodera et al., 2010; El-Kirat-Chatel
and Dufrêne, 2012; Martinez-Martin et al., 2012) to simultane-
ously visualize single cells to extract additional information. An
in-depth description of AFM functioning principles is not in the
scope of the present review. For a more detailed description of
the AFM, the reader may refer to Dufrêne and Pelling (2013) and
Kasas et al. (2018).

Designed to study surface morphology, AFM has been
used for many years as a tool for high-resolution imaging of
surfaces. AFM uses a very sharp silicon micro-fabricated tip
fixed at the end of a cantilever beam to scan the surface.
After positioning the tip a few nm from the scanned surface,
this is subjected to a short–range interaction with the sample
during which the cantilever deflects. Deformations are recorded
measuring the angular deflection of a laser beam aligned
to the cantilever end on a multi-segment photodiode. Thus,
while the tip raster scans the sample in the X-Y directions
with very precise piezoelectric scanners, a detailed image of
the 3-D topography of the sample is generated (Kasas et al.,
2018).

Besides imaging, AFM force spectroscopy has been also used
to apply mechanical forces to biological systems over scales
ranging from cells to single molecules to study their mechanical
response (Zemła et al., 2018) and measure their mechanical and
adhesive properties.

An early approach to measure nano-mechanical properties of
biological samples consisted in the analysis of specimen height
profile when subjected to multiple scans at different force levels
through the AFM tips, estimating the elastic modulus by the
force-deformation relationship (Kis et al., 2002).

Further development involved the use of the tip-cantilever
system as an active scanning probe. In the “pushing experi-
ments” the AFM tip is indented against the sample while
recording its response through a force/distance curve, or
force/indentation curve, which represents the deformation of
the cantilever given a prescribed force or the required force to
push the tip to a definite depth into the sample (Zemła et al.,
2018).

The recorded curve can be used to calculate the sample
stiffness by algorithms that take into account several parame-
ters, such as the geometry of the tip and the depth of indentation

(Harris and Charras, 2011; Dufrêne and Pelling, 2013). Alcaraz
et al. (2018) presented a very exhaustive methodology to select
the right tip geometry (from the four-sided pyramidal or the
spherical commercial tips to the cylindrical tips made by milling
a commercial pyramidal tip by mean of a focused ion beam)
considering the topology of the sample to be studied and the goal
of the study.

Several studies focused on the computational modeling of the
force-versus-indentation curve, where different contact models
between cell and tip have been proposed in order to properly
account for different geometries: Hertz model (Hertz, 1896),
which describes the elastic deformation of two spheres, Sneddon
model (Sneddon, 1965) which describes the elastic deformation
of conical or paraboloidal tips on a flat sample, JKR model,
which also considers adhesive forces, Tatara (1989) model, case
of a spherical sample compressed between two parallel plates,
Multiscale Decomposition Analysis (Digiuni et al., 2015), which
quantifies the non-linear mechanical response of the cantilever
above cell wall indentation, and the Multi-Regime (Bonilla et al.,
2015), which considers cells as a multi-spring system. Lately, to
overcome a common drawback to these methods (i.e., sample, tip
and substrate are assumed to be homogenous bodies with well-
defined geometries, a rough approximation of real conditions),
the use of finite element modeling (FEM) is emerging as a
possible solution in order to better consider the local effects of
the tip–sample interactions (Kasas et al., 2017) on the recorded
measurements.

A remarkable example of the importance of adopting the
right computational model in AFM data analysis is reported by
Mercadé-Prieto et al. (2013). They showed that the stiffness values
measured by AFM indentation on Saccharomyces cerevisiae cell
wall were two orders of magnitude lower than those obtained by
micromanipulation studies. The authors ascribed such discrepan-
cies to the use of mathematical models that are inappropriate to fit
the experimental data. In fact, the classical Hertz-Sneddon model,
based on the assumption that the whole cell is a homogeneous
material, does not hold for tissues with a complex hierarchical
structure. The problem was solved by implementing a new FEM-
based model, which considered the yeast cell wall as made of a
soft external layer and a stiffer inner layer.

Another relevant AFM application is represented by the so
called “pulling experiments”. In this case, the tip of the AFM is
used to pull the cell instead of applying a compressive force on
it. This technique allows to localize cell surface molecules and
to study their elasticity and adhesion (Hinterdorfer and Dufrêne,
2006; Puchner and Gaub, 2009).

The AFM tip often needs to be functionalized with specific
moieties or biomolecules that specifically interact with the surface
of the cell. Once the probe is brought in contact with the
cell surface and a molecular interaction occurs between the tip
and the probed molecule (contact time), the cantilever position
is perturbed. The tip will firstly bend downwards while being
retained by the interacting molecules. Ultimately, the retracting
force possessed by the cantilever beam will lead to the detach-
ment of the modified AFM tip from the investigated surface.
Therefore, it is possible to measure the force applied on the
cantilever beam by the interacting molecules and to draw a
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retraction curve that contains characteristic “rupture events”
that represent the required force to break a single molecule
interaction. Moreover, by imposing different stretching speeds,
it is possible to evaluate the potential energy parameters of the
molecular interactions, leading to an estimation of the binding
strength of a given receptor (Karácsony and Akhremitchev, 2011;
Dufrêne and Pelling, 2013).

An interesting approach, exploiting AFM in a passive mode,
is represented by the work of Liu et al. (2012), who developed
a technique to study the contractile force of cardiomyocytes.
They first brought the AFM cantilever to gently touch the living,
beating cells, then locked the z-piezo and let the contraction
forces of the cell deflect the cantilever. This method allowed
to quantitatively measure several parameters, including elastic
modulus, contractile force, beat rate and beat duration.

The understanding of how nanomechanical forces induce
signaling, and how this is transmitted through the cellular
architecture was achieved by the combination of AFM and optical
techniques.

AFM mechanical measurements made while scanning the cells
with different optical microscopy procedures (Lehenkari et al.,
2000; Haupt et al., 2006), such as fluorescence microscopy or laser
scanning confocal microscopy, led to many important observa-
tions on the origins of mechano-sensitivity and the processes
of mechano-transduction in living cells. Several groups have
independently demonstrated how cells are extremely sensitive
to small local forces by using fluorescent fusion proteins
coupled with live cell dyes. For example, the local indenta-
tion of living cells with an AFM tip with forces in the order
of 10−9 N, influences their behavior making them generate
an inner response by signaling and structural events (e.g.,
calcium release, membrane blebbing, cytoskeletal deformation,
and organelle rearrangement) (Charras and Horton, 2002;
Silberberg et al., 2008; Veraitch et al., 2011; Guolla et al., 2012).
AFM records force-distance curves by plotting the force acting
on the probe as a function of the probe-sample separation
distance. Nanomechanical and nanoadhesive properties of the
living material can be extracted from the experimental data
by using the available physical models (Formosa-Dague et al.,
2018).

Many studies have been conducted using AFM as a probe
for the understanding of cell behavior under external mechani-
cal stress. Those studies showed the wide range (from as low as
0.02 kPa up to 400 kPa) of the elastic modulus of living cells,
as it has been extensively reviewed and accurately tabulated by
Kuznetsova et al. (2007).

In the standard indentation method, cells need to be firmly
attached to the substrate. This may raise problems for non-
adherent cells in suspension. Many methods have been presented
to overcome this issue, and have already been described in
the literature (Kuznetsova et al., 2007). However, effects on the
cell elastic modulus caused by the immobilization (Dulińska
et al., 2006) (e.g., poly-L-lysine solution for native erythro-
cytes attachment to glass surface, Dulińska et al., 2006) should
be expected and they should be taken into account during
the estimation of the elastic modulus to avoid under or over
estimation (Rosenbluth et al., 2006). Moreover, since cells are

not homogenous, heterogeneous mechanical properties can be
expected at different positions within the cell. For example,
Mathur et al. (2000) reported high variation in the elastic
modulus for human umbilical vein endothelial cells (HUVEC)
measured over the nucleus, in its proximity, or near the
edge of the cell body, with the nuclear area being stiffer
than the rest of the cell body. Similarly, variability of local
mechanical properties was reported for many other cell types,
including bovine pulmonary artery endothelial cells (Costa
and Yin, 1999), cardiomyocytes (Shroff et al., 1995), etc. Cell
thickness is also a factor to be taken into account, as it can
affect the measurement of the elastic modulus (Mahaffy et al.,
2004).

Even though the interpretation of AFM data is not straight-
forward, this technique has the advantage to be coupled with
microscopic observation, for the convenient analysis of the
mechanisms of cell function through a deeper knowledge of the
cell behavior under stress (Kuznetsova et al., 2007). For example,
Pesen and Hoh (2005) perturbed the assembly of cytoskele-
ton components using drugs. By combining AFM analysis with
confocal fluorescence microscopy (CFM), they were able to study
the subcellular organization of different cytoskeletal components,
clearly showing that the elastic response of cells is mostly due
to the network of actin filaments. With the combined AFM-
CFM approach, they also characterized the local micromechan-
ical architecture of the cell cortex in bovine pulmonary artery
endothelial cells.

More recently, Fallqvist et al. (2016) used a drug that disrupts
the cellular actin network (Latrunculin B) to study how the actin
cytoskeleton influences the mechanical properties of fibroblasts.
They confirmed that the disruption of the actin network reduced
cellular stiffness, while increasing the relaxation rate of the
cytoplasm. They hypothesized that the actin network is respon-
sible for both the viscous properties of the cell and its stiffness.
Similar experiments, based on the disruption of the cytoskeleton
using different molecules (e.g., cytochalasin D and nocodazole for
actin microfilaments and microtubules, respectively) in order to
evaluate their connection with cell mechanical properties, were
extended to primary chondrocytes, endothelial cells, fibroblasts,
hepatocellular carcinoma cells, and fibrosarcoma cells (Grady
et al., 2016).

AFM allowed scientists to take another step forward in the
understanding of the relationship between mechanical properties
and cell behavior during the mechanisms of cell differentiation
and aging. Reorganization of cytoskeleton and modifications in
mechanical properties seem to be correlated with the cell cycle
stages (Collinsworth et al., 2002; Zhang et al., 2004). AFM studies
conducted on HUVEC (Sato et al., 2004) and human epithelial
cells (Berdyyeva et al., 2005) correlate cell elasticity and culture
period. The obtained values of stress over time show an increase
in in vitro cell rigidity during aging. Lieber et al. (2004) also used
AFM nanoindentation on isolated cardiomyocytes from young
and old male hybrid rats (Fischer 344 Brown Norway F1), discov-
ering a correlation between the increase in their apparent elastic
modulus and aging.

Understanding the effects of diseases on cell mechanical
properties also represents a major application of AFM. The
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direct link between structure and functions is the reason for the
increasing number of studies that aim to correlate the change of
the mechanical properties with pathological conditions involv-
ing numerous diseases and biological structures. These aspects
have extensively been reviewed (Morton and Baker, 2014; Gautier
et al., 2015; Dinu et al., 2016; Rianna and Radmacher, 2016)
and will be summarized next. A notable example of the AFM
application in this context comes from the work of Sun N.
et al. (2012). As a model for investigating dilated cardiomyopa-
thy (DCM), the authors generated cardiomyocytes (CMs) derived
from induced pluripotent stem cells (iPSCs) from patients with a
familial point mutation in the gene encoding cardiac troponin T.
They measured the contractile force of such iPSC-CMs through
AFM using a silicon nitride cantilever tip with a cellular indenta-
tion of around 100–200 nm, and applying a 100 pN contraction
force to cells. This technique allowed them to detect much weaker
single-cell contraction forces in the DCM iPSC-CMs compared
to control iPSC-CMs from healthy individuals of the same family
cohort.

Another remarkable example of using AFM to perform force
mapping measurements between normal and defective cells was
recently given by Nardone et al. (2017). In this work, the
authors studied the interplay between the activity of the Hippo
pathway effector Yes-Associated Protein (YAP) and formation of
focal adhesions (FAs, sub-cellular protein complexes that act as
linkages between integrin-ECM connection and the cytoskele-
ton) in physiological and simil-pathological conditions. They
compared genetically modified YAP-deficient adipose tissue-
derived mesenchymal stem cells (AD-MSCs) grown onto differ-
ent substrates with normal AD-MSCs via force mapping AFM
measurements, thus providing novel insights into the mechanism
of YAP mechanosensing activity in regulating the assembly of
FAs.

Considering their important role in numerous physiologi-
cal and pathological processes (atherosclerosis, blood pressure
regulation, etc.), mechanical alterations of endothelial cells due
to pathological events have been extensively studied (Szymonski
et al., 2015). For example, AFM indentation measurements on
ex vivo specimens of abdominal and common iliac aorta from
cholesterol-fed rabbits were performed with the aim to assess the
mechanical properties of endothelial cells as a function of the
biological site and of disease progression (Hayashi and Higaki,
2017). Further, it was demonstrated that cholesterol greatly
increased both stiffness and viscosity of human umbilical cord
vein endothelial cells (Yan et al., 2017)

Dulińska et al. (2006) investigated the changes in the elastic
modulus of erythrocytes from patients with different types of
anemias, concluding that the elastic properties of pathologi-
cal erythrocytes are two to three times higher than normal
cells. Besides anemia, erythrocytes were shown to modify their
mechanical properties also in other pathologies (e.g., Parkinson’s
disease, Alzheimer disease, etc.), as summarized in previous
reviews (Mukherjee et al., 2015).

In recent years, the discovery that the mechanical proper-
ties of single cells are closely related to cancer development
has significantly increased the number of publications in this
area. Many of these studies are based on the possibility of using

AFM as an early cancer detection instrument, by exploiting the
nano-mechanical modifications induced by cancer (Kasas et al.,
2018). AFM has been used in many studies on different cancer
typologies (e.g., bladder, Abidine et al., 2015; cervix, Zhao et al.,
2015; oral mucosa, Park et al., 2016; bone, Wang et al., 2016;
prostate, Efremov et al., 2015; lung, Han et al., 2016; brain, Ciasca
et al., 2016). All these studies agree that it is possible to distin-
guish cancer cells from their healthy counterparts by analyzing
their mechanical properties and correlating them with other
relevant cell features, such as morphology, migration potential
and invasiveness (Lekka, 2016). We report here a few examples of
the ongoing research on one of the most common type of cancer
in woman, that is breast cancer.

Plodinec et al. (2012) demonstrated the strong link between
cancer progression and a substantial softening of tumor epithelial
cells compared with normal mammary tissue using AFM high-
resolution stiffness mapping. They suggested a direct connection
between metastatic potential of cancer cells and cell soften-
ing in the primary tumor. Ansardamavandi et al. (2016) used
AFM to analyze ex vivo bioptical specimens of breast tissue,
showing a general stiffness modification in cellular and non-
cellular regions associated to cancer development. In particular,
they reported softening of the cellular regions of cancerous tissues
compared to their healthy counterparts, while the fibrous regions
slightly stiffened. Another study by Coceano et al. (2016), based
on the comparison of the elastic modulus of different human
breast cancer cell lines, showed that cell aggressiveness (and
hence infiltration potential) correlated with a reduction in cell
stiffness. This research showed that AFM indentation technique
is potentially able to probe human breast biopsies at the tissue
level, representing a possible marker for cancer diagnosis in
future.

As a last remark of this section, it has to be pointed out that
AFM analysis is generally restricted to the outer surface of cell
membranes and it is not able to directly investigate intracel-
lular structures, as the cantilever cannot scan the inside of a
cell membrane. To overcome this limitation, Usukura et al.
(2012, 2016) have applied an “unroofing” methodology, consist-
ing in the breakage of the cellular membrane and the removal of
cytoplasmic-soluble component, to allow the AFM probe directly
access cytoskeleton and organelles.

TWEEZING METHODS

Mechanical forces generated by cells, along with those developed
by the surrounding environment and externally applied to cells,
are involved in the regulation of the physiological functions of
bio-molecules. Besides leading the required actions for tissue
development and homeostasis (i.e., stretching, bending, reposi-
tioning, and alignment), these forces also enable and regulate
cell functions such as activation of signaling pathways, transcrip-
tion, cellular differentiation and proliferation (Polacheck and
Chen, 2016). Such forces, acting at the molecular level, range
from a few piconewtons to several nanonewtons. To investi-
gate those mechanical properties of biomolecules and their
interactions, many different devices and methodologies have
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been developed. Among them, tweezers have undergone a
significant development in the last three decades, allowing the
manipulation of individual molecules within cells with extraor-
dinary precision. These powerful single-molecule tools include:
(i) optical tweezers for high precision measurements of forces
throug optical micromanipulation, down to the single-molecule
level (Hénon et al., 1999); (ii) magnetic tweezers for the simulta-
neous manipulation and recording in real time of forces using
tethered magnetic beads; (iii) acoustic tweezers for manipulating
cells in three dimensions using sound waves.

Optical Tweezers (OTs)
Laser trapping, better known as OTs, and invented by Ashkin
et al. (1986), became one of the most widely used single
molecule tools in biology. In fact, OTs are especially suited
to manipulate mesoscopic systems, which are characterized by
forces ranging from femtoNewtons to nanoNewtons, length
scales ranging from tens of nanometers to hundreds of microm-
eters, and time scales ranging upward from one microsecond
(Grier, 2003; Fazal and Block, 2011). These ranges cover those
experienced by biological molecules in their native environ-
ment (i.e., many of the inter- and intracellular processes). The
working mechanism of OTs is based on focusing a laser beam,
introduced through a high numerical aperture objective, onto
a dielectric micro-particle, in such a way that the interaction
with the laser light stably traps the particle close to the beam
focus. Usually polystyrene or silica microspheres are bounded
to molecules of interest and, upon being trapped by the OTs,
used as handles for the manipulation of cells. Forces arising
from the radiation pressure of a highly focused light beam
are responsible for the dielectric particles entrapment (Ashkin
et al., 1987), where the dominant component of the force is
along the gradient of the electric field and pushes the dielec-
tric particles toward the center of the focused beam. In a small
region around the center, the trap behaves like a linear Hooke’s
spring. The value of the trap elastic constant is determined
by calibration techniques, normally by thermal fluctuations of
the position of the trapped particle (Lisica and Grill, 2017).
Therefore, once a particle has been trapped, it is enough to
change the position of the focus to move it, using the laser
beam in the same way of a pair of tweezers. Thus, one of the
main advantages of OTs over other techniques, such as MTs
(described below), is represented by the possibility to modify
the trap position in all three dimensions at high frequencies by
moving the laser beam. For example, this is required to probe
multiple conformational states of microscopic particles, such as
proteins.

Many OT configurations and geometries exist to fulfill the
diverse biological applications that have been studied in the
last three decades. They can be divided in two large groups:
static configurations (i.e., single bead, two-bead, three-bead),
and dynamic configurations (i.e., force-clamp, position-clamp,
Dynamic Force Spectroscopy). The reader will find a deeper
and more detailed description of such OT configurations and
geometries in the reviews and articles that have been written on
this subject (Capitanio and Pavone, 2013).

In the study of mechanical properties, the use of microbeads
as handles (or grips) to probe force is necessary to overcome
the fact that most cells, due to their size, shape and adherent
properties, are not conducive to direct optical tweezing. While
some cell types – e.g., red blood cells (RBCs), yeast cells and
spermatozoa – are easily tweezed (Dholakia and Reece, 2006),
the majority cannot, demanding for alternative models (Zhang
and Liu, 2008). For example, thermal and hydrodynamic effects
on the biomechanical properties of biological cell membrane in
physiological flow were studied by OTs using unilamellar vesicles
(Foo et al., 2003, 2004), which are widely accepted as a model for
studies over cell mechanical properties (Ichikawa and Yoshikawa,
2001).

Concerning RBCs, since it was shown that their mechanical
properties change following structural or molecular alterations
induced by different kind of diseases (e.g., gastrointestinal tumor
and malaria) (Suresh et al., 2005), studies of their biomechanical
properties have been performed by OTs using silica beads bound
to the membrane, in either single-trap (Lim et al., 2004) or dual-
trap (Hénon et al., 1999) configuration. Among the technical
improvements for RBC studies, it is worth reporting the follow-
ing two techniques: (i) a three-laser trap setup that has been
used to initially stretch RBCs in different directions and then,
by simultaneously removing the three OTs, to study the recovery
and the cell relaxation time (i.e., time taken by a deformed cell
to go back to the undeformed state), which differentiates the cell
age (Bronkhorst et al., 1995); (ii) the use of a focused evanes-
cent wave illumination technique, which goes under the name
of single beam near-field laser trapping, which allows stretching,
rotating and folding RBCs (Gu et al., 2007).

A significant advancement in analysis throughput using
optical trapping has been reported by Guck et al. (2005) who
used two counter-propagating divergent beams to stably trap and
deform cells flowing in a microfluidic channel, thereby achieving
flow-cytometric measurement of single cell viscoelasticity.

OTs have also been used to study cell membranes and subcel-
lular organelles (Wei et al., 2008; Yalcin et al., 2009). In this
case, it is typical to use micron-sized beads anchored to the
subcellular structure of interest. OTs have been used to stretch
chondrocytes to measure the bead/membrane tether formation
force, uncovering that the process of chondrocyte adhesion is
directly related to the culture time (Huang et al., 2003). The differ-
ent tether length of fibroblasts and human mesenchymal stem
cells (hMSCs) was also measured, demonstrating that membrane
mechanics dramatically affects MSC differentiation (Titushkin
and Cho, 2006). Among the other applications of OTs, it is
worth reporting their use in different human cell studies, such as:
holographic OT techniques to investigate hyaluronan-mediated
adhesion processes of chondrocytes (Curtis and Spatz, 2004)
and OTs experiments for elucidating the short-term binding of
fibroblasts to fibronectin-coated glass (Thoumine et al., 2000),
the mechanics of cellular adhesion to artificial artery polymer
templates (Knöner et al., 2006), and the interaction forces
between human bone cells and implant surfaces (Andersson et al.,
2007).

Besides allowing a dynamic analysis of the mechanical proper-
ties of cells (Huang et al., 2003), OTs can be also used in the
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study of tissues (López-Quesada et al., 2014) without alterations
to the embryonic development. When using lasers on biological
samples, there is always a big concern regarding photodamage.
Considering that biological samples are almost transparent to
the near-infrared wavelengths that are normally employed to
trap particles by laser traps (Neuman et al., 1999), this problem
is minimized. Thus, this compatibility with cellular specimens
allows the use of OTs in living cells (Monachino et al., 2017). In
this field, it is worth to highlight the papers by Nan et al. (2008)
and Sims and Xie (2009), in which OTs were developed and
used for sub-millisecond tracking of organelles cargoed by the
molecular motors kinesins and dyneins. Hendricks et al. (2012)
applied OTs to study bi-directional transport of phagocytosed
latex beads (LBCs) along microtubules of living mammalian
macrophages, suggesting that bidirectional transport of LBCs is
driven by opposing teams of stably bound motors that operate
near force balance. Thus, OTs offer a wide set of method-
ologies that make them suitable for trapping and potentially
measuring fluid forces also in vivo. A breakthrough in that
direction was made by Zhong et al. (2013) who trapped RBCs
using OTs in the capillary vessels of mouse ears. Clearly, this
approach shows limitations when the events of interest are
located deep in tissues. Other examples of studies in tissues
are given by the recent work of Bambardekar et al. (2015),
who accurately measured the tension forces between adjacent
cells of a Drosophila embryo by deforming cell junctions with
oscillating OTs, and by Johansen et al. (2016), who demonstrated
the potential of optical tweezing in a living zebrafish (ZF)
embryo exploiting its relative optical transparency. One of the
major obstacles for all the in vivo studies is the calibration
of the optical trap, since the heterogeneity of both cell size
and refractive index limits the use of OTs in realistic in vivo
contexts. Recently, the feasibility of in situ calibration of the
optical trap stiffness (k) and the position detection sensitivity
(1/β) has been demonstrated in vivo in the yolk sac of living
ZF. Moreover, the study provided measures of the viscoelas-
tic properties of ZF embryo yolk over an order of magnitude
of stress-strain amplitude (Staunton et al., 2017). Harlepp et al.
(2017) demonstrated the possibility to use OTs for measuring
flow profiles and drag forces imposed to trapped RBCs of living
ZF embryos.

Magnetic Tweezers (MTs)
MTs arose as one of the most widely used and powerful tools
for the analysis of molecular forces and for the micromanipula-
tion of cells, mainly thanks to their capability of applying torque
(Oberstrass et al., 2012). The possibility to be integrated with
a range of powerful light microscopy imaging modes, as well
as their high force, spatial, and temporal sensitivity (Gosse and
Croquette, 2002; Kilinc and Lee, 2014) have greatly widened MTs
applications.

The development of MTs is relatively recent and allows the
application and measurement of forces ranging from pico- to
nanoNewtons using magnetic micro-beads, under a generated
magnetic field gradient. Therefore, MTs are mainly used in
biological applications for: single molecule force measurements
(SMFM) or extra-cellular and intra-cellular (magnetic beads

are located outside and inside the cell, respectively) microma-
nipulation. Moreover, similarly to other biophysical methods,
MTs have a very low interference with the specimen, which is
very important in research involving mechanotransduction (De
Vlaminck and Dekker, 2012; Oddershede, 2012; Monachino et al.,
2017).

A typical MTs setup is composed by a tracking system, which
is usually made of an optical microscope and various magnetic
elements that can be made either by permanent magnets or
electromagnets (Xin et al., 2017).

All the components are normally chosen and assembled for
the specific force to be applied to the system. It is possible to
control the magnetic force by changing the size and shape of
the magnet, by changing its magnetization orientation, or by
varying the distance between the magnets and the magnetic
beads. MTs allow the application of stretching/pulling forces,
which are perpendicular to the biological sample substrate, or
twisting forces parallel to the biological sample substrate (Shang
and Lee, 2007; Kilinc et al., 2012; Tabdili et al., 2012). These
operations are even easier by using electromagnets, i.e., generat-
ing the field by electrical current passing through a coil. Likewise,
it is possible to precisely control the magnetic field and to easily
switch its magnitude and direction and the number of poles.

Most magnetic particles used as force transducer in MTs
studies are superparamagnetic (SPM) or weakly ferromagnetic.
SPM particles are mainly used for their relatively high suscepti-
bility and zero residual magnetization (O’Mahony et al., 2013),
while ferromagnetic nanoparticles, thanks to their high satura-
tion magnetization, are normally chosen where there is a weak
external magnetic field and the particle size is limited.

Despite a great share of research on MTs concentrates on
the development of electromagnets and system design, yet the
experiments are typically based on commercial magnetic beads;
thus, the possibility to widen their properties and characteris-
tics by achieving different shapes, sizes and element compositions
is pivotal for enhancing MTs performances (Zhang and Wang,
2012; Tavacoli et al., 2013). Nowadays, many companies sell iron
oxide SPM beads with diameters ranging from 0.1 to 100 µm
and with a wide selection of chemically modified or biologically
functionalized surfaces. As an example, nanorods, thanks to the
possibility of combining multiple metallic elements (Zhang et al.,
2011; Lin et al., 2012) or alloys (Zhang and Wang, 2012) into a
single structure, have been successfully used to enhance proper-
ties for target applications (e.g., in torque measurements the need
to have small particles with high torque sensitivity and small
stretching force) or to introduce multiple functionalities, such as
magneto-optically active materials (Zhang et al., 2011).

In the near future, novel MTs probes made of magnetic beads
with enhanced properties, such as programmable shape changes
(Tavacoli et al., 2013) or collapsing under the exposure to weak
magnetic fields (Fuhrer et al., 2013), could further widen the
application fields of this technique.

MTs were subject to many updates and enhancements through
the years, and some of the early limitations (i.e., the extreme
difficulty to measure torques in the range of 10 pN·nm, typical
of DNA, the impossibility to decouple twisting torque from
stretching force, and the necessity to apply an external torque
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in order to study the natural torque of a molecule), were
overcome by alternative approaches that have been widely
described in many reviews (Kilinc and Lee, 2014). For example,
approaches like “soft MTs” (Mosconi et al., 2011), “rotor bead
tracking” (Oberstrass et al., 2012), “freely orbiting MTs” (Lipfert
et al., 2011) and “magnetic torque tweezers” (Lipfert et al.,
2010) were developed to decouple torque from stretching force.
Moreover, the raise of a series of instruments called “electro-
magnetic torque tweezers” sensible to stretching forces from
10 fN to 10 pN and with torsional stiffness ranging from zero
to 1000 pN·nm/rad (Janssen et al., 2012), creates a category
of instruments with broad ranges of force and torque. Other
approaches also make the most of the simple and flexible MTs
design by combining it with other force probing techniques
(e.g., OTs, TFM, and many others), building a huge variety
of instrumental setups tailored to different applications. For
a more detailed insight on the technical aspects of MTs we
suggest to refer to Kilinc and Lee (2014) and Tanase et al.
(2007).

MTs equipment is easy to assemble and cheap. However, MTs
are not widely commercialized and research laboratories possess
their own highly customized tools, thus they are not standard-
ized. This aspect is of particular importance considering that the
use of electromagnets may affect the behavior of biomolecules by
hysteresis of the magnetic field and heat generation around the
sample (Rocha, 2015).

In the near future, the integration with other biophysical
measurements, the development and fabrication of new classes
of multi-functional magnetic particles with enhanced magnetic
properties, or different programmable geometries, could expand
the potential uses of MTs pushing forward the current boundaries
of the methodology.

MTs have been used for analyzing local viscoelastic proper-
ties of the cytoplasm (Bausch et al., 1999), for testing different
membrane structures with distinct characteristics as in the case
of intracellular organelles, for probing the molecular basis of
cell mechanics (including the linkage mechanisms of transmem-
brane integrins to different component of the cytoskeleton), and
for studying the chromatin structure, function, and the detailed
nuclear architecture.

MTs have been used in several studies to explore how cells
respond to mechanical forces. Wang et al. (1993) applied a
twisting force to integrins on the surface of endothelial cells, using
arginine-glycine-aspartic acid (RGD) peptide-coated magnetic
beads, observing the actin cytoskeleton dependent stiffening
response. Glogauer et al. (1995, 1997) placed permanent magnets
over cell cultures in order to vertically pull collagen-coated
magnetic beads attached to the cell surface. Using this method,
they were able to perform both single cell analysis, for example
measuring a modification of the intracellular calcium content in
response to force, and bulk biochemical measurements on large
populations of cells, that allowed them to show an increase of
protein tyrosine phosphorylation in response to force. Zhao et al.
(2007) used this approach to show the activation of RhoA by
imposing a tension on integrins via collagen coated magnetic
beads. Matthews (2006) used MTs to determine the effects of
applying tension on magnetic beads coated with integrin ligands

and showed the involvement of RhoA signaling pathways in the
cellular response. Marjoram et al. (2016) evaluated single cell
response to force pulses. They analyzed the effects of tension
on VE-cadherin on endothelial cells, reporting an increase in
RhoA activation and a decrease in Rac1 activation, a change
in the phosphorylation levels of protein tyrosine, and a stiffen-
ing response to trains of short force pulses. Saphirstein et al.
(2013) used MTs to investigate the mechanobiology of aortic
tissue. Their results show that the focal adhesions of the vascular
smooth muscle cells (VSMC), and particularly the FAK/Src
complex, act as a regulator of aortic stiffness. Considering that
the increase in aortic stiffness is linked to cardiovascular disease,
the obtained results make FAs as a potential novel therapeutic
target.

MTs have frequently been coupled with other techniques to
gather more accurate information. Optical Magnetic Twisting
Cytometry (OMTC), a technique of applying twisting torques
to cells in culture, has been used by different groups (Fabry
et al., 2001; Puig-de-Morales et al., 2004; Trepat et al.,
2007) to study how different force regimes (i.e., modify-
ing frequency or amplitude) applied to cells resulted in
cellular reinforcement (stiffening) or fluidization (softening).
Na and Wang (2008) combined FRET with MTs to study
rapid mechanochemical signaling in live cells, and they
demonstrated that pre-stressed cytoskeleton promoted rapid
activation of Src protein upon force. With a similar setup,
Poh et al. (2009) showed that a local stress in the physio-
logic magnitude range, applied through integrins on human
airway smooth muscle cells, can directly and rapidly activate
Rac GTPase, independently of Src activity. MTs have also
been used in combination with microengineered platforms
(Lin et al., 2012). The induced cellular contractile response
to force and torque applied through nanowires bound to (or
internalized by) bovine pulmonary artery smooth muscle cells
(SMCs) was measured with arrays of elastic micropillars force
sensors. The authors reported that the contractile response was
connected to the actuation frequency, but was not dependent
on the applied force or torque magnitude. Moreover, they
observed a global enhancement of cell traction forces follow-
ing the application of a localized torque. Recently, Bidan
et al. (2018) applied a combination of MTs and TFM on
deformable substrates enabling local and dynamic mechanical
stimulation of cells plated on a continuous surface. Substrates
consisted of a layer of soft elastomer embedding spatially
arranged magnetic micropillars, that could be locally actuated
by means of a MTs setup. The induced localized deforma-
tion of the substrate could be quantified by tracking fluores-
cent microbeads that were also embedded under the elastomer
surface.

Acoustic Tweezers (ATs)
In 1991, an article from Wu (1991) showed the possibility to
stably trap a 270 µm latex particle or a cluster of frog eggs in
a potential well generated by two collimated focused ultrasonic
beams propagating along opposite directions in water. This
technique, originally termed “acoustical tweezers”, is nowadays
better known as ATs.
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ATs are based on the concept that a stable potential well
can be created by radiation pressure at the physical focal
point of a focused ultrasonic beam (Wu and Du, 1990). This
technique foresees the use of piezoelectric transducers positioned
so that their beams focal points can be held a few millime-
ters apart, creating the potential well. Moving the transduc-
ers or tuning their frequency results in the displacement of
the potential well and in the trapped objects to be moved
alongside.

Manipulating biological specimens by acoustic waves, ATs
present many advantages (Friend and Yeo, 2011; Ding et al.,
2013) compared to similar techniques (i.e., optical and MTs).
First of all, the emitted mechanical vibrations have such a
low intensity (power intensity ca. 10 million times lower than
OTs) that they have a minimal impact on cell viability and
function, not altering cell characteristics. Moreover, particles
or cells can be suspended into their preferred medium (i.e.,
culture medium or ECM) and moved in a contactless way,
avoiding contamination. Also, there is no need for the manipu-
lated cell to undergo surface modifications or labeling, so that
cells maintain their shape, size, refractive index, charge and
other native properties. Finally, the ATs platform can be made
of a single, integrated micro-device, avoiding any moving parts
and/or complicated setup procedures, which make the system
very easy to use (Guo et al., 2016). In this regard, the implemen-
tation of surface acoustic wave (SAW) transducers (Ahmed
et al., 2016) for on-chip manipulation of cells has been reported
(Voiculescu and Nordin, 2012; Ding et al., 2014; Nguyen et al.,
2017).

In summary, acoustic devices, not suffering from some of
the drawbacks affecting other methods (i.e., no need of optical
purified sample, possibility to manipulate large particles or cells,
lower damage to biological samples) (Hwang et al., 2014; Huang
et al., 2015; Li et al., 2015), have been demonstrated to success-
fully perform many microscale functions such as separation,
alignment, patterning, enrichment and transportation of cells and
microparticles (Friend and Yeo, 2011; Ding et al., 2013; Bourquin
et al., 2014; Gesellchen et al., 2014; Guo et al., 2015; Li et al., 2015),
and are considered to be a very attractive non-invasive approach
for the manipulation of cells and particles for biomedical and
biophysical applications (Lam et al., 2016).

An evolution of ATs with a high significance for the study
of cell mechanobiology has been introduced by Fan et al.
(2013). The authors used RGD-coated, ultrasound-excitable lipid
microbubbles, that were bound to the membrane of living
cells and targeted by ATs for their mechanical actuation. This
technique, which goes under the name of acoustic tweezing
cytometry (ATC), produces a rapid acoustic radiation force
on the microbubbles that provokes the contractility of the
intracellular cytoskeleton. Hence, ATC provides an effective
method to apply mechanical stress to cells with no reported
negative effects on cell physiology (Liu, 2016). As an example,
Heureaux et al. (2014) engineered retinal pigment epithelial
cells for the expression of bacterial mechanosensitive channel of
large conductance (MscL), and challenged the cytoskeleton with
localized stress by integrin-bound microbubbles, demonstrat-
ing the possibility to gate the MscL by a mechanical actuation

that targets the integrin-focal adhesion-cytoskeleton connec-
tion. As a further improvement, Chen et al. (2015) developed
an ATC methodology exploiting the acoustic interaction force
between two cell-bound microbubbles, that is resulting from
the scattering of the incident primary ultrasound field. The
generated secondary acoustic radiation force (sARF) has the
same magnitude for each of the microbubbles and is attrac-
tive, independently of the orientation of the primary ultrasound
pulses. For this reason, two-bubble ATC (TB-ATC) technique
provides advantages in the experimental setup and in the
measurement of subcellular biomechanical properties. Using TB-
ATC, the same research group demonstrated that ATC stimula-
tion promotes cytoskeletal contractility and enhances osteogene-
sis of human mesenchymal stromal cells via YAP activation (Xue
et al., 2017).

TRACTION FORCE MICROSCOPY (TFM)

Among passive approaches, TFM was one of the first and
most broadly used techniques for measuring cell forces, provid-
ing maps of stresses at the cell surface. Ideally, every cell
adherent to a soft substrate exerts a contractile force able
to deform it to a measurable extent. Over the years, several
TFM methods exploiting flexible 2D synthetic substrates of
known mechanical properties have been reported. One of
the first experiments introduced by Harris et al. (1980) used
soft silicone rubber as cell substrate and provided maps of
traction forces by measuring the size of the out-of-plane
wrinkles generated by cell contraction. Although the force
direction and magnitude are derived from wrinkles inspection
by phase contrast microscopy, this approach is highly qualita-
tive and the reported deformation cannot be compared across
systems.

Therefore, researchers started to use fluorescence beads to
monitor the deformation of thin hydrogel films, thereby gather-
ing quantitative information. In standard TFM, micro/nanoscale
fluorescent beads are embedded into the substrate or attached on
the surface and used as fiduciary markers to be optically tracked
in space and time. A common TFM experiment consists in
imaging the bead positions in a stressed state (cell-loaded image)
when cells seeded on the substrate start to contract. After releas-
ing cell tractions by detaching the cell (i.e., by trypsinization), a
new image is captured to determine the position of the beads in
the unstressed state (unloaded or reference image). A displace-
ment map of the deformed substrate – a map showing how each
pixel deviates from its reference position due to the force exerted
by the cell – is then derived from the two images either by single
particle tracking or by digital image correlation (Franck et al.,
2011).

To avoid the use of a reference image, recent advance-
ments have involved the controlled dispensing of fluorescent
markers (e.g., using the electrohydrodynamic NanoDrip printing
technique) with regular spacing on the gel surface (Bergert
et al., 2016). Alternatively, instead of using fluorescent beads
distributed throughout the substrate, a modified version of TFM
has been implemented by Balaban et al. (2001) who adapted
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soft lithography to embed patterns of fluorescent photoresist
markers right under the substrate surface. Once the computa-
tional framework and imaging system are set up, measure-
ments can be systematically performed and traction maps
derived from the displacements through a variety of computa-
tional methods (Butler et al., 2002; Munoz, 2016). Since the
beads are much smaller in size than a cell, TFM has allowed
scientists to map forces with subcellular resolution enabling the
characterization of the force dynamics involved in numerous
biological and pathological processes, including cell adhesion,
migration, differentiation, and metastatic potential (Engler et al.,
2006; Indra et al., 2011; Jannat et al., 2011; Koch et al.,
2012).

Polyacrylamide (PA) or silicon-based gels are typically
used as substrates for TFM (Roca-Cusachs et al., 2017).
Both types of gels exhibit a linear elastic behavior under
deformations produced by cell traction, and their Young’s
modulus (i.e., linear elastic modulus) can be varied over a
range of several orders of magnitude. Furthermore, unlike
native ECM, their mechanical properties do not change
significantly during a single measurement since they are
not degraded by biochemical factors released by the cells,
including cell proteases. Although this is advantageous for
cellular traction measurements, evidences from the literature
revealed a significant effect of cell-mediated degradation of
ECM matrices on cellular traction profiles (Khetan et al.,
2013).

Thus, TFM has been rapidly extended from the computa-
tion of the 2D force field imparted by an individual cell
on a 2D flat substrate to the quantification of forces in
more realistic environments with a dramatic increment of
computational time. The first step toward this goal has
been the extension of TFM measurements to multicellular
clusters (Trepat et al., 2009) and 2D substrates of arbitrary
stiffness profiles (Sunyer et al., 2016). Furthermore, although
the 2D TFM can approximate many experimental conditions,
cells usually exert 3D forces on the adhering substrates
and the normal traction component is often comparable to
the in-plane one (Bastounis et al., 2014). Thus, to obtain
a more accurate characterization of 3D traction field of
cells cultured on a 2D substrate (often referred to as 2.5D
tractions), TFM methods have been further modified and
implemented to track bead displacements in 3D with confocal
microscopy.

Another issue, even more tricky, is represented by the analysis
of 3D force field exerted by cells encapsulated in 3D ECMs.
In all the methods presented so far, cells are seeded on 2D
substrates, while cells in vivo are embedded in 3D matrices,
and their phenotype and shape is strikingly affected by the
surrounding cell environment. However, greater use of 3D
TFM is hindered not only by the limits in acquiring sub-
micrometer scale features in 3D (Hall et al., 2013), but also by
the more heterogeneous and mechanically complex properties of
natively-derived fibrous components of the ECM compared to
the synthetic materials used for 2D measurements (Hall et al.,
2013). Unlike the 2D/2.5D cases, in which the properties of
the substrate can be tightly engineered by researchers, the 3D

ECM undergoes continuous remodeling that involves deposi-
tion, reorganization and degradation, precluding a straightfor-
ward interpretation of the deformation/force fields. Just to give
an example, it is impossible to clearly discriminate if a large
deformation in the proximity of a cell is induced by high cell
traction or by a change in mechanical properties related to
ECM remodeling. Moreover, natural ECMs are composed of
fibers with highly non-linear behavior and randomly distributed
in the same microscopic volume element. Although these 3D
traction approaches have still limited applicability compared to
2D TFM, they have already evidenced a different cell mechani-
cal behavior between 3D and 2D environments, as demonstrated
for forces applied by MDA-MB-231 breast carcinoma cells in
3D polymers that appear to be independent of concentra-
tion and stiffness of the surrounding matrix (Steinwachs et al.,
2016).

Collagen type I hydrogel is a common ECM-mimicking
material for 3D cell culture. Particle tracking techniques have
successfully led to the quantification of pericellular collagen
deformations during tumor cell invasion and migration through
a 3D collagen matrix (Bloom et al., 2008; Koch et al.,
2012). However, the non-linear force-displacement response
of this hydrogel prevents quantification of traction forces
from the deformations using classical mechanics approaches.
Other studies report quantitative finite-element based methods
to measure cell-generated forces in physiologically-mimicking
3D biopolymeric matrices with highly non-linear mechanical
response such as collagen and fibrin gels (Steinwachs et al.,
2016). Alternatively, to avoid the issues associated with non-
linearity, 3D traction fields have been computed by Legant et al.
(2010) using synthetic, matrix metalloprotease (MMP)-cleavable
polyethylene glycol (PEG) gels. These synthetic hydrogels
exhibit linearly elastic behavior in the range of deformations
produced by single cells, and the possibility to track beads
in this material has successfully led to the measurement of
cellular tractions in 3D. Although a significant improvement
has been made, this method still assumes that the material
only undergoes elastic deformation (Palacio et al., 2013) and
a lot of work still needs to be done to fully incorporate
non-linear and poroelastic models of hydrogel substrates into
routine algorithms improving data quality at large deforma-
tions.

Since traction forces play a fundamental role in many biologi-
cal processes including embryogenesis, angiogenesis, inflamma-
tion, wound healing and metastasis, the application of TFM
has allowed better understanding of cellular and molecular
mechanisms of these processes (Wang and Li, 2010; Li and Wang,
2011; Malandrino et al., 2018).

One of the basic TFM biological applications is the measure-
ment of traction forces imparted by single cells on a 2D substrate.
For example, a maximum displacement of around 1.2 µm,
corresponding to a traction stress of about 250 Pa, has been
found by Yang et al. (2006) for human patellar tendon fibrob-
lasts seeded on a type I collagen-coated PA substrate. More
interestingly, as traction forces vary depending on cell type,
TFM measurements can be useful in detecting cell phenotypic
changes. On this basis, TFM has been successfully applied to
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detect differentiated cells and to distinguish between fibroblasts
and myofibroblasts obtained from the differentiation of rabbit
corneal stromal cells in conditioned media (Chen et al., 2007).
Going beyond the measurement of traction forces applied by
single cells, TFM has also found applications to explore the
behavior of cellular aggregates (Li et al., 2009), with particu-
lar regard to the mechanisms behind collective cell migration
(Trepat et al., 2009).

In addition, taking advantage of microfluidics and micro-
technologies, a recent trend is represented by the integration
of TFM with miniaturized mechanically actuated systems to
investigate cellular forces under dynamic conditions mimicking
physiological stimuli, e.g., shear flow (Shiu et al., 2004), mechan-
ical stretch (Gavara et al., 2008), and chemokine gradients (Del
Alamo et al., 2007).

In this way, TFM has been applied to observe spatiotem-
poral patterns of forces in settings that are more representa-
tive of physiological and pathological in vivo conditions (Cho
et al., 2016). As a major outcome, this technique could have a
pivotal role in the development of in vitro cell culture models
of several diseases, especially if associated with changes in
cell contractility (e.g., hypertension, muscle dystrophy, etc.), to
ease diagnostic screening and therapeutic treatments. A leading
example is represented by the in vitro model developed by Li
et al. (2008) who investigated the contractility of micropatterned
C2C12 skeletal muscle cells using TFM with the aim to obtain
a fast screening platform for therapy of Duchenne muscular
dystrophy.

While effective in a variety of biological applications, further
advancements in TFM are needed to improve spatial resolution,
enable real time assays, and measure forces within 3D matrices in
a high-throughput manner (Colin-York and Fritzsche, 2018).

MICROENGINEERED PLATFORMS

As an alternative to TFM, microfabricated platforms have been
investigated to measure cellular tractions in controlled mechan-
ical environments. A variety of approaches has been described
in the literature, but a classification into two major classes can
be performed (Rajagopalan and Saif, 2011); hard silicon-based
devices and soft polymer/gel devices.

The first category includes silicon devices fabricated through
integrated circuit manufacturing processes, the so-called Micro-
Electro-Mechanical Systems (MEMS). In this case, cells are
contacted with compliant silicon elements that deform in
response to cellular forces altering their electrical response,
as extensively reviewed by Polacheck and Chen (2016). The
design flexibility of MEMS translates into the possibility of force
measurements along multiple axes, coupled to unprecedented
measurable force range (10−12

÷ 10−3 N; Sun and Nelson,
2007). Notable examples of MEMS devices for cell biomechanical
characterization are represented by the work of Matsudaira et al.
(2017) who developed a silicon piezoresistive cantilever platform
for measuring the beating contraction force of iPS-derived
cardiomyocytes, and that of Takahashi et al., 2016 who designed
a MEMS force plate to measure single cell horizontal and vertical

traction forces. Although the majority of these devices are passive,
approaches to single-cell mechanical actuation using MEMS have
to be acknowledged (Scuor et al., 2006; Antoniolli et al., 2014),
also integrating force sensing capabilities besides actuation ones
(Fior et al., 2011; Zhang and Dong, 2012).

The second category of microengineered platforms
encompasses soft polymer and gel microsystems obtained
through soft-lithography techniques. On the one hand, these
polymer-based devices require the use of image analysis to
quantify cell-induced displacements due to the difficulties in the
integration of electronic components into such devices. On the
other hand, the higher biocompatibility and optical transparency
of these systems, together with the possibility to easily tune
surface chemistry and mechanical properties to better mimic
mechanical in vivo environment, have made them increasingly
popular for mechanobiology studies (Rajagopalan and Saif,
2011).

Among polymer-based substrates, microfabricated (vertically
arranged) micropillar arrays have been applied to the measure-
ment of forces exerted by single adhesion sites of a cell
in constructs with as few as 100–600 cells (Polacheck and
Chen, 2016). These structures are obtained by soft lithogra-
phy, consisting in replica molding of a patterned silicon master
using commercial silicone elastomer (PDMS). After microcon-
tact printing of ECM proteins over the micropillar tips, cells
can adhere and spread, exerting contractile forces that deflect
the underlying pillars as simple cantilever beams. If the deflec-
tion is sufficiently small compared with the height of the posts,
the displacement of the cantilever beam tip and the force are
proportional. Thus, traction forces can be directly calculated
from optically measured micropillar deflections, provided that
the constant of the spring is known. An exhaustive description
of how to fabricate the silicon masters and elastomeric replicas,
as well as cell culture procedures, immunofluorescence imaging
and traction force evaluation on these substrates can be found in
previous works (Yang et al., 2011; Gupta et al., 2015).

PDMS micro/nanopillars have been successfully applied to
investigate forces exerted by different cells, including fibroblasts,
endothelial cells, stem cells, etc., at both cellular and subcellu-
lar levels (Nelson et al., 2005; Fu et al., 2010; Ghassemi et al.,
2012). In particular, these systems have gained great interest as
tool for measuring forces in cells that cannot be isolated or easily
expanded, such as cardiomyocytes and human iPSCs, leading
to high-throughput, low volume screening platforms for cardiac
studies (Boudou et al., 2012; Serrao et al., 2012; Hinson et al.,
2015).

As for TFM, micropillar arrays have also been integrated
with miniaturized actuating systems to detect cell–ECM interac-
tions under dynamic conditions mimicking physiological ones
(Shao and Fu, 2014). For instance, coupling micropillar arrays
to microfluidic channels allowed measurement of cell contrac-
tile forces under laminar shear flow (Lam et al., 2012a) or
during chemotaxis-regulated cell migration (Ricart et al., 2011).
Mechanical actuation of micropillar arrays was also pursued
as a tool to study the response of cells to external mechanical
stimuli, exploiting either vacuum-driven mechanical stretching
(Lam et al., 2012b; Mann et al., 2012) or magnetic actuation
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of micropillars embedding magnetic nanowires (Sniadecki et al.,
2007).

Compared to TFM measurements, the use of micro/nanopillar
sensing elements has a few advantages. First, a reference image
is not required since displacements can be calculated from
undeformed pillar positions. Second, cellular forces are derived
from the deformation of single polymeric structures, leading to a
simpler and less computationally expensive calculation. Finally,
heterogeneous mechanical environments can be obtained by
simply altering micropillar geometries that influence substrate
stiffness.

Stiffness can be varied over a wide range of values through
the modulation of pillar structural parameters, such as height and
diameter. Tan et al. (2003) constructed circular posts with 3 µm
diameter, 11 µm height and 6 µm spacing, corresponding to a
stiffness of 32 nN·µm−1 per post using standard photolithogra-
phy and PDMS replica molding. Access to improved microfab-
rication processes such as high-resolution lithography and deep
reactive-ion etching (DRIE) has led to the reduction of pillar
diameter to the sub-micrometer level, and to the increase of
micropillar aspect ratio (du Roure et al., 2005; Yang et al., 2007;
Kim et al., 2009). Using a combination of nanosphere lithography
and plasma etching, Shiu et al. (2018) have recently further scaled
down micropillar geometries, obtaining epoxy-based photoresist
structures that were 250 nm in diameter and 1.5 µm in height,
with a spacing of 800 nm and a stiffness of 79 nN·µm−1.

It is worth mentioning that the discrete adhesive surface
that cells sense on micropillars might affect the recruitment of
integrins and adhesion proteins. This may in turn influence the
morphology of cell–ECM adhesions, thereby creating a bias in the
measurements. In this regard, the use of sub-micrometer pillars
with reduced center-to-center distance (Yang et al., 2007; Fu et al.,
2010; Ghassemi et al., 2012) might provide a closer resemblance
to continuous tissue culture substrates as demonstrated by the
increasing number of papers reporting comparable behaviors
for several cell types (e.g., fibroblasts, endothelial cells, smooth
muscle cells, MSCs, and embryonic stem cells) when cultured
on PDMS micro/nano-pillar arrays and on continuous substrates
(Yang et al., 2007, 2011). It also has to be acknowledged that
micropillar technology restricts the achievable stiffness range
compared to continuum substrates used in TFM (Miroshnikova
et al., 2018), not achieving the fabrication of ultra-compliant
arrays equivalent to the softest PA gels. Moreover, although the
elastomeric replicas can be manufactured in a standard labora-
tory, the production of the original master requires sophisticated
microfabrication facilities and equipment that are not common
in research laboratories. Additionally, calculating an effective
stiffness of micropillar substrates to be compared with physiolog-
ical parameters is not an easy task, even if some approaches have
been proposed (Ghibaudo et al., 2008). The simplest and most
common approach is to approximate the polymeric material as
linear elastic, and to express the spring constant of the micropil-
lar from the classical beam theory1. However, such a theory

1Under small deflection assumptions, pillar elastic constant can be expressed as
k = 3π ED4/64H3, where E, D and H are the elastic modulus of PDMS, the diameter
and the height of the pillar, respectively.

is only valid in the linear regime of small deformations (Li
et al., 2007). Xiang and LaVan (2007) have integrated shear
strain and large deflection theory and demonstrated that, for
deflection-to-length ratios less than 20%, the difference between
using the small or the large deflection model was less than
10%. Furthermore, other issues related to the non-negligible
effect of the elastic deformation of the pillar substrate (Zhao
et al., 2005) and to the effect of materials viscoelasticity under
dynamic analysis with different loading time/frequency (Lin et al.,
2008) should be taken into account. A detailed survey of the
advantages and disadvantages of the different analytical and
computational models is out of the scope of this review and
has been exhaustively described elsewhere (Zheng and Zhang,
2011).

CONCLUSION AND FUTURE OUTLOOK

Cellular mechanics is of primary importance in many pathophys-
iological processes. Mechanical forces elicit several biological
processes in a cell, not only changing the ability of a cell to
respond to exogenous signals and stimuli, but also dramatically
influencing the way in which differentiation decisions are made
during development.

The classical methods of fluorescence microscopy and
spectroscopy can be used to detect the position, distribution and
dynamics in real-time of single molecules, but they are not able to
provide detailed information on the mechanical features, on the
functional state of biomolecules or on the interactions between
biological systems on a molecular scale. In the last decades,
remarkable advancements have been made in devising novel and
effective techniques for identifying and handling single molecules
for the structural and functional study of biomolecules in physio-
logical conditions. These techniques can be divided into active
and passive, and they allow studying in vitro the mechanical
properties of cells by generating or detecting forces down to the
pN range.

In this review, various methods applied to the field of
mechanobiology have been described. Attention was focused
on active measurement methods (i.e., atomic force microscopy,
optical/magnetic/acoustic tweezing) and on passive ones (TFM,
MEMS, and microfabricated substrates). This review highlights
the improvements brought to the single techniques to better
characterize biological entities. Among these advancements,
we emphasize the importance of investigating the biological
response in conditions similar to the physiological environment
and for longer time without inducing cell damage, along with the
study of cellular responses to a given biomechanical stimulus in
3D conditions, thus recreating the tissue microenvironment, in
order to obtain a response closer to reality. The proper measure-
ment of physico-mechanical entities, on a cellular and subcellu-
lar scale, in a physiological or pathological condition is indeed
extremely challenging due to the complexity of recapitulating an
in vivo context that contributes to the generation and propaga-
tion of cellular forces. Discriminating the contribution of each
component in the complex in vivo microenvironment of a living
tissue is not completely feasible yet. Except for the most recent
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advances in the use of high-resolution OTs (that suffer from
limitations in analyzing events located deep in tissues) and MTs
combined with single molecule confocal microscopy and FRET
technology to measure fluid forces in vivo and to track mechan-
otransduction in living cells, a single cell must be isolated from
its surrounding environment and cultured on a suitable substrate
in order to allow researchers to perform measurements and
analyze its mechanical behavior, which is a much more simpli-
fied context compared to native tissues. Furthermore, there are
many physico-chemical conditions (e.g., temperature, surface
energy) and mechano-structural factors (e.g., strain stiffening,
pressure, cell geometry) that may have significant effects on
measurement accuracy. However, these conditions cannot be
easily recreated in vitro. Therefore, to date, such aspects represent
a significant limitation to the correct prediction of cell mechanical
behaviors.

Among the different methodologies taken into consideration
in mechanobiology studies, AFM represents a well-established
and widely used technique, which can give a topographic
image of cells and biomolecules, enabling a deeper investiga-
tion into the dynamic properties of the analyzed sample, for
instance in terms of molecular interactions required for the
adhesion of a single cell to a substrate. Furthermore, technical
improvements to the setup have allowed AFM measurements
to be performed in culture conditions and in combination with
fluorescence microscopy. However, the technique has limitations
in terms of measurement speed and costs of the instrument
itself.

Unlike AFM, tweezing technologies allow users to study both
cellular stiffness and intracellular mechanisms (such as endocy-
tosis) using specific molecules or marked particles. Tweezing
techniques still suffer from some limitations: in particular, OTs
can damage cells after prolonged exposure to high powered lasers.
This problem has been partially overcome by implementing MTs
and ATs.

On the other hand, MEMS technology affords the possibility
to fabricate extremely complex electromechanical systems and
platforms either in 2D or 3D fashion, at the micrometer scale.
By using a wide range of materials having different chemical
or physical features, MEMS devices can integrate miniatur-
ized mechanical and electro-mechanical elements that can be
exploited for diverse purposes.

Thanks to major steps forward in the development of
microfabrication and microfluidics, cell biomechanics and
mechanotransduction mechanisms can be studied in dynamic
conditions, simulating pathophysiological stimuli, in a 3D-like
microenvironment. These fast-growing technologies have been
advancing our understanding on how various cell types and
tissues sense and respond to mechanical stimuli, opening the way
toward new strategies for investigating dynamic and complex
biological phenomena, such as embryonic development and
migratory response of tumor cells. A correct quantification and
understanding of cell mechanical behavior may indeed provide
an essential foundation for studying and envisaging the develop-
ment of several diseases.

In addition, TFM methods have been combined with 3D
systems, with the support of confocal microscopy, for observing

tractions on cell surface, and for mapping 3D stress and strain
fields of single cells encapsulated in elastic and viscoelastic
materials. The future of this technology may be represented by
its application to synthetic and natural fibrous gels for monitor-
ing traction fields of isolated cells embedded in either synthetic
or naturally derived fibrous materials, such as collagen, with
the ambitious aim of recapitulating a physiologically relevant
environment in terms of biophysical and biochemical parame-
ters.

In conclusion, countless techniques have been developed for
the study of mechanobiology and the understanding of the role of
mechanical stimuli on cellular response. Altogether, the coupling
of biological, physico-chemical, and engineering knowledge has
allowed scientists to develop technological platforms that hold
great promise for a comprehensive study of cell mechanobiology.

As a future perspective, we expect technological progresses
to drive the advancement of the above described methods,
resulting in an extended range of applicable and measur-
able forces, and an improved spatio-temporal resolution. The
next generation of tools to measure cellular forces is expected
to create complex cell microenvironments through the use
of combinatorial guidance cues in a single experiment, so
that single cells can experience a dynamically changing set
of mechanical and biochemical conditions more representa-
tive of in vivo settings. In this regard, we will probably assist
to a tighter convergence of the technologies, as expected for
high-speed AFM and OTs (Ando, 2018) in order to combine
nanoscale resolution imaging with manipulation capabilities at
the molecular level. The attention of researchers in the field of
mechanobiology will reliably be drawn to the measurement of
cell and tissue mechanical properties in vivo. In this scenario,
MEMS devices have the potential to detain a leading role in
light of their extremely wide force range and design flexibil-
ity.

The challenge remains in translating the accumulat-
ing evidence of mechanical regulation of cell functions in
physiology and disease into next-generation diagnoses and
treatments.
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