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Computational identification 
of 4‑carboxyglutamate sites 
to supplement physiological 
studies using deep learning
Sheraz Naseer1, Rao Faizan Ali1,2*, Suliman Mohamed Fati3 & Amgad Muneer2

In biological systems, Glutamic acid is a crucial amino acid which is used in protein biosynthesis. 
Carboxylation of glutamic acid is a significant post-translational modification which plays important 
role in blood coagulation by activating prothrombin to thrombin. Contrariwise, 4-carboxy-glutamate 
is also found to be involved in diseases including plaque atherosclerosis, osteoporosis, mineralized 
heart valves, bone resorption and serves as biomarker for onset of these diseases. Owing to the 
pathophysiological significance of 4-carboxyglutamate, its identification is important to better 
understand pathophysiological systems. The wet lab identification of prospective 4-carboxyglutamate 
sites is costly, laborious and time consuming due to inherent difficulties of in-vivo, ex-vivo and 
in vitro experiments. To supplement these experiments, we proposed, implemented, and evaluated 
a different approach to develop 4-carboxyglutamate site predictors using pseudo amino acid 
compositions (PseAAC) and deep neural networks (DNNs). Our approach does not require any feature 
extraction and employs deep neural networks to learn feature representation of peptide sequences 
and performing classification thereof. Proposed approach is validated using standard performance 
evaluation metrics. Among different deep neural networks, convolutional neural network-based 
predictor achieved best scores on independent dataset with accuracy of 94.7%, AuC score of 0.91 
and F1-score of 0.874 which shows the promise of proposed approach. The iCarboxE-Deep server is 
deployed at https://​share.​strea​mlit.​io/​sheraz-​n/​carbo​xyglu​tamate/​app.​py.

Cells, the fundamental units of life, experience different physiological phenomena during their lifecycle which 
give rise to the dynamic changes in their structure and functions. One such phenomenon is post-translational 
modification of proteins, the complex molecules, which are found in nearly all aspects of cell’s life1. An important 
post-translational-modification (PTM) is 4-Carboxyglutamate (CarboxE), synthesized by replacing a proton from 
4-carbon of glutamate with carboxyl group2. 4-Carboxyglutamate plays pivotal role in the blood clotting cascade 
specifically occurring in Coagulation factors II, VII, IX, and X, protein C, protein S, and some bone proteins3. 
Aforementioned coagulation factors are dependent on Vitamin-K, a cofactor for carboxylase, which serves as 
a catalyst for CO2 addition on glutamate peptide for carboxylation4. Oxygenation of vitamin K hydroquinone 
is catalyzed by Vitamin K-dependent carboxylase, a bi-functional enzyme, enabling the creation of vitamin K 
epoxide which forms carboxyglutamate5. Furthermore, a key part is played by CarboxE in calcium dependent 
interaction between prothrombin and negatively charged phospholipid surface, which is pivotal for activation 
of prothrombin to thrombin6. CarboxE is found to have significantly lower mean disorder scores than their 
unmodified counterparts and the modified residues showed lower mean spatial fluctuations than unmodified 
residues7. The CarboxE containing proteins of hepatic origins are characterized by their role in blood coagula-
tion while non-hepatic proteins containing same PTM, e.g. osteocalcin and atherocalcin, are known for their 
calcium binding properties8. Additionally, the small amounts of osteocalcin and other CarboxE containing 
proteins are found to occur in calcified atherosclerotic lesions and mineralized heart valves9. Due to its calcium 
binding properties, CarboxE is also considered a biomarker for diseases including osteoporosis, papilloma, bone 
resorption and plaque atherosclerosis3,5.
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Owing to the importance of CarboxE in physiological phenomena, research has been done on identification of 
carboxylation sites using mass spectrometric analysis10. But due to huge cost and effort requirements for in-vivo, 
ex-vivo and in-vitro identification of CarboxE, scarce effort is put in wet lab identification of the same. Mean-
while, in-silico methods, based on machine learning and data science, showed a promising avenue to characterize 
CarboxE sites to supplement wet lab methods. In fact, researchers have applied in-silico methods to support 
the wet lab experiments in proteomics and genomics using various machine learning and artificial intelligence 
techniques11–17. Prior literature proposed various computational methods to identify glutamate carboxylation5,18. 
While these contributions show promise, the proposed computational models were based on human-engineered 
features. According to Lecun et al.19, human-engineered features suffer from certain limitations as they are diffi-
cult to calculate because of absence of a feedback mechanism between prediction algorithm and feature extraction 
mechanism. The absence of feedback system hinders the development of an effective predictor because there is 
no way to evaluate the quality of features beforehand. Additionally, generation of human-engineered features 
require domain knowledge and human intervention which is costly to achieve19.

Modern deep learning offers a very powerful framework for solving learning problems. When a Deep Neu-
ral Network (DNN) is sufficiently trained on input/output pairs of peptide sequences and labels, it is able to 
reduce the input sequence, by performing hierarchical input transformations through trained hidden layers 
of neurons, into the correct label for given input peptide sequence. DNNs do not require prior feature extrac-
tion, because the deep model can automatically learn the low-dimensional, task specific and optimal feature 
representation from hierarchical non-linear transformations of original pseudo Amino ACID Composition 
(PseAAC) sequences. These abstract, task specific deep neural representations are used by the output layer, which 
is usually composed of any classifier like sigmoid or softmax, to make predictions20–22. In effect, deep learning 
is gaining popularity for solving the proteomics and genomics problems due to non-requirement of prior costly 
feature extraction23–25. Deep learning provides a highly powerful framework for handling learning challenges 
in the modern-day. Although, the majority of the works for PTM prediction are comprised of conventional 
machine-learning-based feature extraction methodology, deep learning is gaining popularity to solve proteom-
ics and genomics problems due to the non-requirement of prior costly feature extraction14,26,27. Deep learning 
based models are far more efficient and provide results comparable conventional Machine-learning predictors 
as demonstrated in22,26,27. Another significant advantage of deep learning is lack of need for Feature-engineering 
or extraction because DNNs can work with raw inputs. Our methodology uses DNN based approach to iden-
tify potential CarboxE sites and will make sure that devised improvements are met in the best possible way. In 
contrast to previously proposed conventional ML based predictors, which rely on quality of features, the current 
analysis aims to devise an in-silico approach for CarboxE site prediction by fusing DNNs with Chou’s five-step 
rule28 as presented in Fig. 1 and used extensively by previous studies5,11–17.

Results
In this research, DNNs-based model performance is evaluated using well-known evaluation metrics. The critical 
evaluation metrics employed in this study include the receiver operating characteristics learning curve (ROC), 
precision-recall, Area under Curve, accuracy, and matthew’s correlation coefficient to name a few. A brief descrip-
tion of above-mentioned metrics is discussed in following section . The five proposed DNNs models are evaluated 
and tested on the testing data set, which is not exposed to models throughout the training process, to guarantee 
fair estimation of generalization capability. The following subsections offers evaluation results of DNN based 
predictors for identifying CarboxE sites developed in this study. Figure 2 illustrates the precision-recall curve of 
candidate DNN based predictors. As depicted in Fig. 2, the CNN model’s curve is closest in the precision-recall 
space to the perfect prediction point (1, 1) compared to that of the other classifiers, demonstrating the better 
performance of the CNN classifier model. In comparison to the aforementioned CNN based model, all the other 
DNN-based classifiers performed below par, as shown by their respective curves, which are comparatively far 
from the perfect classification point. To represent the findings of precision-recall curve in a single scalar value, 
mean average precision (mAP) is used which is defined as the region under the precision-recall curve. The higher 
the mAP score of the classifier, the greater the classifier’s prediction efficiency and vice versa. For all candidate 
CarboxE site prediction models, the mean average precision (mAP) scores for DNN models are presented in the 
legend portion of Fig. 2. As illustrated in aforementioned figure, the CNN-based model achieved the best score 
of 0.937 and LSTM achieved the best second score with a value of 0.876. Meanwhile, FCN fell short and obtained 
the lowest score of 0.723. Overall, the DNN models utilized in this study achieved a score higher than 70%.

Figure 1.   Chou’s five step methodology.
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Figure 2.   Precision-recall curve and mAP scores DNN-based CarboxE site prediction models.

Figure 3.   ROC curve and AUC scores for DNN based CarboxE site identification models.
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Receiver operating characteristics and area under ROC curve.  The ROC curves for the proposed 
five DNN based CarboxE predictors, built in this study, are introduced in Fig. 3. It can be seen from the afore-
mentioned figure that the curve of the CNN-based predictor is nearest to the perfect classification point as 
compared to that of remaining DNN based models, demonstrating the better performance of the CNN-based 
model. The AUC values for the models built in this analysis are presented in the Legend portion of Fig. 3. It is 
shown clearly from the aforementioned figure that the CNN based model outperforms the rest of the methods 
in predicting CarboxE sites, with an AUC value of 0.971. The FCN model obtained the second-best prediction 
with an AUC value of 0.922. The results of the ROC curve corroborate the earlier evaluation results indicated by 
the precision-recall curve.

Accuracy, F1‑measure, and Matthew Correlation Coefficient.  The accuracy score of CarboxE iden-
tification models, calculated using independent testset, are illustrated in Fig. 4. From the aforementioned figure, 
it is evident that the accuracy score of CNN-based predictor dominated remaining all predictors developed in 
this study with score of 0.947 followed by 0.908 score of GRU and S-RNN based models. Although the accuracy 
results are trust-worthy for balanced datasets, it can be misleading when an imblanace exists in data points of 
different classes in a dataset. To mitigate the possibility of its spurious findings, accuracy is often used in con-
junction with F1 score or matthew’s correlation coefficient. The F1-measurements of CarboxE identification 
models are also depicted in Fig. 4 and the results validate the domineering performance of CNN-based model 
which showed F1-score of 0.874 while S-RNN model remained the runner-up with F1-measurement of 0.828. 
GRU and LSTM based models showed comparable performance and achieved an F1 score of 0.820 and 0.814, 
respectively. FCN score wasn’t that far from the aforementioned DNNs but achieved last place nonetheless with 
F1-score of 0.798. The outcomes of MCC for all DNN dependent models, proposed in this study, are shown in 
Fig. 4. Based on MCC, the CNN-based model achieved best performance rate of 0.825, followed by the S-RNN-
based and GRU-based models achieving a performance rate of 0.747 and 0.740. Lastly, the FCN-based model 
obtained the least performance score of 0.708 in terms of MCC evaluation matric. From the performance of 
CNN based model in all three point metrics discussed in this section, it is evident from the evaluation scores 
that CNN based model showed promising performance and surpassed other DNN based model developed dur-
ing this study.

Comparison with literature.  This subsection discusses the comparison of proposed approach with simi-
lar contributions from literature as well the prospective reasons for better performance of DNNs for identifica-
tion of CarboxE sites. Identification of CarboxE using machine learning and other in-silico methods is rela-
tively ignored area of research by bioinformatics community and we were able to find only one contribution 
for in-silico prediction of 4-carboxyglutamate by Shah et al.5. Shah et al. used statistical moments and residue 
position related techniques to extract features form the peptide sequences and used these features to train their 
4-carboxyglutamate predictor. The comparison of our best model i.e. CNN based model with system proposed 
by5 is presented in Table 1 on the basis of standard performance evaluation metrics. It can be seen from Table 1 
that the model proposed by Ref.5 is performing almost as good as the proposed predictor. The reader may feel 
that if the predictor developed by Ref.5 is performing comparable to proposed approach then there is little merit 
in using the DNNs for the problem at hand. This is not the case owing to the following benefits provided by 
proposed approach:

Figure 4.   Accuracy, F1-measure, and MCC scores of DNN-based CarboxE site prediction models.
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•	 Human engineered feature extraction is generally more expensive and requires human experts to develop and 
validate the features. The system proposed by Ref.5 uses statistical moments and position incidence which 
are costly to extract, needs expert domain knowledge and human intervention to achieve better results5.

•	 Deep features, as used in current study, are more advantageous than human engineered features because they 
do not require any human intervention and are easily extractable, once the deep model is trained. The deep 
features can be extracted efficiently by a forward pass through the trained DNN.

•	 Deep features are usually simpler and more effective than their human engineered counterparts because, in 
DNNs, the feature extraction and classification work in unison to extract the features which help to achieve 
better features for classification. This is evident form fact that the proposed CNN based approach, in this 
study, uses 8 deep features (extracted from last fully connected layer of CNN) to achieve comparable clas-
sification results to the system proposed by Shah et al.5 which uses more than 100 human engineered features 
to train classifiers.

Aforementioned facts illustrate the merits of DNN based prediction of CarboxE sites and compel us to consider 
DNN based model an effective and efficient alternative for rather expensive approaches utilizing human engi-
neered features22.

Model deployment as webserver.  Final step of Chou’s 5-step rule as shown in Fig. 1 is the deployment of 
developed model as a web service to enable easy access for research community. To this end, we developed a web 
application based on our best performing CNN based model for identification of CarboxE sites. The webserver 
is temporarily deployed at https://​share.​strea​mlit.​io/​sheraz-​n/​carbo​xyglu​tamate/​app.​py. The web application can 
accept a peptide sample in the form of string and return the identified glutamic acid sites likely to be carboxy-
lated. Homepage of iCarboxE-Deep webserver is shown in Fig. 5a while Fig. 5b highlights the peptide sequence 
submission process for computing CarboxE sites. Figure 5c illustrates result page showing the identified glu-
tamic acid sites likely to be carboxylated and the corresponding ξ = 41 length PseAAC sequence of residues.

Discussion
For understanding deep feature representations of peptide sequences, learned by DNNs to predict CarboxE 
sites, visualizing these feature spaces can provide an intuitive understanding of why these feature representations 
work. To create these visualizations, we calculated the output of penultimate layer of each trained model using 
testset peptide sequences and extrapolated the 2-D projections of the same using t-stochastic neighborhood 
embeddings (t-SNE) algorithm, developed by Maaten and Hinton29. T-SNE makes use of non-linear statistical 
approach to extrapolate 2-D projections of deep features calculated from non-linearly transformed input peptide 
sequences. T-SNE uses many hyperparameters including perplexity, initialization and iterations to develop the 
projections in lower dimensions. Since our testset contained only 308 samples with maximum 41 dimensions for 
raw sequences and 8 dimensions for deep representations, the recommended range for perplexity is 0–50. We 
used default perplexity value of 30 for scikit-learn t-SNE implementation30, used PCA initialization for efficient 
dimensionality reduction and fixed the iterations to 1000 for calculating the 2-D projections of deep features. The 
developed 2-D projections of deep models were plotted on the basis of class labels using matplotlib and seaborn 
package of python. Fig. 6a–d show the aforementioned visualizations of PseAAC sequences and feature space 
representations learned by the deep models developed in this study. Visualization of Raw PseAAC sequences, as 
visible in Fig. 6a, shows the distribution of positive and negative CarboxE samples without any feature extraction. 
As illustrated in the figure, the samples from both classes are cluttered over the space and no clear boundary 
exists between samples of two classes. This chaotic distribution suggests that any classifier aiming to separate 
samples of both classes while using this representation will have a hard time doing so. Figure 6b–d depict the 
effect of non-linear transformations of three DNNs, used in this study, to separate both classes in respective 
feature space for achieving better predictions. The visualization plots included in manuscript corresponds to one 
low performance model i.e FCN and two optimal models including LSTM and CNN based models. The FCN 
feature space visualization is shown in Fig. 6b. It can be verified from aforementioned figure that this model was 
not sufficiently successful in separating the positive and negative samples before passing their representation to 
output layer which resulted in poor performance of respective predictor. The best class separation is achieved 
by the input representation learned by CNN model as shown in Fig. 11. The data distribution of positive and 

Table 1.   Comparison with available literature.

Performance evaluation metric Proposed CNN based model Reported results by5

Accuracy 0.947 0.94

AUC​ 0.971 0.96

F1-score 0.874 Not reported

MCC 0.825 0.85

Sensitivity 0.923 0.92

Specificity 0.918 0.93

mAP 0.945 Not reported

https://share.streamlit.io/sheraz-n/carboxyglutamate/app.py
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negative samples in CNN representation is illustrated in violin plot shown by Fig. 7. It is evident from Figs. 6d 
and 7 that this representation is not chaotic and cluttered and both classes are sufficiently separated to make the 
job of classifier comparatively easier. This means any classifier consuming this representation to predict CarboxE 
sites will be able to distinguish between both classes with less effort and achieve better predictions. This is also 
corroborated by the better results shown by CNN based predictor as discussed in “Results”.

The major benefit of DNN based approach proposed in this study is the automatic feature representation 
learning using stochastic gradient decent. Proposed approach removes the requirement to use costly feature 
engineering process. Moreover, the proposed DNN based predictor of this study are only the first step towards 
employing deep learning for 4-Carboxyglutamate site identification and research community can extend 
this study to come up with more effective in-silico systems using deep learning for 4-Carboxyglutamate site 
identification.

Figure 5.   iCarboxE-Deep Webserver functionalities for identification of 4-carboxy-glutamate.
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Materials and methods
The suggested approach for this study, as shown in Fig. 8, is derived from the five-step rule of Chou28, popular in 
proteomics research31,32. However, instead of depending on human-engineered features, the proposed approach 
employs DNNs for combining feature extraction and model training to extract features and train models and 
use the intrinsic capabilities of DNN’s feature extraction and classification. If the DNN model is satisfactorily 
trained, the hidden layers of DNN perform processing on PseAAC peptide sequences to calculate effective deep 
representations, which are then utilized by the DNN’s output layer to perform prediction. The loss score is used 
as a feedback signal by the optimizer to enhance both the feature extraction and classification capability of the 
model. In this study, several DNN-based models have been trained and tested to arrive at an optimal model for 
predicting CarboxE sites. This section’s key purpose is to elaborate the first three phases presented in Fig. 8, while 
rest have been explained in previous sections.

Benchmark dataset collection.  We utilized the advanced search and annotation features in UniProt33 to 
produce a dataset for conducting the proposed study. The benchmark dataset’s consistency has been ensured by 
choosing protein sequences that are experimentally investigated and evaluated. Selected proteins were subjected 
through CD-Hit34 to remove the homology with a threshold of 0.8. Resulting proteins were used to extract posi-
tive and negative sequences for CarboxE sites. The PseAAC representation of a peptide sequence containing a 
positive CarboxE site may be described as follows:

where ‘E’ denotes PTM site for CarboxE and ‘k’ represents the neighbor amino acid residues of positive site. 
Respectively, the Greek letter ǫ describes the indexes of PseAAC sequence residues, where the left-hand residues 
of CarboxE site are located at negative ǫ indexes, and the right-hand residues are located at their respective 
positive ǫ indexes. To develop a benchmark dataset, the length ξ for both negative and positive samples were 
extracted from experimentally verified proteins. Based on empirical observations and literature support5,26,27, 
the length ξ is set at 41 for negative and positive samples equally. Each positive sample is created via setting the 
index of the CarboxE site at 21 and collecting 20 left and 20 right neighbor residues of the positive side, which 
resulted in the standard ξ length sequence. For sequences with ξ < 41 , a dummy residue symbol ‘X’ is placed on 
both sequence sides to obtain the standard length. Similar approach was utilized to develop the negative samples 
from aforementioned experimentally verified proteins, where the only difference is the presence of non-CarboxE 
glutamate at sequence index ǫ = 21 rather than CarboxE site. Using the above process, we were able to get 308 
positive and 617 negative samples. The final benchmark dataset comprised of 308 positive and randomly chosen 
617 negative samples making a total of 925 samples. The final dataset can be represented as follows:

fǫ(P) = k−ǫk−(ǫ−1) . . . k−2k−1Ek+1k+2 . . . k+(ǫ−1), k+ǫ

Figure 6.   Feature space visualizations of deep representations for positive and negative CarboxE sample.
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where E− denotes negative 617, and E+ denotes positive, 308 samples. Class proportions of the positive and 
negative reference groups were 33% and 67%, respectively. The benchmark dataset of this study is available at 
https://​mega.​nz/​folder/​NgcSX​LzY#​CaBCn-​f4190​fgO_​Qj4iN​pQ. Authors in Ref.35 have suggested two-sample 
logo that is created to visualize residues that are substantially depleted/enriched in the collection of CarboxE 
fragments to help develop understanding about sequence biases around CarboxE sites. As shown in Fig. 9, the 
benchmark dataset two-sample logo comprises forty-one residues, twenty upstream and twenty downstream, 
from all Glutamate (CarboxE and non-CarboxE) sites present in experimentally validated CarboxE proteins. 
The positive sample contains 338 samples consisting of experimentally confirmed CarboxE sites, while the nega-
tive sample contained remaining non-redundant Glutamate sites from same group making a sum of 925. There 
were significant differences in the enriched region (containing CarboxE sites) and depleted region (containing 

E = E+ ∪ E−,

Figure 7.   Violin plot of positive and negative class distributions learned by CNN representation.

Figure 8.   Proposed approach for Carboxyglutate(CarboxE) sites identification.

https://mega.nz/folder/NgcSXLzY#CaBCn-f4190fgO_Qj4iNpQ
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non-CarboxE sites). P, G, and V were more frequently observed in the depleted position, while E, C, and R were 
more regularly noticed in the enriched region. Multiple amino acid residues were discovered stacked at certain 
over-or under-represented positions in the neighboring sequences, meaning that there is a substantial difference 
between the positive and negative samples. The findings show that more task-specific and non-linear features 
are needed to differentiate between both groups of samples.

Sample encoding.  DNNs require input sequences in the form of quantitative data to process. A simple 
quantitative encoding of the PseAAC sequences was utilized to minimize the encoding technique’s impact, as 
presented in Table 2. Quantitative encoding is done according to Table 2, where the first row shows IUPAC 
amino acid symbols and the corresponding integer in the second row defines the encoding used for the sample. 
A useful outcome of this encoding technique is the minimal effect of encoding on the final results. The bench-
mark dataset has been divided into a training set of 647 samples, and a testing set of 278 samples with a ratio of 
70/30. However, both training and testing sets maintained the original class ratio.

Candidate model training and optimization.  This section focuses on describing the DNNs architec-
ture and optimization utilized to develop CarboxE site prediction candidate models. This study has employed 
commonly used neural network architectures like “Standard Neural Networks (FCNs), Convolutional Neural 
Networks (CNNs), and Recurrent Neural Networks (RNNs) with simple units, Gated Recurrent Unit (GRU) 
and Long Short-Term Memory (LSTM) units, respectively. For DNN optimization, we applied the Randomized 
Hyperparameter search methodology employed in Ref.36 to maximize the effectiveness of DNN candidate mod-
els. A randomized search over large hyperparameter space presents better hyperparameters for DNNs with a 
finite number of computations. In this strategy, Hyperparameters are randomly sampled, and models created 
using these parameters are evaluated. The following subsections present a quick overview of each DNN architec-
ture that is utilized to predict the CarboxE sites.

Standard neural network.  A standard neural network (FCN) is composed of layers of neurons in a manner that 
each neuron in the previous layer is associated with all neurons in the following layer. The FCN is aimed to esti-
mate the learning function f ∗ where f ∗ is a classifier described as y = f ∗(α, x) and use appropriate parameters 
α to assign appropriate category label y to input x. The FCNs’ task is to discover the optimal set of parameters α 
so the y = f ∗(α, x) mapping provides the best possible approximation to f ∗.

To predict CarboxE sites, an FCN architecture comprising of three dense layers of 38, 18 and 8 rectified linear 
neurons (relu) respectively is used, as shown in Table 3, along with a dropout layer to minimize over-fitting. A 
single Sigmoid neuron served as the output layer for the binary classification task. The FCN architecture is illus-
trated in Fig. 10. Stochastic gradient descent (SGD) optimizer is used to train the model, with a learning rate of 
0.01 via minimization of negative logarithmic loss. The training set was further divided into a training set and a 

Figure 9.   Two sample logo of Benchmark Dataset.

Table 2.   Amino acid encoding utilized in this research.

X A C D E F G H I K L M N O P Q R S T U V W Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Table 3.   Standard neural net architecture for identification of CarboxE site.

No Layer No. of weights

1 Dense layer with 22 relu units (41+ 1)× 22 = 924

2 Dropout with 0.5 probability for Regularization No weights

2 Dense layer with 10 relu units (22+ 1)× 10 = 230

3 Output layer with single Sigmoid unit (10+ 1)× 1 = 11
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validation set with a ratio of 70/30 for FCN based CarboxE predictor training. It is important to note that the test 
set, to evaluate the resulting CarboxE site prediction models’ generalization capability, was never shown during 
the training phase to FCN and other DNNs. After the model was successfully trained, the evaluation was done 
using the benchmark test set, and the performance was assessed by utilizing well-known measurement metrics.

Recurrent neural networks.  A shortcoming of traditional DNNs is that the weights are learned by individ-
ual neurons which preclude the DNNs from identifying exact representations that occurred at different loca-
tions in sequences. An RNN circumvents the restriction via utilizing a repeating loop over timesteps to resolve 
the problem mentioned above. A sequence vector x1, . . . , xn is manipulated utilizing a recurrence of the form 
at = fα(γt−1, xt) , where learning function is denoted by f, α is a set of parameters applied at each time step t 
and xt is the input at timestep t. Three variations of recurrent neurons i.e., a simple RNN unit, a gated recurring 
unit (GRU), and the LSTM unit are used to develop the candidate RNN based models for the proposed study. 
The shared architecture of three RNNs is shown in Fig. 11 where the green circles of RNN show recurrent cells 
while red squares show timesteps i.e. residue vectors of peptide sequence being classified by the model. At each 
timestep in a simple recurrent neuron, the weights governing the connections from the input to the hidden 
layer, between previous activation at−1 & current activation at , and from the hidden layer to the output layer, are 
shared. A basic recurrent neuron’s forward pass can be expressed as follows:

Figure 10.   Architecture of FCN for CarboxE site identification.

Figure 11.   Architecture shared by RNNs to identify CarboxE sites.
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where g reflects an activation function, ‘t’ represents the current timestep, Xt outlines input at timestep t, ba 
defines the bias, Wa presents cumulative weights and the activation output of timestep t is denoted by at . If 
needed, this at activation could be employed to measure the yt forecasts at time t. Table 4 demonstrates the RNN 
method structural design with the simple RNN neurons. This model uses an embedding layer to predict the 
amino acid sequence in vector space R20 , and transform the semantic relationships into geometric relationships. 
The following layers of the DNN model interpret these sequence vectors’ geometric relationships to learn deep 
feature representations, which are evaluated by the output layer to render predictions. To make predictions output 
layer is developed using a single sigmoid unit. Even Though DNNs with simple RNN neurons enjoy favorable 
outcomes in several applications, they remain susceptible to vanishing gradients and demonstrate a limited 
capability to learn long-term dependencies. The research community has provided several modified recurrent 
neuron architectures to overcome the simple RNN neurons drawback. Well-known architectures include the 
Gated Recurrent Unit (GRU) technique proposed by Ref.37 and the LSTM method presented by Ref.38 to resolve 
the problem of gradients disappearing and to allow long-term dependences to be learned. Cho et al.37 presented 
GRU, which is capable of showing better performance for long-term relationship learning in sequence data. The 
memory variable Ht , which contains the running summary of samples seen by the neuron till timestep t and is 
given by Ht = at is used by the GRU unit at each stage t, which provides an updated list of the entire samples 
processed by the unit. Hence, the GRU unit considers overwriting the Ht at each timestep t, but the regulation 
of memory variable overwriting is implemented via the update gate Ŵu , when the GRU unit superimposes the 
Ht value at each step ‘t’ with the candidate value H̄t . GRU neuron functionality can be represented via the fol-
lowing series of equations:

where Wr , Wc and Wu represents the respective weights and br , bc and bu denote the subsequent bias terms for 
input Xt at timestep t. σ is the function of logistic regression, and the activation value at timestep t is represented 
by at . Except for the usage of GRU neurons, the implemented RNN model developed with GRU is like that of 
simple RNNs. Table 5 presents the GRU-based RNN model architecture for CarboxE site identification.

As mentioned earlier, Hochreiter et al.38 have proposed the LSTM neuron with some improvements to the 
design of the SimpleRNN unit, which provides a more robust generalization of GRU. Prominent variations in 
LSTM and GRU cells are illustrated as follows:

•	 No significance gate Ŵ(r) is used in generic LSTM units for H̄t computation.
•	 LSTM units utilize two distinct gates instead of an update gate Ŵu , namely output gate Ŵo and update gate Ŵu . 

The output gate tracks the content’s visibility of the Ht memory cell to compute LSTM unit activation outputs 
for other hidden units in the network. To achieve Ht , forget gate handles the extent of overwriting on Ht−1 . 
For instance, how much memory cell information must be overlooked to function properly for memory cells?

at = g(Wa[a
t−1

,Xt
] + ba)

yt = f (Wy × at + by),

H̄t
= tanh(Wc[Ŵr ×Ht

,Xt
] + bc

Ŵr = σ(Wr[H
t−1

,Xt
] + br)

Ŵu = σ(Wu[H
t−1

,Xt
] + bu)

Ht
= Ŵu × H̄t

+ (1− Ŵu)×Ht−1

at = Ht
,

Table 4.   RNN architecture using SimpleRNN neurons for CarboxE site identification.

No Layer No. of weights

1 Embedding layer (2320 = 460)

2 R1: Recurrent layer with 14 simple RNN units and dropout regularization with 20% probability (3514 = 490)

3 Dense layer with 8 units (14+ 1)8 = 120

4 Output layer (8+ 1)1 = 9

Table 5.   CarboxE site identification using RNN based on GRU neurons.

Layer type No. of weights

Embedding layer to convert numeric sequence into vector sequence (23× 20 = 460)

Recurrent layer with GRU units and dropout regularization with 20% probability (108× 14 = 1512)

Dense layer with 8 units (14+ 1)× 8 = 120

Output layer (8+ 1)× 1 = 9
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•	 LSTM is different from GRU architectures by the fact that the memory cell contents Ht may not be equivalent 
to the activation at at time t.

Moreover, the Model using RNN-LSTM approach is constructed with similar architecture as GRU and simple 
RNN models. The only difference is that of LSTM units in recurrent layers. Table 6 shows the model’s architecture 
that used LSTM neurons and RNNs to build the CarboxE site identification model.

Convolutional neural networks.  Convolutional Neural networks are designed to handle learning problems 
involving large input data with complex spatial structures such as image, video, and speech signals. CNNs try 
to learn hierarchical filters which can transform large input data to accurate class labels using minimal train-
able parameters. This is accomplished by enabling sparse interactions between input data and trainable param-
eters through parameter sharing to learn equivariant representations (also called feature maps) of the com-
plex and spatially structured input information20. In a Deep CNN, units in the deeper layers may indirectly 
interact with large portion of input due to usage of pooling operations which replaces the output of Net at a 
certain location with a summary statistic and allows the network to learn complex features from this com-
pressed representation20. The so-called ’top’ of the CNN is usually composed of a bunch of fully connected layers, 
including the output layer, which uses the complex features, leaned by previous layers, to make predictions. The 
CNN-based architecture of the CarboxE site identification approach is shown in Fig. 12. CNN model for Car-
boxE identification makes use of an embedding layer, two convolution-maxpool blocks separated by a Dropout 
layer, a global average layer, penultimate feature extraction layer and an output layer consisting of the sigmoid 
neuron as shown in Table 7. Each peptide sample x with a length ξ = 41 was translated via the embedding layer 
to achieve X ∈ R(η × ξ)tensor where η ∈ R

20 is the symbol vector in R20 of every amino acid residue. The first 
conv-maxpool block is comprised of 8 1-D convolution neurons with a filter size of 3 with relu non-linearity fol-
lowed by a 1-D maxpool operation. The second conv-maxpool is similar in architecture, with the only difference 

Table 6.   CarboxE site identification using RNN based on LSTM neurons.

Layer type No. of weights

Embedding layer to convert numeric sequence into vector sequence (23× 20 = 460)

Recurrent layer with LSTM units and dropout regularization with 20% probability 144× 14 = 2016

Dense layer with 8 units (14+ 1)× 8 = 120

Output layer (8+ 1)× 1 = 9

Figure 12.   CNN architecture to identify CarboxE sites.

Table 7.   CarboxE site identification model based on CNN.

Layer type No. of weights

Embedding layer to convert numeric sequence into vector sequence (23× 20 = 460)

Conv-maxpool-1D block with 10 filters of size 5 ((5× 20)+ 1)× 10 = 1010

Dropout with 25% of probability N/A

Conv-maxpool-1D block with 16 filters of size 3 ((3× 10)+ 1)× 16) = 496

GlobalAveragePooling1D N/A

Dropout with 50% of probability N/A

Dense layer with 8 units (16+ 1)× 8 = 136

Output layer (8+ 1)× 1 = 9
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being the increased number of neurons to 18. Two Dropout layers, proposed by Srivastava et al.39, are employed 
to reduce the overfitting during the training phase. The GlobalAveragePooling layer flattens the output of previ-
ous layers in a one-dimensional array of 18 values by calculating an average of each of the 18 feature maps of 
previous layers. The 18-D feature array is used by ‘top’ of the CNN, consisting of fully connected layers of relu, 
to identify CarboxE sites.

Evaluation methodology.  The critical evaluation metrics employed in this study include the receiver 
operating characteristics learning curve (ROC), precision-recall, Area under Curve, accuracy, and matthew’s 
correlation coefficient to name a few. All the above-mentioned metrics stem from the confusion matrix, which 
is composed of the following measures:

•	 True Positive (TP): Actual CarboxE site forecasted via DNN classifier as CarboxE site
•	 False Positive (FP): Actual non-CarboxE site indicated via DNN classifier as CarboxE site
•	 False Negative (FN): Actual CarboxE site indicated via DNN classifier as non-CarboxE site
•	 True Negative (TN): Actual Non-CarboxE site forecasted via DNN classifier as non-CarboxE site

This subsection provides a brief introduction of the evaluation metrics for convenience of interested readers.

Precision‑recall curve and mean average precision.  When considering the identification models’ evaluation, 
recall and precision are considered crucial measures. Recall evaluates the classifier’s sensitivity to positive sam-
ples and is depicted by the ratio of correct positive predictions and total positive samples in the test. At the same 
time, precision evaluates the relevance of the predicted positive samples and is calculated as the ratio of correct 
positive predictions to total positive predictions. A high precision and recall ranking indicate that the predic-
tions made via model for the positive class contain a high percentage of true positives (high-Precision), together 
with identification of majority of positive class samples in the dataset (High-Recall). A precision-recall curve is 
determined by plotting precision and recalls against each other, and it evaluates the proportion of positive iden-
tifications that are true positives40. In precision-recall space, the closer a predictor’s score is to the ideal classifier 
point (1, 1) the better it is and contrariwise.

Receiver operating characteristics and area under ROC curve.  A receiver operating characteristics (ROC) is 
a method for organizing, visualizing, and selecting classification models based on their performance41. Addi-
tionally, it is a valuable performance evaluation measure as it is insensitive to changes in class distribution and 
especially useful for problems involving skewed class distributions41. The ROC curve illuminates, in a sense, the 
cost-benefit analysis under evaluation of the classifier. The false positive (FP) ratio to total negative samples is 
defined as the false positive (FP) rate and measures the negative examples misclassified fraction as positive. This 
is considered a cost since any further action taken on the FP’s result is considered a waste, as it is a wrong pre-
diction. True positive rate, defined as the fraction of correctly predicted positive samples, can be considered an 
advantage due to the fact that correctly predicted positive samples assist in solving the problem being examined 
more effectively. RoC curve is created by plotting the False Positive Rate with True Positive Rate. In ROC space, 
point (0, 1) represents the perfect classifier because this point depicts FPR of 0 with TPR of 1. The closer a curve 
is to this ideal point, the better the performance and contrariwise. Additionally, the ROC curve can be repre-
sented as a scalar value using Area under ROC curve (AUC). The AUC is the indicator of a classifier’s capability 
to differentiate between classes, and it is employed as an ROC curve summary. AUC reduces the effects of the 
ROC curve to a single value and highlights mathematical insights into the success of the model. AUC is equal to 
the probability that a randomly chosen positive sample will be classified higher than a randomly chosen negative 
instance by the classifier. Moreover, AUC is similar to the Wilcoxon rank test41. The greater the AUC score, the 
better the model distinguishes the negative and positive samples42 and vice versa.

Accuracy, F1‑measure, and Matthew Correlation Coefficient.  Accuracy is defined as the ratio of correctly esti-
mated data points to the total number of data points and its a widely accepted evaluation measure for classifica-
tion models. Although its results are trust-worthy for balanced datasets, it can be misleading when their exist an 
imblanace in data points of different classes in a dataset. To mitigate the possibility of its spurious findings, accu-
racy is often used in conjunction with F1 score or matthew’s correlation coefficient. F1-score may be understood 
as an average of precision and recall and it is used when a scalar representation of aformenetioned measures is 
desired. Thus, the F1 score can be defined as given in equation below:

Another noteworthy point metric is Matthews Correlation Coefficient (MCC)42,43, which was initially proposed 
to compare chemical structures44 but found its use as standard performance metric for classification models45. 
MCC has been shown to be robust agianst class imbalannce issues which are prevalent in other model evaluation 
measures. The MCC is a more robust statistical metric that produces a high score only if classifier obtained good 
results for all four confusion matrix measures (true positives, false negatives, true negatives, and false positives) 
proportionate to both positive and negative class size in the test dataset.

(1)F1 = 2×
precision× recall

precision+ recall
.
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Conclusions
In this study, we proposed an efficient in-silico approach to supplement wet lab experiments for identification of 
4-carboxyglutamate sites. 4-carboxyglutmate is an important post translational modification which is involved 
in various physiological processes including blood coagulation and pathological conditions like osteoporosis 
etc. The proposed approach employs Chou’s Pseudo Amino Acid Composition with deep neural networks to 
identify glutamic acid sites likely to be carboxylated. Well-known deep neural networks including standard 
neural network, three RNNs with different neuron structures and convolutional neural network were used 
to develop identification models for 4-carboxyglutamate sites. Of all DNN based predictors, highest position 
was surmounted by CNN based model, which showed the best results on independent dataset with accuracy 
of 94.7%, AuC score of 0.91 and F1-score of 0.874. The comparisons of proposed CNN based predictor with 
notable research contributions were performed which shows the efficacy of proposed predictor. On the basis of 
abovementioned evidence, it is concluded that the proposed CNN based predictor will help the research com-
munity to efficiently and accurately identify 4-carboxyglutamate sites and help develop better understanding of 
related pathophysiological processes.
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