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Abstract
Objective: We explore whether a knowledge–discovery approach building a Classification and Re-
gression Tree (CART) prediction model for weight loss (WL) in head and neck cancer (HNC) patients
treated with radiation therapy (RT) is feasible.
Methods and materials: HNC patients from 2007 to 2015 were identified from a prospectively
collected database Oncospace. Two prediction models at different time points were developed to
predict weight loss ≥5 kg at 3 months post-RT by CART algorithm: (1) during RT planning using
patient demographic, delineated dose data, planning target volume–organs at risk shape relation-
ships data and (2) at the end of treatment (EOT) using additional on-treatment toxicities and quality
of life data.
Results: Among 391 patients identified, WL predictors during RT planning were International Clas-
sification of Diseases diagnosis; dose to masticatory and superior constrictor muscles, larynx, and
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parotid; and age. At EOT, patient-reported oral intake, diagnosis, N stage, nausea, pain, dose to
larynx, parotid, and low-dose planning target volume–larynx distance were significant predictive
factors. The area under the curve during RT and EOT was 0.773 and 0.821, respectively.
Conclusions: We demonstrate the feasibility and potential value of an informatics infrastructure
that has facilitated insight into the prediction of WL using the CART algorithm. The prediction
accuracy significantly improved with the inclusion of additional treatment-related data and has the
potential to be leveraged as a strategy to develop a learning health system.
© 2018 Published by Elsevier Inc. on behalf of the American Society for Radiation Oncology.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Precision care is an emerging approach for the preven-
tion and treatment of disease states that accounts for
individual heterogeneity in genes, environment, and
life-style.1-8 To accomplish the goal of precision radiation
medicine, our group has leveraged an informatic infra-
structure centered around our Oncospace database,9,10 which
contains data captured at the point of care (PoC) during
the routine clinical care of cancer patients (Fig 1). Our
overarching hypothesis is that this diverse and comprehen-
sive clinical dataset growing within our informatics
infrastructure can facilitate the requisite knowledge–
discovery and development of machine learning–based
predictive algorithms that offer particular advantages com-
pared with traditional approaches11 to guide individualized

patient decisions as a component of a learning health
system.12-14

Weight loss is a common side effect among head and
neck cancer (HNC) patients throughout treatment and
follow-up15 (Fig 2) and results from multiple toxicities.
During chemotherapy radiation therapy (CRT), critical
weight loss has been reported to be as high as 57%16 in ir-
radiated HNC patients. HNC patients are at risk of reduced
oral intake because of CRT-induced side effects such as taste
and/or smell alternations, painful mucosal inflammation of
the oral cavity and pharynx, secretion changes (xerosto-
mia or thick, ropey secretions), and swallow muscle damage
caused by radiation injuries and/or surgical ablation of mus-
cular and nervous structures.17 Moreover, these symptoms
may become progressively worse during and after treat-
ment, compromising quality of life (QoL) and contributing

Figure 1 Timeline for patient care, data capture, and storage in the Oncospace database and weight loss prediction models (top). Data
inventory with weight, toxicities, and patient-reported quality of life among head and neck cancer patients from 2008 through 2015
(bottom). RT, radiation therapy.
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to poor treatment outcomes and prognosis.16,18,19 It is im-
portant for care providers to identify patients at risk of critical
weight loss, with the goal of effective weight manage-
ment or, ideally, the prophylactic prevention of malnutrition.
Interventions include possible treatment plan modifica-
tions, feeding tube placement, pain management, swallow
exercise, and frequent monitoring, which can be used during
treatment or posttreatment follow-up if the patient is at risk
for critical weight loss after treatment.

The causal relationship between RT and weight loss is
highly multifactorial. To identify patients at risk of criti-
cal weight loss, we applied an exploratory knowledge–
discovery approach. Several studies have investigated the
predictive risk factors of weight loss during or after the treat-
ment, mainly using clinical factors.20,21 In this study, we used
all the dosimetric information available in an RT plan in
addition to the clinical factors and piloted the use of the
classification and regression tree (CART) algorithm to
develop a predictive algorithm for critical weight loss in
irradiated HNC patients.

Methods and materials

Database and data collection

Oncospace is an analytical database that has systemati-
cally aggregated prospectively collected clinical outcomes,
RT plans, and geometric shape relationship at our institu-
tion since 2007 (Fig 1).6,9 Clinical data such as patient
demographic information, medical histories, physician-
assessed toxicities, and patient-reported QoL were directly
and routinely collected into the database at the PoC, fa-
cilitated by a Web interface to the database (Fig 1). Patients
were treated with intensity modulated RT (IMRT) for 6 to
7 weeks with either a once- or twice-daily hyperfractionated
schedule. Toxicity grading defined by the Common Ter-
minology Criteria for Adverse Events (versions 3.0 and 4.0)

was assessed during weekly on-treatment visits and follow-
up visits; patient-reported outcomes (PROs) including QoL
were measured by the Functional Assessment of Cancer
Therapy-Head and Neck, and the MD Anderson Dyspha-
gia Inventory instruments22-26 were assessed at the end of
treatment (EOT) and follow-up visits. For RT, prescribed
dose to the primary tumor volume and clinically involved
nodes was 70 to 72 Gy with 2.0 to 2.2 Gy per fraction, com-
bined with standard dose to moderate- (63 Gy) and low-
risk (57 Gy) nodal volumes. Comprehensive dosimetric data
defined as the dose delivered at 1% volume increments for
each high-/mid-/low-risk planning target volume (PTV) and
each organ at risk (OAR) were computed in Oncospace.9

Study inclusion criteria were HNC patients treated with
IMRT ± concurrent chemotherapy ± induction chemo-
therapy from 2007 through 2015 and patients with weight
measurements both at the end of treatment and at 3 month
follow-up. Patients with multiple treatments, reirradiation
and palliative RT, and missing weight measurements at these
time points were excluded.

Statistical design and analysis

Weight loss of ≥5 kg (yes/no) at 3 months (60-120 days)
posttreatment from the EOT was the primary study end-
point (Fig 2). To potentiate decision support through the
RT, 2 prediction models were developed: model 1 at the
time of the RT planning with variables available before RT
and model 2 at the EOT with additional clinical assess-
ments variables captured at EOT. Model 1 used diagnosis
as coded by the International Statistical Classification of
Diseases and Related Health Problems (ICD-9) code, TNM
staging, age, and dose-volume histogram data at 1% volume
increments for OAR as follows: (1) muscles: inferior/
middle/superior constrictors, cricopharyngeus, and
masticatory (masticator, temporalis, medial, and lateral ptery-
goid); (2) swallow pathway: oral cavity, oral mucosa, soft
palate, and larynx; and (3) secretion: parotid and subman-
dibular glands. Lateralized OARs (eg, left and right parotid
glands) were combined into a single structure for calcu-
lating dose-volume histogram. Minimum distances
(centimeters) between high-/mid-/low-risk PTV and OARs
were extracted from the records of geometric shape rela-
tionships calculated by the overlap volume histogram
algorithm.27-30 Model 2 included additional data such as tox-
icity and QoL. For knowledge–discovery purposes, QoL
questions were treated as individual information and ana-
lyzed independently.

Baseline characteristics were compared with binary
weight loss status (≥5 vs <5 kg) at 3 months posttreat-
ment by t test and Wilcoxon test for continuous variables
and χ2 test for categorical variables (Table 1). Statistical
significance was defined as P < .05.

Decision tree models predicting weight loss were built
with the CART algorithm.31 The cohort was partitioned into

Figure 2 Trend of mean weight difference from the end of treat-
ment (kilograms). Patients with and without critical weight loss
(≥5 kg) at 3 months posttreatment are stratified.
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Table 1 Study population characteristics for patients by critical weight loss (<5 vs ≥5 kg) at RT planning and at the end of RT

Parameters N No CWL reference CWL P value

At RT planning: demographic N = 391 N = 297 N = 94
Age, mean (SD) 57.39 (10.69) 56.92 (10.99) 58.84 (9.76) .133
Sex, n (%) .901

Man 306 (78.26) 232 (78.11) 74 (78.72)
Women 85 (21.74) 65 (21.89) 20 (21.28)

Race, n (%) .111
Caucasian 187 (76.64) 128 (74.42) 59 (81.94)
African American 42 (17.21) 32 (18.60) 10 (13.89)
Asian 4 (1.64) 4 (2.33) 0 (0.00)
Others 10 (4.10) 8 (4.65) 2 (1.39)

Tumor site, n (%) .040
Oral cavity 3 (0.77) 2 (0.67) 1 (1.06)
Nasopharynx 14 (3.58) 9 (3.03) 5 (5.32)
Oropharynx 157 (40.15) 108 (36.36) 49 (52.13)
Hypopharynx 9 (2.30) 7 (2.36) 2 (2.13)
Larynx 46 (11.76) 41 (13.80) 5 (5.32)
Other 162 (41.43) 130 (43.77) 32 (34.04)

Tumor classification, n (%) .174
0 21 (7.22) 12 (5.45) 9 (12.68)
1 60 (20.62) 47 (21.36) 13 (18.31)
2 96 (32.99) 72 (32.73) 24 (33.80)
3 41 (14.09) 35 (15.91) 6 (8.45)
4 73 (25.09) 54 (24.55) 19 (26.76)

N classification, n (%) .494
0 77 (26.55) 62 (28.31) 15 (21.13)
1 44 (15.17) 31 (14.16) 13 (18.31)
2 161 (55.52) 121 (55.25) 40 (56.34)
3 8 (2.76) 5 (2.28) 3 (4.23)

M classification, n (%) .073
No 255 (98.84) 197 (99.49) 58 (96.67)
Yes 3 (1.16) 1 (0.51) 2 (3.33)

Overall stage, n (%) .707
0 3 (1.22) 2 (1.06) 1 (1.75)
1 17 (6.94) 15 (7.98) 2 (3.51)
2 19 (7.76) 14 (7.45) 5 (8.77)
3 37 (15.10) 30 (15.96) 7 (12.28)
4 169 (68.98) 127 (67.55) 127 (73.68)

Treatment modality, n (%) .240
RT alone 127 (32.48) 99 (33.33) 28 (29.79)
CRT 253 (64.71) 191 (64.31) 62 (65.96)
CRT + surgery 8 (2.05) 4 (1.35) 4 (4.26)
Surgery + RT 3 (0.77) 3 (1.01) 0 (0.00)

Smoking status, n (%) .807
Never smoked 67 (40.36) 58 (41.13) 9 (36.00)
Quit smoking 90 (54.22) 75 (53.19) 15 (60.00)
Currently smoking 9 (5.42) 8 (5.67) 1 (4.00)

HPV, n (%) .810
Yes 56 (58.95) 47 (59.49) 9 (56.25)
No 39 (41.05) 32 (40.51) 7 (43.75)

At RT planning: dosimetric
PTV D95 dose, n (%) .193

≤65 Gy 89 (23.73) 72 (25.35) 17 (18.68)
>65 Gy 286 (76.27) 212 (74.65) 74 (81.31)

Combined parotid D95, mean (SD) 287 8.61 (5.89) 10.85 (6.14) .002
Combined parotid D50, mean (SD) 287 25.61 (13.45) 28.98 (12.23) .021
Combined submandibular D95, mean (SD) 232 42.25 (19.97) 47.77 (17.06) .044

(continued on next page)
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2 subsets based on a predictor variable with the highest risk
of weight loss. This process was repeated on each derived
subset in an iterative manner (ie, recursive partitioning).
At each partition, the information gain criteria were used
to determine the partitioning predictor variable with a binary
threshold for continuous or ordinal variables and with binary
partitioning.

To handle the missing values in each primary predictor,
surrogate variables were used to split the observations missing
the primary predictor.Amaximum of 5 surrogates were found
for each primary predictor by reapplying the partitioning
algorithm (without recursion) to estimate the binary split
of the primary predictor. If all 5 surrogates were missing,
then the observation was sent in the majority direction.32,33

Leave-one-out cross-validation was used to determine the
number of predictor variables selected in the decision tree
models and to calculate the model performance. The DeLong
test was further used to compare the area under the curve

of the 2 models. All the statistical analysis were performed
by R 3.2.2 with the rpart package.34

Results

A total of 391 patients met the study inclusion criteria.
The study population consisted of more men (n = 306, 78%)
and early stage (T ≤ 2) cancer (n = 187, 75%). The mean
age was 57 years, and the mean weight loss at 3 months
posttreatment was 2.4 kg. Nearly one-half of the study popu-
lation had tumors located in the pharynx (nasopharynx,
oropharynx, and hypopharynx) (n = 180, 46%) (Table 1).

Predictors for critical weight loss

Patient lost weight throughout radiation treatment. Mean
weight did not decrease further after the end of the treatment,

Table 1 (continued)

Parameters N No CWL reference CWL P value

Combined submandibular D50, mean (SD) 232 54.08 (19.85) 58.51 (15.92) .206
Larynx D95, mean (SD) 258 27.56 (17.2) 31.37 (16.21) .248
Larynx D50, mean (SD) 258 37.61 (17.05) 43.21 (14.92) .339
Combined masticatory muscle D95, mean (SD) 150 11.98 (10.7) 17.39 (10.22) .002
Combined masticatory muscle D50, mean (SD) 150 33.71 (16.53) 41.5 (13.67) .002
Superior constrictor muscle D95, mean (SD) 149 47.81 (17.21) 53.03 (14.35) .046
Superior constrictor muscle D50, mean (SD) 149 56.66 (14.88) 60.05 (13.82) .044
Middle constrictor muscle D95, mean (SD) 142 45.32 (16.36) 47.84 (12.67) .634
Middle constrictor muscle D50, mean (SD) 142 53.65 (15.07) 56.35 (12.23) .397
Inferior constrictor muscle D95, mean (SD) 141 36.78 (16.15) 40.45 (12.6) .188
Inferior constrictor muscle D50, mean (SD) 141 43.91 (15.99) 46.36 (12.24) .460
Pharyngeal constrictor muscle D95, mean (SD) 75 22.32 (15.73) 24.13 (15.44) .631
Pharyngeal constrictor muscle D50, mean (SD) 75 40.04 (16.65) 35.18 (20.41) .596
Cricopharyngeal muscle D95, mean (SD) 107 34.27 (14.67) 40.93 (10.77) .043
Cricopharyngeal muscle D50, mean (SD) 107 38.34 (15.48) 44.27 (10.3) .121
At the end of RT: additional assessments
Karnofsky performance status, n (%)

≥80 282 (74.80) 215 (75.44) 67 (72.83) .616
<80 95 (25.20) 70 (24.56) 25 (27.17)

Pain at EOT, n (%) .317
≥5 109 (27.88) 79 (26.00) 30 (31.91)
<5 282 (72.12) 218 (73.40) 64 (68.09)

Dysphagia at EOT, mean (SD) 332 0.72 (0.99) 0.85 (0.98) .318
Xerostomia at EOT, mean (SD) 391 1.41 (0.75) 1.59 (0.63) .030
Food oral intake score, n (%) .056

≥4 113 (84.33) 99 (86.84) 14 (70.00)
<4 21 (15.67) 15 (13.16) 6 (30.00)

Penetration Aspiration Scale, n (%) .711
≤2 66 (70.21) 52 (69.33) 14 (73.68)
>2 28 (29.79) 23 (30.67) 5 (26.32)

PEG/NG tube used, n (%) .134
Yes 122 (75.31) 86 (72.27) 36 (83.72)
No 40 (24.69) 33 (27.73) 7 (17.50)

CRT, chemotherapy radiation therapy; CWL, critical weight loss; D95, dose to 95% of muscle; EOT, end of treatment; HPV, human papilloma virus;
NG, nasogastric; PEG, percutaneous endoscopic gastrostomy; PTV, planning target volume; RT, radiation therapy; SD, standard deviation.
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and started to increase at the 3-month follow-up (Fig 2).
At the 3-month follow-up, 94 (24%) patients continued to
lose weight beyond the 5 kg threshold. Analyses using a
5% weight loss threshold are presented in eTable 1 (avail-
able as supplementary material online only at www.practical
.radonc.org).

Model 1 was developed at the planning phase of RT when
dosimetric and tumor-related variables were available (Fig 3).
Anatomic tumor site by ICD-9 code was particularly im-
portant. Dose to 90% of the masticatory muscle (D90) with
threshold of 14 Gy, D100 (40 Gy) of superior constrictor
muscle, D78 (24 Gy) of larynx, and D89 (15 Gy) of parotid
glands were also selected from RT and dosimetric vari-
ables. Age (58 years) was the last predictor of critical weight
loss. The area under the curve, sensitivity, specificity, and
positive predictive and negative predictive values by cross-
validation were 0.77, 0.77, 0.67, 0.43, and 0.90, respectively
(Table 2).

To interpret model 1, the principal discriminating node
was tumor site (ICD-9 code), which is consistent with pre-
vious reports.35-37 Patients with laryngeal tumors were at a
lower risk of weight loss compared with patients with pha-
ryngeal tumors. This was consistent with the univariate
analysis (Table 1; tumor site, P = .04) and suggests that the
propulsive swallowing structures may be more important
than the coordinating role of the larynx in maintaining weight.
Among the pharyngeal cancer patients, the next partition
was the radiation dose to the masticatory muscles, which
are responsible for chewing, and again underscore the effect

of irradiating muscles involved in the swallow process. Pa-
tients with low doses to the masticatory muscles were further
partitioned by the dose to the superior constrictor muscle,
which was the most superiorly located muscle of the 3 pha-
ryngeal constrictors that moved boluses downward into the
esophagus. Patients who received >14 Gy to the mastica-
tory muscles were further split by D78 larynx. For patients
who received a larynx dose of ≥24 Gy, parotid D89 and
age (ie, greater or less than 15 Gy and 58 years of age) were
the last determinants of significant weight loss; parotid D89
and age affect swallow and parotid function, leading to weight
changes. These findings were consistent with previous
studies38 suggesting xerostomia was associated with a thresh-
old of 26 Gy; late dysphagia was associated with a mean
dose to pharyngeal constrictors and larynx ≤50 Gy.

The prediction tree at EOT (model 2) included the ad-
ditional clinical assessment variables during treatment

Figure 3 Prediction tree during planning phase (model 1) for critical (≥5 kg) WL among head and neck cancer patients 3 months
posttreatment. Nodes display sample size (n) and the percentage of patients with critical weight loss within the (sub)group. The po-
tential risk factors in the CART analysis were ICD-9 code; dose to masticatory muscle, superior constrictor muscle, larynx, and parotid;
and age. CART, classification and regression tree; D100, dose to 100% of organ; ICD-9, International Classification of Diseases-9;
WL, weight loss.

Table 2 Characteristics of the weight loss prediction models
(<5 vs ≥5 kg) at planning and end of the RT treatment

Parameters At RT planning At the end of RT

Area under the curve 0.77 0.82a

Sensitivity 0.77 0.98
Specificity 0.67 0.59
Positive predictive value 0.43 0.46
Negative predictive value 0.90 0.99

Abbreviation as in Table 1.
a Statistical significance at RT planning and at the end of RT.
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(Fig 4). The model demonstrated the following signifi-
cant factors: (1) QoL: patient-reported oral intake; (2)
dosimetry: dose to larynx and parotid; (3) RT toxicity: skin,
nausea, and pain; and (4) shape relationship: the minimum
distance between PTV and larynx. Compared with model
1 at RT planning, the additional clinical assessment vari-
ables improved the prediction of weight loss, as would be
expected (Table 2, P = .03). AUC, sensitivity, specificity,
and positive predictive and negative predictive values by
cross-validation were 0.82, 0.98, 0.59, 0.46, and 0.99,
respectively.

Model 2 demonstrated improved AUC (Table 2) at EOT
from the incorporation of additional on-treatment clinical as-
sessments (Figs 1 and 4). The most predictive factor was the
patient-reported outcome “I am able to eat the food that I like?”
in the Functional Assessment of Cancer Therapy-Head and
Neck QoL instrument. It likely reflects the impact of treat-
ment complications on oral intake, such as difficulty with
chewing and swallowing as well as changes in taste, smell,
and secretions.39,40 Weight loss was observed if patients ex-
perienced a limited diet level at EOT and higher doses to larynx
(D10 ≥42 Gy). If the patient enjoyed eating, the tumor site in-
fluenced the rest of the decision tree (larynx vs pharynx), which
is consistent with model 1. Patients with larynx cancer expe-
rienced weight loss if they had severe acute skin and nausea
toxicities (which we hypothesized were surrogate measures
of tumor size and CRT) and high N-stage.

Discussion

Centered on the principle of PoC data capture about pa-
tients and their outcomes, we believe the potential to generate
large datasets that can be exploited by the use of machine-
learning algorithms, and with each successive patient, this
can form the basis of a learning health system. As a pilot
study, we used weight loss as our outcome measure because
it is clinically important, requires intervention, and is ac-
curately and consistently measured. To identify the highly
multifactorial relationships between weight loss and related
variables, we applied an exploratory approach to discover
the important predictors for weight loss in our study popu-
lation. This hypothesis-generating approach has the strength
of prospective PoC data collection that is less prone to recall
bias. Generating a large volume of heterogeneous and po-
tentially more generalizable data can identify a spectrum
of relationships, offering the potential to develop accu-
rate personalized outcome prediction models. This analysis
has demonstrated the potential importance of dosimetry and
PROs in identifying modifiable weight loss risk factors. To
demonstrate the adaptability of our prediction models and
the importance of incorporating information during the treat-
ment process, we developed 2 models at different time points
during the care process of the HNC patient.

Breiman11 discussed the difference of the 2 cultures in
statistical modeling (ie, statistics and machine learning).

Figure 4 Prediction tree at the end of treatment (model 2) for critical WL among head and neck cancer patients 3 months posttreat-
ment. Nodes display sample size (n) and the percentage of patients with critical weight loss within the (sub)group. The potential predictors
in the CART analysis were patient reported outcome of oral intake, ICD-9 code, N stage, nausea, skin toxicity, pain intensity, dose to
larynx and parotid, and low-dose PTV–larynx distance. PTV, planning target volume; other abbreviations as in Figure 3.
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In traditional statistical modeling, we have an assumption
of a data distribution first. The models with estimated
parameters are validated particularly by goodness-of-fit
tests. Machine learning, based on traditional statistics,
allows more variables to be taken into account, and its
algorithms suggest what is most important without those
assumptions. Model validation is measured by its predic-
tion accuracy particularly by cross-validation. Because of
the complex nature in the causal relationship of weight
loss, we pursued the latter machine learning approach
(CART model) in this paper and evaluated its feasibility
in knowledge discovery.

We used the CART algorithm as a knowledge–discovery
tool because of its interpretability. The CART model pro-
vides critical variables threshold and their directional
influence on the outcomes, for example, reducing the dose
to the superior constrictor muscle will lead to no critical
weight loss (Fig 3). In fact, it catalyzed the sharing of ideas
between data scientists and clinicians to bridge the under-
standing across the multidisciplinary research group. CART
can be used to explore datasets and can readily identify in-
teractions among prognostic factors at each node in the tree.
Unlike logistic regression approaches, CART does not
require a specification of the function that is used to model
covariates. These strengths are especially valuable in ad-
dressing the data heterogeneity commonly associated with
clinical datasets. Collectively, our results provide a rich basis
for future hypotheses regarding weight loss prevention in
the irradiated HNC patient.

CART is particularly sensitive to missing data, however,
which can remain a challenge even for prospectively col-
lected datasets such as ours. Additional algorithms are
available that can address the influence of missing data on
the accuracy of a machine learning prediction.41 Despite
this, the model performances generated in our feasibility
study demonstrated AUC >0.75, which suggests promis-
ing accuracy warranting further investigations. Another
challenge is model unstableness and overfitting when ap-
plying CART. To balance the recursive partitioning
(branching) and pruning to overcome the potential insta-
bility in model development, we used leave-one-out cross-
validation to address this issue. Although some other
algorithms are known to have potentially high perfor-
mance in prediction, we chose CART algorithm because
of its interpretability.

Random forest is a tree-based algorithm that is known
to be less prone to overfitting. Random forest grows many
classification trees (eg, CART) by using randomly se-
lected bootstrap samples and randomly selected predictor
variable sets.42 Each tree gives a classification (vote) for a
sample, and the forest chooses the classification having the
most votes over all the trees in the forest. The steps of
random predictor selection and voting give this algorithm
high robustness in prediction, but the interpretability of the
selected predictors is reduced to understanding which pre-
dictors carry high importance; the algorithm does not

indicate the threshold and direction as the CART model does,
making rationalization more difficult in the knowledge–
discovery approach. Neural network is also subject to
interpretability challenges43; these methods are worthy of
further exploration because their potential to improve pre-
diction accuracy may outweigh their interpretability
challenges.

Another possible concern is that the threshold cutoff
for critical weight loss remains debated.44 Several studies
have used a 5% or 10%18,20,21,45,46 threshold as a definition
of critical weight loss based on the international consen-
sus statement of the Academy of Nutrition and Dietetics
and American Society for Parenteral and Enteral Nutrition.47

Our informatics platform with its data mining tools can
readily be adapted to any threshold cutoff or definition of
critical weight loss. In fact, we have built different CART
weight loss prediction models using 5% as cutoff as an
example (eFigs 1 and 2; available as supplementary
material online only at www.practical.radonc.org, Table 1).
Although they are not exactly the same tree models, we
found common predictors (eFigs 1 and 2) that show
robust associations with different weight-loss cutoffs that
warrant attention in future big data approaches regarding
weight loss prediction.48 In our analysis, we considered
the absolute loss (≥5 kg) as the primary cutoff and used
the relative loss (≥5%) as an auxiliary analysis. The
commonly identified nodes are of particular interest because
they may be important to weight loss regardless of cutoff.
In summary, our flexible informatic infrastructure can
readily facilitate building prediction models at multiple
time points and cutoffs; more significantly, this lends
itself to the iterative reanalysis of the models, especially
by testing newly acquired factors that may be hypoth-
esized to be relevant over time (Figs 1 and 2). This
increases the probability of generating a valid, generaliz-
able, and insightful model.

Last, our findings suggest that the informatics infra-
structure that we have piloted can generate a large and
diverse clinical dataset that can form the basis for ad-
vanced predictive modeling. We observed model 2
demonstrated that, with additional treatment toxicity in-
formation in the irradiated HNC patient, the accuracy of
the prediction increased, suggesting that this approach has
validity. The incorporation of more patient-specific infor-
mation toward the end of RT improved the predictive
accuracy of the weight loss model (AUC comparison
between at planning and EOT: 5-kg model, P = .03; 5%
model, P = .08) and is an encouraging indication that this
infrastructure may facilitate the construction of a learning
health system for precision radiation medicine. Our results
were cross-validated by using a dataset in our institution.
Demonstrating external validity as with traditional regres-
sion modeling approaches requires a comparable dataset
to be available to then test the models that are generated.
Further validation with other institutions’ data needs to be
investigated.
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Conclusion

We have demonstrated the feasibility of creating 2 weight
loss predictive models at different time points with im-
proving receiver operating characteristics with incremental
data. This reflects the potential of machine learning models
in knowledge–discovery and potentially decision support
from prospectively collected data in routine clinical work-
flow. Combined with large-scale analytic approaches, we
believe that the Oncospace informatics framework can
provide the foundation for developing a personalized learn-
ing health system, especially with the development of real-
time clinical decision support systems.

Supplementary data

Supplementary material for this article (https://doi.org/
10.1016/j.adro.2017.11.006) can be found at www
.practicalradonc.org.
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