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Abstract 

Background:  Obesity is a serious disease with a complex etiology characterized by overaccumulation of adipos‑
ity resulting in detrimental health outcomes. Given the liver’s critical role in the biological processes that attenuate 
adiposity accumulation, elucidating the influence of genetics and dietary patterns on hepatic gene expression is fun‑
damental for improving methods of obesity prevention and treatment. To determine how genetics and diet impact 
obesity development, mice from 22 strains of the genetically diverse recombinant inbred Collaborative Cross (CC) 
mouse panel were challenged to either a high-protein or high-fat high-sucrose diet, followed by extensive phenotyp‑
ing and analysis of hepatic gene expression.

Results:  Over 1000 genes differentially expressed by perturbed dietary macronutrient composition were enriched 
for biological processes related to metabolic pathways. Additionally, over 9000 genes were differentially expressed by 
strain and enriched for biological process involved in cell adhesion and signaling. Weighted gene co-expression net‑
work analysis identified multiple gene clusters (modules) associated with body fat % whose average expression levels 
were influenced by both dietary macronutrient composition and genetics. Each module was enriched for distinct 
types of biological functions.

Conclusions:  Genetic background affected hepatic gene expression in the CC overall, but diet macronutrient dif‑
ferences also altered expression of a specific subset of genes. Changes in macronutrient composition altered gene 
expression related to metabolic processes, while genetic background heavily influenced a broad range of cellular 
functions and processes irrespective of adiposity. Understanding the individual role of macronutrient composition, 
genetics, and their interaction is critical to developing therapeutic strategies and policy recommendations for preci‑
sion nutrition.
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Background
Obesity is characterized by the disproportionate and 
excessive accumulation of adipose tissue relative to an 
individual’s height, resulting in decreased health and 
increased risk of developing a myriad of chronic dis-
eases such as atherosclerosis, cardiovascular disease, 
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metabolic syndrome, type 2 diabetes, and certain types 
of cancer [97]. The simplest definition of obesity is exces-
sive adiposity resulting from the chronic imbalance 
between energy intake and expenditure. The underly-
ing mechanisms involved in maintaining energy balance 
are complex and regulated by numerous factors such as 
genetic background [3, 52, 82], metabolism [19, 84, 90], 
gut microbiome [36, 57, 91], and environmental factors 
such as diet in the context of overfeeding [11–13, 76, 81]. 
Additionally, the specific interaction of dietary macro-
nutrients and the endocrine system, in particular insulin 
response and signaling, has a critical role in the etiol-
ogy of obesity [53]. Differences in dietary macronutrient 
composition can influence substrate utilization; specifi-
cally, rapidly digestible carbohydrates may interact with 
insulin and other hormones to increase fat accumulation 
relative to other macronutrients.

In addition to the complex interactions between adi-
pose tissue, the central nervous system, nutrients, and 
hormones that regulate energy balance [3, 25], the liver 
also influences the susceptibility to obesity, given its 
major role in the metabolism and processing of macro-
nutrients including glycogenolysis, production of tri-
glycerides, lipogenesis, and the synthesis of amino acids, 
cholesterol, and lipoproteins [75, 93]. Obesity in turn can 
induce the pathological response of insulin resistance in 
the liver, which results in an impaired ability of insulin to 
decrease glucose output from the liver while continuing 
to stimulate lipogenesis; this disruption of appropriate 
carbohydrate and lipid metabolism is thought to con-
tribute to some of the health complications associated 
with obesity like metabolic syndrome and cardiovascular 
disease. Adipokines such as adiponectin, adipocyte dys-
function, metabolism, and circulating metabolite levels 
affect hepatic gene expression [21, 56], which regulates 
the mechanisms involved in lipid processing, determina-
tion of metabolic rate, and other physiological processes 
associated with energy imbalance [46, 93]. Furthermore, 
an individual’s inherent genetic architecture and spe-
cific environmental exposures such as diet also shape 
hepatic gene expression [31, 41, 80]. Given that the liver 
regulates so many biological processes related to obesity 
development, elucidating the effects of genetic architec-
ture and diet on hepatic gene expression is necessary to 
understand the mechanisms underlying susceptibility 
to obesity and development of effective prevention and 
treatment regimes.

Modern molecular biology techniques have revo-
lutionized our ability to detect changes in gene 
expression [50, 74], which allows one to infer poten-
tial candidate genes and pathways underlying meta-
bolic dysfunction [16, 33]. Identification of genes and 

pathways that determine susceptibility to obesity facili-
tates the understanding of the underlying mechanisms 
behind the development of obesity, which is instru-
mental to determining effective methods of preven-
tion and treatment. Simultaneous to the advances in 
high-throughput assessment of gene expression, a 
novel population of mice has been developed. Derived 
from elaborate intercrosses of eight founder mouse 
strains [7, 35, 89], the CC is a large recombinant inbred 
mouse population with tremendous genetic diversity 
and genetic contribution from five classically inbred 
strains, A/J, C57BL/6J (B6), 129S1/SvImJ (129), NOD/
ShiLtJ (NOD), and NZO/HILtJ (NZO), and three wild-
derived strains, CAST/EiJ (CAST), PWK/PhJ (PWK), 
and WSB/EiJ (WSB) [9, 64, 79, 85]. The genetic and 
phenotypic diversity of the CC is of similar scale to the 
human population [86] and provides an opportunity to 
address the complex interactions between genetics and 
dietary macronutrient composition that affect hepatic 
gene expression. The ability to utilize multiple repli-
cates of individual CC strains allows for more precise 
delineation between confounding environmental influ-
ences and dietary effects within the context of a known 
genetic architecture.

Previously, we examined the effects of diet and 
genetic background on adiposity and other obesity-
related traits [101]. In the current study, we focus on 
the effects of macronutrient composition and strain 
(genetic background) on hepatic gene expression and 
relate these to phenotypic traits and biological func-
tions. To find potential candidate genes or functional 
pathways underlying metabolic dysfunction regulated 
by diet in a genetically diverse population, we admin-
istered a challenge of either high-protein (HP) or high-
fat high-sucrose (HS) diet to 22 strains of mice from 
the Collaborative Cross (CC) mouse panel for 8 weeks 
and performed microarray gene expression analysis of 
11,542 genes using high-quality RNA from liver tissue, 
in addition to extensive phenotyping. To ascertain the 
expression of genes (mRNA) associated with adiposity, 
determine which genes were differentially expressed by 
dietary macronutrients and genetic strain, and identify 
groups of related genes affected by genetic background 
and/or diet in the liver, we examined hepatic gene 
expression levels and related them to phenotypes using 
one analyses pipeline centered around linear models 
for microarray (limma) and a separate analyses pipeline 
focused on weighted gene co-expression network anal-
ysis (WGCNA) (see Supplementary Fig.  1, Additional 
file 1), which facilitated exploration of gene expression 
from two perspectives: for individual genes using the 
limma approach and for groups of genes using the net-
work approach.



Page 3 of 25Yam et al. Genes & Nutrition           (2022) 17:13 	

Results
Diet‑induced adiposity was correlated with the expression 
level of thousands of genes in the liver
Microarray gene expression analysis of 11,542 genes was 
performed using high-quality RNA from livers of 123 CC 
mice collected after an 8-week challenge of either a high-
protein (HP) or high-fat high-sucrose (HS) diet. Cor-
relations of post-diet adiposity with normalized gene 
expression levels using calculations of multiple biweight 
midcorrelations (bicor) and their corresponding Student 
correlation p-values were performed to determine which 
genes’ expression levels were associated with body fat % 
and relevant traits. Post-diet body fat % was significantly 
correlated with the expression of 2552 genes out of 11,542 
genes expressed in the liver with validated annotation (Sup-
plementary Table 1, Additional file 2), with the top 15 most 
significant positive and 15 most significant negative corre-
lations shown in Fig. 1 (Supplementary Table 2, Additional 
file 2). Specifically, post-diet body fat % showed significant 
moderate negative correlation with the gene expression 
of TBC1 domain family (Tbc1d30; bicor = −0.603, p = 
1.56 × 10−13), insulin-like growth factor binding protein 
2 (Igfbp2; bicor = −0.560, p = 1.62 × 10−11), apolipopro-
tein M (ApoM; bicor = −0.530, p = 2.82 × 10−10), inter-
alpha globulin inhibitor H5 (Itih5; bicor = −0.527, p = 3.76 
× 10−10), and flavin containing monooxygenase 3 (Fmo3; 
bicor = −0.484, p = 1.44 × 10−8), as well as moderate 
positive correlation between post-diet adiposity and gene 
expression of aldehyde dehydrogenase (Aldh1a1; bicor = 
0.539, p = 1.29 × 10−10), thyroid hormone receptor inter-
actor 4 (Trip4; bicor = 0.494, p = 6.41 × 10−9), plastin 3 
(Pls3; bicor = 0.470, p = 4.17 × 10−8), lysophospholipase-
like 1 (Lyplal1; bicor = 0.468, p = 4.81 × 10−8), and adi-
ponectin receptor 2 (Adipor2; bicor = 0.426, p = 9.21 × 
10−7). Of these highly correlated genes, metabolic health 
score was also significantly correlated with Aldh1a1 (bicor 
= −0.282, p = 1.63 × 10−3), Trip4 (bicor = −0.246, p = 
6.24 × 10−3), and Igfbp2 (bicor = 0.270, p = 2.61 × 10−3); 
total weight was also significantly mildly correlated with 
the expression levels of these top 30 genes (Fig. 1).

The expression levels of many genes that were signifi-
cantly correlated either negatively or positively with body 
fat % were also reciprocally correlated with lean % and 
heat production (Fig. 1). Very few of the expression lev-
els of the top 30 genes showed significant correlations 
with circulating analytes or metabolites except insulin 
and glucose/insulin ratio. Accordingly, body fat % was 
also significantly correlated both positively and nega-
tively with expression levels of genes encoding proteins 
instrumental to insulin signaling that regulate metabolic 
pathways [2, 14, 17, 26, 30, 42, 43, 59, 104], including 
insulin-degrading enzyme (Ide; bicor = 0.348, p = 7.85 
× 10−5), phosphoinositide-3-kinase regulatory subunit 1 

(Pik3r1; bicor = 0.211, p = 0.019), insulin-induced gene 
1 (Insig1; bicor = 0.196, p = 0.029), insulin receptor sub-
strate 2 (Irs2; bicor = −0.309, p = 4.98 × 10−4), insulin 
receptor (Insr; bicor = −0.242, p = 6.94 × 10−3), and 
Janus kinase 1 (Jak1; bicor = −0.201, p = 0.026).

Differential gene expression analysis identified 1344 
genes responsive to differences in dietary macronutrient 
composition
Both genetics and environmental factors such as diet are 
critical determinants of obesity. Although genetics have 
a stronger effect on susceptibility to developing obe-
sity than diet alone [10, 29], the role of diet as an envi-
ronmental factor that influences gene expression is still 
important, since changes in dietary patterns can help mit-
igate the degree of obesity that develops by altering gene 
expression levels. To assess which genes’ expression levels 
are affected by diet, differential gene expression analysis 
was performed using the R package limma (linear models 
for microarray) on liver gene expression data. Comparing 
the HS diet to the HP diet revealed 1344 genes that were 
differentially expressed by diet (p adj < 0.05, Supplemen-
tary Table 3, Additional file 2) with the top 20 most sig-
nificant hits showing patterns of expression clustering by 
diet (Fig. 2A), where 16 genes showed increased expres-
sion and 4 genes showing decreased expression in mice 
fed the HP diet relative to the HS diet, though expression 
patterns exhibited some degree of inter-strain variation 
depending on the gene and strain. The opposite patterns 
of expression for these genes were shown in mice fed the 
HS diet, i.e., genes that showed increased expression in 
mice fed the HP diet had decreased levels of expression 
in mice fed the HS diet (Fig.  2A). The expression levels 
of 389 differentially expressed genes (DEGs) by diet were 
significantly correlated with body fat % (p < 0.05), includ-
ing Irs2 and Pik3r1.

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway and gene ontology (GO) enrichment 
analyses identified 20 significantly overrepresented 
KEGG pathways and 187 significantly overrepre-
sented GO terms for DEGs by diet (Fig.  2B–E; see 
Supplementary Table 4, Additional file 2), with vary-
ing degrees of gene richness defined by the number of 
up- or downregulated DEGs found belonging to each 
KEGG pathway or GO term out of the total number 
of genes that comprise each KEGG pathway or GO 
term. The most significantly overrepresented KEGG 
pathways identified were metabolic pathways, oxida-
tive phosphorylation, and biosynthesis of amino acids 
(p adj ≤ 5.05 × 10−8). In terms of each GO term cat-
egory, 105 GO biological processes, 45 GO cellular 
components, and 37 GO molecular functions were 
significantly overrepresented (p adj < 0.05), with the 
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top 10 most significantly overrepresented GO terms 
in DEGs by diet shown in Fig.  2C–E. The majority 
of enrichment terms were related to metabolism of 
a wide variety of substrates with numerous enrich-
ments of mitochondrial cellular components (see 
Supplementary Table 4, Additional file 2).

Genetic architecture perturbed global hepatic gene 
expression to a greater extent than macronutrient 
composition
Genetics is clearly an important factor affecting suscep-
tibility to metabolic dysfunction. We tested the role of 
genetics in regulatory gene expression by performing 

Fig. 1  Top 30 genes with expression levels most significantly correlated with body fat %. Multiple biweight midcorrelations (bicor) and their 
corresponding Student correlation p-values were calculated between phenotypic data and microarray liver gene expression data to properly take 
into account the actual number of observations when determining which genes’ expression levels were correlated with post-diet phenotypes 
of interest. The top 15 genes whose expression is most significantly positively correlated with body fat % (bicor ≥ 0.410, p ≤ 2.53 × 10−6) and 
top 15 genes whose expression is most significantly negatively correlated with body fat % (bicor ≤ −0.466, p ≤ 5.42 × 10−8) are shown. With 
the exception of insulin and glucose/insulin ratio, most of the top 30 genes’ expression most significantly correlated with body fat % were not 
significantly correlated with circulating analytes but were significantly correlated with metabolic (energy regulation) traits. Genes are ordered on 
the y-axis in descending order of bicor with the strongest positive correlation at the top and the strongest negative correlation at the bottom. Scale 
indicates bicor value with color darkness as indicator of correlation strength. †Indicates genes that are also differentially expressed by diet; all 30 
genes were found to be differentially expressed by strain. *Indicates genes found to be associated with at least one obesity-related trait in humans 
according to the GWAS catalog. Annotation for all genes with expression significantly correlated with body fat % are shown in Supplementary 
Table 1, Additional file 2. All significant correlations in this figure are shown in Supplementary Table 2, Additional file 2
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limma differential gene expression analysis by CC strain. 
Differential gene expression analysis revealed 9436 DEGs 
by CC strain (p adj < 0.05, Supplementary Table 5, Addi-
tional file 2), with the top 20 most significant hits show-
ing patterns of expression clustering by CC strain instead 
of diet (Fig.  3A). Unlike the inter-strain variation of 
expression patterns for diet DEGs, expression patterns 
were consistent across diets for strain DEGs. DEGs by 
CC strain showed similar levels of expression within each 
CC strain regardless of the diet fed. One-thousand one-
hundred thirty-one DEGs by CC strain were also differ-
entially expressed by diet (such as Irs2 and Pik3r1), and 
2367 of DEGs by CC strain were correlated with body fat 
% (nominal p < 0.05), including Ide, Insig1, Irs2, Jak1, and 
Pik3r1. Interestingly, additional genes encoding proteins 
crucial to insulin signaling [2, 5, 6, 30, 60, 100] were dif-
ferentially expressed by strain but not diet, specifically 
high mobility group AT-hook 1 (Hmga1), insulin-induced 
gene 2 (Insig2), and insulin receptor substrate 1 (Irs1) 
(Supplementary Table 5, Additional file 2).

KEGG pathway and GO enrichment analyses identified 
fewer overrepresented KEGG pathways and GO terms 
for genes differentially expressed by CC strain than diet. 
For strain DEGs, 13 significantly overrepresented KEGG 
pathways and 163 significantly overrepresented GO 
terms were identified (p adj < 0.05, Fig. 3B–E; see Supple-
mentary Table 6, Additional file 2), with varying degrees 
of gene richness. The most significantly overrepresented 
KEGG pathways identified were cell adhesion molecules 
(CAMs), ECM-receptor interaction, and focal adhesion 
(p adj ≤ 2.6 × 10−3), which are pathways important to 
cell signaling and structural binding between cells. For 
each GO term category, 95 GO biological processes, 44 
GO cellular components, and 24 GO molecular functions 
were significantly overrepresented in strain DEGs (p adj 
< 0.05), with the top 10 most significantly overrepre-
sented GO terms in DEGs by strain shown in Fig. 3C–E. 
In contrast to the enrichments for diet DEGs, very few of 
the enrichments for strain DEGs were related to metab-
olism. Instead, most enrichment terms were related to 

basal biological functions such as cell or tissue motility, 
cell division, tissue development, and substrate binding; 
most cellular compartment enrichments were derivatives 
of the cell membrane as opposed to the mitochondria 
(Supplementary Table 6, Additional file 2).

A query of the GWAS catalog identified DEGs in the CC 
that were associated with obesity‑related traits in humans
We were next interested in identifying clinically impor-
tant genes that are suspected of causing underlying 
complex traits in humans to provide context for our find-
ings relative to human obesity. Using the GWAS catalog 
to guide our search, we found that 15.8% of the genes 
expressed in the liver in this study (1819/11,542) have 
been previously found to be associated with obesity traits 
in humans [4]. Of these 1819 genes expressed in the liv-
ers of the CC mice that were also found associated with 
obesity traits in humans, greater than 85% (1570/1819) 
were found to be diet DEGs, strain DEGs, or significantly 
correlated with body fat % in this CC study. Using the 
CC as a model for obesity, we identified over 1500 genes 
expressed in the liver whose expression levels were either 
under genetic regulation, influenced by diet, or corre-
lated with body fat %, which were also clinically impor-
tant in humans.

Of the 1344 genes differentially expressed by diet, 214 
genes were found to be associated with obesity traits in 
humans according to the GWAS database; 65 of these 214 
genes were also significantly correlated with body fat % in 
the CC (Fig. 4A; see Supplementary Table 7, Additional 
file 2). Out of 9436 genes differentially expressed by CC 
strain, 1516 genes were found to be associated with obe-
sity traits in humans according to the GWAS database, 
including Hmga1 and Irs1; 431 of these 1516 genes were 
also significantly correlated with body fat % in the CC 
(Fig. 4B; see Supplementary Table 8, Additional file 2). By 
intersecting our lists of genes across multiple analyses, 
we found 434 differentially expressed genes with expres-
sion levels correlated with body fat % in the CC that were 
associated with obesity traits in humans (Fig.  4C; see 

(See figure on next page.)
Fig. 2  Expression patterns and enrichment of diet DEGs. A The top 20 most significant (BH-adjusted p ≤ 2.37 × 10−8) diet DE genes’ average 
Z scores of median robust multi-array average (RMA) normalized gene expression for each CC strain on either the high-protein (HP) or high-fat 
high-sucrose (HS) diet shown ordered from top to bottom by level of gene expression on the HP diet (highest to lowest). The genes’ average Z 
scores for each CC strain and diet are clustered by Euclidean distance on the x-axis. ‡Denotes genes also differentially expressed by strain. *Indicates 
genes with human homologs found in the GWAS catalog to be associated with at least one obesity-related trait. Annotation and limma results 
are shown for all diet DEGs in Supplementary Table 3, Additional file 2. Limma analysis of microarray data revealed genes differentially expressed 
by diet showing significant enrichment (p adj < 0.05) for B KEGG (20 total), C GO biological pathways (105 total), D GO cellular components  (45 
total), and E GO molecular functions (37 total). Pathways are ordered from top to bottom by significance (highest to lowest) and colored by gene 
richness. The top 10 enrichments for each ontology category were all upregulated on the HP diet, except for the GO cellular component and 
“integral component of membrane,” which was downregulated. All significant enrichment terms and enrichment analysis results are shown in 
Supplementary Table 4, Additional file 2
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Fig. 2  (See legend on previous page.)
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Supplementary Tables  7 and 8, Additional file  2), with 
three genes exclusively differentially expressed by diet, 
369 genes exclusively differentially expressed by strain 
(e.g., Ide), and 62 genes differentially expressed by both 
diet and strain (e.g., Pik3r1).

Differences in diet macronutrient composition had mild 
effects on broad sense heritability (H2) estimates for gene 
expression levels
To quantify the degree to which genetic variation influ-
ences variation in gene expression levels, we calculated 
broad sense heritability (H2) for the 11,542 genes used 
for differential gene expression analysis, which estimates 
the proportion of phenotypic variation attributed to dif-
ferences between genetic variation [20]. Using hepatic 
gene expression as the observed “phenotype” in this 
study, H2 was estimated by calculating the intraclass cor-
relation (rI) and coefficient of genetic determination (g2) 
from the between- and within-strain mean square val-
ues (MSB and MSW, respectively) derived from linear 
models. The proportion of variation accounted for by 
differences between strains can be approximated by rI 
in general, while the calculation of g2 takes into consid-
eration the additive genetic variance that doubles dur-
ing inbreeding [18, 20, 47]. Estimates of H2 based on g2 
calculated using MSB and MSW derived from the “full” 
additive linear models for the 11,542 genes expressed in 
the liver used for differential gene expression analysis 
ranged from −0.056 to 0.983 with a median g2 of 0.173. 
To assess whether differences in macronutrient compo-
sition (“diet environment”) influenced H2 by DEG sta-
tus, rI and g2 summary statistics were calculated for all 
expressed genes, diet DEGs, and strain DEGs (Table  1); 
g2 for diet DEGs ranged from −0.044 to 0.735 with a 
median of 0.195, while g2 for strain DEGs ranged from 
0.045 to 0.983 with a median of 0.211. For diet-specific 
g2, the minimum g2 values were slightly less than 0, 
implying that the variation in expression levels for these 
genes was greater within strains than between strains, 
but maximum g2 and median g2 values were similar both 
across diets and DEG status. Overall, the distributions 

of g2 specifically for the HP and HS diets did not differ 
significantly neither by the Mann-Whitney test (W = 
67,447,080, p = 0.098) nor the Kolmogorov-Smirnov test 
(D = 0.017, p = 0.074), demonstrating that the propor-
tion of variation in gene expression levels attributed to 
genetic variation stays relatively constant despite differ-
ences in macronutrient composition.

To quantify the proportion of the total gene expres-
sion variation that is accounted for by differences 
between diet, we next calculated the diet intraclass 
correlation (ICC) using the diet MSB and MSW values 
derived from the “full” additive linear models and then 
calculated summary statistics by DEG status group, 
i.e., all expressed genes, strain DEGs, and diet DEGs 
(Table 1). Diet ICC for all expressed genes ranged from 
−0.017 to 0.799 with a median diet ICC of 0.015. Simi-
larly, diet ICC for strain DEGs ranged from −0.017 to 
0.787 with a median of 0.019. Though the maximum 
diet ICC for diet DEGs (diet ICC = 0.799) was simi-
lar to the diet ICC maximum values for all expressed 
genes and strain DEGs (Table 1), the diet DEGs’ mini-
mum (diet ICC = 0.099) and median (diet ICC = 0.235) 
estimates were slightly higher, confirming that the pro-
portion of gene expression variation explained by diet 
differences was modestly increased for diet DEGs.

To investigate the degree to which gene × environ-
mental (diet) effects mediate variation in gene expres-
sion relative to genetics and environment, additional 
linear mixed model analyses with strain, diet, and 
strain × diet interactions all as random effects were 
performed for each gene to estimate the relative herit-
able variation that can be attributed to strain, diet, and 
strain × diet effects. From the results of these models, 
we calculated the variance for each of these terms and 
found that the proportion of heritable variation for 
gene expression attributed to strain × diet interactions 
on average was small (2.6%) and remained the same 
regardless of DEG status (Table 2). For all genes used in 
differential expression analysis, the largest proportion 
of heritable variation for gene expression can be attrib-
uted to genetic background (strain) on average (30.3%), 

Fig. 3  Expression patterns and enrichment of transcripts differentially expressed by CC strain. A The top 20 most significant (BH-adjusted p ≤ 2.631 
× 10−56) strain DE genes’ average Z scores of median robust multi-array average (RMA) normalized, gene expression for each CC strain on either 
the high-protein (HP) or high-fat high-sucrose (HS) diet shown. Gene average RMA Z scores for each CC strain and diet are clustered according to 
Euclidean distance by CC strain and diet on the x-axis and by gene on the y-axis. The human homolog of Gdpd3 was found in the GWAS catalog to 
be associated with at least one obesity-related trait. Annotation and limma results are shown for all strain DEGs in Supplementary Table 5, Additional 
file 2. Limma analysis of microarray data revealed genes differentially expressed by strain showing significant enrichment (p adj < 0.05) for B KEGG 
(13 total), C GO biological pathways (95 total), D GO cellular components (44 total), and E GO molecular functions (24 total). Pathways are ordered 
from top to bottom by significance (highest to lowest) and colored by gene richness. The top 10 enrichments for each ontology category were 
all upregulated on the HP diet, except for the linoleic acid metabolism KEGG pathway, and GO molecular functions “monooxygenase activity” and 
“oxidoreductase activity, acting on paired donors…,” which were downregulated. All significant enrichment terms and enrichment analysis results 
are shown in Supplementary Table 6, Additional file 2

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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while the proportions of heritable variation for gene 
expression attributed to diet (3.9%) and strain × diet 
interactions (2.6%) were much smaller. As expected, the 
proportion of heritable variation for gene expression 
attributed to diet was increased in diet DEGs (18.7%), 
and the proportion of heritable variation for gene 
expression attributed to strain was increased in strain 
DEGs (36.0%).

Transcriptional co‑expression network analysis identified 
key modules associated with adiposity
Because polygenic obesity is a complex physiological 
trait, we used a gene co-expression network approach 
to characterize the effects of strain and diet on expres-
sion of groups of related genes in addition to assess-
ment of genes individually, specifically weighted gene 
co-expression network analysis (WGCNA). WGCNA 
determines which genes have similar expression profiles 

Fig. 4  DEGs in the CC were associated with obesity-related traits in humans. Comparisons of differentially expressed genes, genes with expression 
levels significantly correlated with body fat % (BF%), and genes previously found to be associated with obesity-related traits in the GWAS 
catalog revealed A the number of genes differentially expressed by diet that also had expression levels significantly correlated with body fat % 
and associated with obesity traits in humans (65), B the number of genes differentially expressed by CC strain that also had expression levels 
significantly correlated with body fat % and associated with obesity traits in humans (431), and C the number of genes that fall under all four 
categories (62). Gene annotation, body fat % correlations, limma statistics, and a subset of related GWAS annotation are shown for the 65 diet DEGs 
in Supplementary Table 7 and 431 strain DEGs in Supplementary Table 8 (see Additional file 2)
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using a clustering method based on correlations of 
gene expression, which identifies the network modules 
(groups of related genes); measures derived from gene 
expression correlations influence the strength of con-
nections between genes within the network, where the 
highly interconnected genes that form modules may be 
components of biological pathways, helping to bridge 

the effects of individual genes and resulting phenotypes 
[45, 106, 107].

Taking a global approach to elucidate the relation-
ship between gene expression and emergent pheno-
types, WGCNA was performed using the 11,542 genes 
expressed in the liver and identified 13 clusters of genes 
(modules) each assigned an arbitrary color, where the 

Table 1  Heritability estimate and diet intraclass correlation summary statistics for all expressed genes and DEGs

Post-diet heritability estimates were calculated from linear models including strain, diet, and week as covariates (rI or g2 “full”) for gene expression of the 11,542 
expressed genes used in limma differential gene expression analysis. Diet-specific estimations of broad sense heritability were also calculated accordingly for gene 
expression levels represented by intraclass correlations (rI) and coefficients of genetic determination (g2) for each trait using the MSB and MSW for strain derived from 
linear models with strain and week as covariates using only data from each experimental diet per model as indicated to assess how different diet “environments” 
affect heritability. The intraclass correlation for diet (Diet ICC), which is the proportion of the total phenotypic variation that is accounted for by differences between 
diet, was calculated to compare the proportion of variation in gene expression attributed to diet in general or genetics. Summary statistics were calculated for each 
group of genes after heritability estimates, and diet ICC were obtained. g2 accounts for the additive genetic variance that doubles during inbreeding and may be a 
more appropriate estimate for broad sense heritability in this study. However, both rI and g2 values are presented to facilitate comparisons with other findings in the 
literature

Heritability estimate or diet ICC Mean ± SE Median (Q1, Q3) Min Max

rI full — all expressed genes 0.327 ± 0.002 0.295 (0.157, 0.471) −0.12 0.991

rI full — diet DEGs 0.341 ± 0.005 0.327 (0.202, 0.471) −0.091 0.848

rI full — strain DEGs 0.387 ± 0.002 0.348 (0.232, 0.513) 0.087 0.991

rI HP— all expressed genes 0.324 ± 0.002 0.305 (0.136, 0.498) −0.332 0.99

rI HP — diet DEGs 0.339 ± 0.006 0.34 (0.179, 0.497) −0.288 0.899

rI HP — strain DEGs 0.388 ± 0.002 0.367 (0.221, 0.545) −0.194 0.99

rI HS — all expressed genes 0.328 ± 0.002 0.313 (0.146, 0.498) −0.359 0.993

rI HS —diet DEGs 0.348 ± 0.006 0.345 (0.203, 0.5) −0.264 0.887

rI HS — strain DEGs 0.389 ± 0.002 0.372 (0.228, 0.539) −0.234 0.993

g2 full — all expressed genes 0.218 ± 0.002 0.173 (0.085, 0.308) −0.056 0.983

g2 full — diet DEGs 0.221 ± 0.004 0.195 (0.112, 0.308) −0.044 0.735

g2 full — strain DEGs 0.26 ± 0.002 0.211 (0.131, 0.345) 0.045 0.983

g2 HP — all expressed genes 0.223 ± 0.002 0.18 (0.073, 0.331) −0.142 0.98

g2 HP — diet DEGs 0.226 ± 0.005 0.205 (0.098, 0.331) −0.126 0.816

g2 HP — strain DEGs 0.267 ± 0.002 0.224 (0.124, 0.374) −0.089 0.98

g2 HS — all expressed genes 0.224 ± 0.002 0.186 (0.079, 0.331) −0.152 0.985

g2 HS — diet DEGs 0.232 ± 0.005 0.208 (0.113, 0.333) −0.116 0.797

g2 HS — strain DEGs 0.267 ± 0.002 0.229 (0.129, 0.369) −0.105 0.985

Diet ICC — all expressed genes 0.055 ± 0.001 0.015 (−0.009, 0.079) −0.017 0.799

Diet ICC — diet DEGs 0.266 ± 0.003 0.235 (0.172, 0.327) 0.099 0.799

Diet ICC — strain DEGs 0.061 ± 0.001 0.019 (−0.008, 0.089) −0.017 0.787

Table 2  Estimating average relative heritable gene expression variation

To estimate the relative heritable variation that can be attributed to genetics, environment (diet), and gene × environmental effects, linear mixed model analyses with 
CC strain, diet, and CC strain × diet interactions all as random effects were performed to quantify the proportions of variance (POV) attributed to each term relative to 
each other for the 11,542 expressed genes used in limma differential gene expression analysis. The mean approximate values for proportion of variance for strain, diet, 
and interaction were calculated by dividing the variance for each term by the sum of the variance for all terms in the model and multiplied by 100

CC strain Diet CC strain × diet

Variance POV (%) Variance POV (%) Variance POV (%)

All expressed genes 0.069 30.3 0.007 3.9 0.004 2.6

Diet DEGs 0.055 26.2 0.033 18.7 0.004 2.6

Strain DEGs 0.083 36.0 0.007 3.9 0.004 2.6
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Fig. 5  WGCNA identified co-regulated gene modules correlated with phenotypic traits. Using the cleaned and filtered hepatic gene expression 
data from mice fed the HP diet and mice fed the HS diet, A weighted gene co-expression network analysis (WGCNA) identified 13 modules with 
arbitrarily assigned colors. The 11,542 expressed genes were used to form the modules, which varied widely in terms of the number genes within 
each module. Gene module assignments are shown in Supplementary Table 9, Additional file 2. B Modules demonstrated a wide compositional 
range in terms of genes with expression levels significantly correlated with body fat % (15.1–69.0%) and differential expression by diet (0–49.5%) 
but consistently contained a high proportion of genes differentially expressed by CC strain (69.7–100%). C The heatmap of Spearman’s correlations 
between module eigengenes and phenotypic traits measured in the CC mice revealed significant correlations between the pink, yellow, salmon, 
tan, red, and magenta modules with body fat %. Scale indicates the strength of correlations. Correlation values in C are shown in Supplementary 
Table 10, Additional file 2
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number of genes contained in each module ranged from 
42 to 3319 (Fig. 5A, Table 3; see Supplementary Table 9, 
Additional file  2 and Supplementary Fig.  2, Additional 
file 1) with varying degrees of connectivity between genes 
(see Supplementary Fig. 3, Additional file 1 for an exam-
ple). The percentage of genes significantly correlated with 
body fat % (15.1–69.0%), and the percentage of DEGs by 

diet (0–49.5%) showed a wide range of variation in gene 
numbers across modules, but the percentage of DEGs 
by CC strain remained consistently high (> 69%) for all 
modules (Table  3, Fig.  5B); the consistently high pres-
ence of strain DEGs in all modules compared to the lower 
percentage and variation of diet DEGs between modules 
suggest a stronger effect of CC strain than diet on gene 
expression. Of the DEGs with expression levels corre-
lated with body fat % and associated with obesity-related 
traits in humans, the three diet DEGs were each assigned 
to different modules (black, blue, and pink); the range of 
strain DEGs per module was 1–106, with the turquoise 
module containing the highest number of strain DEGs 
(Table  4). Per module, the range of DEGs differentially 
expressed by both diet and strain with expression levels 
correlated with body fat % and also associated with obe-
sity-related traits in humans was 0–19, where most mod-
ules contained at least one DEG and yellow contained the 
most DEGs (Table 4).

After establishing the modules, module eigengenes 
(MEs) were calculated to estimate the average expres-
sion profiles of each module, and Spearman’s correlations 
were performed between MEs and phenotype data from 
all mice to determine the relationships between the mod-
ules and measured phenotypic traits, revealing significant 
correlations between the pink, yellow, salmon, tan, red, 
and magenta modules and body fat % (Fig. 5C; see Sup-
plementary Table 10, Additional file 2). Concurrent with 
ME × phenotype data correlations, modules that were 
significantly correlated with body fat % had relatively 
higher percentages of individual genes whose expression 
levels were significantly correlated with body fat %.

Table 3  Module gene composition

WCGNA identified 13 gene modules each assigned an arbitrary color with the number of genes contained in each module ranging from 42 (salmon) to 3119 
(turquoise). Each gene module showed variation in terms of the number of genes with expression significantly correlated with post-diet body fat (BF%), genes 
differentially expressed by diet, genes differentially expressed by strain, and genes associated with obesity traits in humans according to the GWAS catalog

Module colors BF% correlated genes Diet DEGs Strain DEGs GWAS obesity traits 
genes

Total genes

Turquoise 564 268 2497 719 3319

Blue 108 85 499 104 716

Brown 104 80 659 142 687

Yellow 258 172 618 123 665

Green 113 30 363 71 440

Red 137 68 371 74 378

Black 75 72 263 75 345

Pink 80 102 151 43 206

Magenta 42 52 145 27 163

Purple 30 13 155 23 157

Greenyellow 27 16 102 10 107

Tan 35 33 63 20 79

Salmon 29 0 42 11 42

Table 4  DEGs with expression correlated with body fat % 
associated with obesity in humans

By intersecting lists of genes across multiple analyses, 434 DEGs in the CC were 
found to have gene expression levels significantly correlated with body fat % 
and genes associated with obesity traits in humans in the GWAS catalog, with 
3 diet DEGs, 369 strain DEGs, and 62 genes differentially expressed by both 
diet and strain. The number of genes belonging to each category and assigned 
to the respective module is shown above, with 148 genes not assigned to any 
module

Module colors Diet DEGs Gene DE by diet 
and strain

Strain DEGs

Turquoise 0 9 106

Yellow 0 19 35

Red 0 0 22

Brown 0 1 15

Green 0 1 15

Black 1 2 13

Blue 1 2 8

Pink 1 6 7

Purple 0 0 6

Salmon 0 0 5

Tan 0 3 5

Greenyellow 0 1 1

Magenta 0 0 1
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Because multiple modules were associated with clini-
cal phenotypes (Fig.  5C), we performed enrichment 
analysis to determine potential mechanisms under-
lying these associations. Module enrichment varied 
widely (Table 5), from no enrichments at all (tan) to 419 
total enrichments (brown). Figure  6A–D shows the top 
enrichments for each module if present. Of the mod-
ules that were significantly correlated with body fat % 
in the CC, the tan module showed no enrichments, the 
pink module showed enrichment for the RNA binding 
GO molecular function (GO: 0003723) (p adj = 0.042), 
the salmon module showed enrichment for the regula-
tion of angiogenesis (GO: 0045765) (p adj = 0.009) and 
cGMP metabolic process GO biological processes (GO: 
0046068) (p adj = 0.046), and the magenta, red, and 
yellow modules showed multiple enrichments for GO 
biological processes, GO molecular functions, KEGG 
pathways, and Jensen diseases (Supplementary Figs. 4–6, 

Additional file  1; Supplementary Table  11, Additional 
file  2). Genes in the magenta module were significantly 
enriched for GO terms and KEGG pathways related to 
endoplasmic reticulum function (Supplementary Fig.  4, 
Additional file 1); genes assigned to the red module were 
significantly enriched for GO terms and KEGG pathways 
involved in steroid, cholesterol, and fatty acid biosynthe-
sis/metabolism (Supplementary Fig. 5, Additional file 1); 
and genes found in the yellow module were significantly 
enriched for a variety of functions in terms of GO terms 
and KEGG pathways, such as photoperiodism, transcrip-
tion regulation, insulin signaling, and more (Supplemen-
tary Fig. 6, Additional file 1).

Both diet macronutrient composition and genetic 
background affected expression of modules containing 
homologs associated with obesity in humans
The magenta, red, and yellow modules were enriched 
for biological pathways and correlated with body fat % 
(Figs. 5C and 6E–G; Supplementary Figs. 4–6, Additional 
file  1). To determine whether these modules contained 
DEGs in the CC associated with obesity in humans, the 
lists of genes assigned to each module were intersected 
with the list of genes previously found to be associated 
with obesity traits in humans in the GWAS catalog (Sup-
plementary Table  9, Additional file  2), with examples 
for these modules shown in Table 6. By intersecting our 
results across different analyses, DEGs important to obe-
sity in humans were found in biologically relevant mod-
ules associated with body fat % in the CC, where the DEG 
distribution across modules highlighted the larger contri-
bution of differential expression by strain over diet.

After finding that gene modules were correlated with 
body fat % and contained DEGs, we ascertained whether 
the average gene expression profile of these modules 
defined by their ME first principal components (PC1) dif-
fered by diet and/or strain. Wilcoxon ranked-sum test of 
the PC1 between mice fed the HP and HS diets for each 
module (Fig.  7A–E) revealed significant differences by 
diet for the yellow, red, magenta, pink, and tan modules 
(p < 0.01), but not the salmon module (p > 0.1). Inter-
estingly, when the Kruskal-Wallis test was performed 
to determine whether PC1 differed by strain for each 
module (Fig.  7F–H), PC1 significantly differed by strain 

Table 5  Distribution of significant enrichment terms across 
modules

In Enrichr analysis, genes assigned to each module were used to determine 
whether modules were significantly enriched for functional terms, pathways, 
or diseases (enrichment terms). Modules varied widely in terms of the number 
of enrichments for each category, from no enrichments at all (tan) to 419 total 
enrichments (brown)

GO 
biological 
process 
2018

GO 
molecular 
function 
2018

Jensen 
diseases

KEGG 
2019 
mouse

Total

Brown 296 25 18 80 419

Turquoise 289 55 1 49 394

Greenyellow 25 11 18 16 70

Red 37 2 3 24 66

Purple 34 2 2 14 52

Yellow 27 11 2 6 46

Magenta 35 4 2 2 43

Black 18 17 3 0 38

Green 24 5 0 8 37

Blue 22 3 0 8 33

Salmon 2 0 0 0 2

Pink 0 1 0 0 1

Tan 0 0 0 0 0

(See figure on next page.)
Fig. 6  Modules enriched for distinct liver functions were also correlated with body fat %. Enrichr analysis performed using the most recent versions 
of respective databases identified the top significant enrichment for each module, if available; genes belonging to the tan module did not show 
any significant enrichment. A All modules showed significant enrichment for at least one GO biological process, except for the tan and pink 
modules. B Similarly, all modules showed significant enrichment for at least one GO molecular function, except for the tan and salmon modules. 
Fewer modules were enriched for C KEGG pathways and D Jensen diseases. Spearman’s correlations between post-diet body fat % and E yellow ME 
(PC1) (rho = −0.28, p = 0.0016), F magenta ME (PC1) (rho = 0.19, p = 0.037), and G red ME (PC1) (rho = 0.27, p = 0.0027) show significant overall 
associations between average expression profiles of modules identified by WGCNA and body fat %
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Fig. 6  (See legend on previous page.)
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for the yellow, red, magenta, and salmon modules (all p 
≤ 8.1 × 10−4), but not the pink nor tan modules. Of the 
modules with MEs significantly correlated with body fat 
%, the yellow, red, and magenta modules exhibited differ-
ences by both macronutrient composition and CC strain.

Relating module MEs and body fat %, Spearman’s cor-
relations performed between MEs and body fat % for 
the yellow, red, and magenta modules using data from 
all samples revealed a significant negative correlation 
between body fat % and the yellow module (rho = −0.28, 
p = 0.0016) and significant positive correlations between 
body fat % and the magenta (rho = 0.19, p = 0.037) and 
red (rho = 0.27, p = 0.0027) modules (Fig. 6E–G). Given 
the many enrichments in biological pathways found and 
significant differences in MEs by diet and CC strain for 
these three modules, Spearman’s correlations were per-
formed between MEs and body fat % by diet for each 
module to determine whether the relationship between 
MEs and body fat % remained consistent across differ-
ent diets for enriched modules. The correlation between 
expression of the yellow module and body fat % was sig-
nificant and negative for the HS diet only, while the cor-
relation between expression of the magenta module and 
body fat % was significant and positive for the HS diet 
only (Supplementary Fig.  7, Additional file  1). Unlike 
the yellow and magenta modules where the correlations 
between MEs and body fat % were only significant for the 
HS diet, the correlation between the red ME and body 
fat % remained significant and consistently positive for 
both diets (Supplementary Fig.  7, Additional file  1). In 

summary, Spearman’s correlations performed between 
MEs and body fat % by diet for biologically relevant mod-
ules illustrated alterations in the direction and magni-
tude of associations between module MEs and body fat 
% depending on diet for the yellow and magenta mod-
ules, in contrast to the red module where the direction 
and magnitude of associations between module MEs 
and body fat % for the red module remained consistent 
regardless of diet, demonstrating the modules’ different 
responses to diet.

Discussion
Obesity is a complex and heterogeneous disease whose 
development is caused by numerous biological factors, 
particularly genetics, diet, and gene expression. Though 
long established that obesity results from a chronic 
imbalance between energy intake and expenditure at 
a fundamental level, our understanding of exactly how 
diet and genetics interact to influence gene expression 
and how gene expression regulates the development of 
obesity remains to be fully elucidated. Because the liver 
regulates metabolism of macronutrients, cholesterol, and 
triglycerides, we measured hepatic gene expression in the 
CC to gain insight of how diet and genetic background 
impact obesity and related obesity-related traits. Correla-
tions performed between hepatic gene expression levels 
and post-diet phenotype data revealed 2552 genes whose 
expression levels were significantly correlated with body 
fat % in the CC, some which were negatively correlated 
such as ApoM and Fmo3, while others were positively 

Table 6  DEGs assigned to enriched modules associated with obesity traits in humans

Multiple DEGs in the CC assigned to enriched modules were associated with obesity traits in humans in the GWAS catalog. The number of DEGs for the magenta, red, 
and yellow modules identified by WGCNA illustrates the larger contribution of differential expression by strain over diet. Examples of genes with human homologs 
associated with obesity traits are shown for each module, where a denotes genes that are significantly correlated with body fat % in the CC

Magenta module Red module Yellow module

Number 
of DEGs

Genes associated with 
obesity traits in humans

Number 
of DEGs

Genes associated with 
obesity traits in humans

Number 
of DEGs

Genes associated with 
obesity traits in humans

Diet DEGs 0 NA 0 NA 3 Fars2, Mdfic, Abhd15

Strain DEGs 16 Macrod1a, Vegfb, Serp1 47 Fasna, Acacaa, Ppil1a 87 Nicn1a, Pnpla7a, Syne3a, Clocka

DEGs by diet and strain 5 Uggt1, Itih1, Serpina6 12 Spc24, Mipep, Cyb5b, Dlat 30 Fbxo21a, Brapa, Mgrn1a

Fig. 7  Differences in diet macronutrient composition and genetic background perturb MEs (PC1). Most module eigengene (ME) average gene 
expression profiles (PC1) significantly correlated with body fat % also significantly differed by diet to different degrees, as ascertained with 
Wilcoxon ranked-sum tests. The MEs that significantly differed by diet were A yellow (p < 0.001), B red (p < 0.01), C magenta (p < 0.001), D pink (p < 
0.001), and E tan (p < 0.001), but not salmon (p > 0.1). Most module eigengene (ME) average gene expression profiles (PC1) significantly correlated 
with body fat % also significantly differed by CC strain to different degrees, as ascertained with Kruskal-Wallis tests. The pink and tan MEs did not 
differ significantly by CC strain (p > 0.07), but the MEs for the F yellow (p = 6.0 × 10−4), G red (p = 2.8 × 10−9), H magenta (p = 8.1 × 10−4), and 
I salmon (p = 1.3 × 10−8) modules differed significantly by CC strain. Points indicate individual calculated ME expression for each mouse, and CC 
strains are ordered numerically

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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correlated such as Aldh1a1 and Adipor2. ApoM encodes 
a membrane-bound apolipoprotein associated with high-
density lipoproteins, low-density lipoproteins, and tri-
glyceride-rich lipoproteins; secreted through the plasma 
membrane, alipoprotein M is involved in lipid transport 
[99]. In the mouse, leptin the “satiety” hormone and lep-
tin receptor are essential for expression of ApoM, but 
excess concentrations of leptin inhibited ApoM mRNA 
expression in a dose-dependent manner in the human 
hepatoma cell line HepG2, suggesting that leptin may 
mediate ApoM expression [55]. Although FMO3 is more 
well-known for its role in preventing trimethylaminuria 
(fishy odor syndrome) in humans [92], FMO3 also func-
tions as a drug-metabolizing enzyme to catalyze the 
NADPH-dependent oxygenation of various molecules 
including therapeutic drugs and dietary compounds 
[65]. Intriguingly, studies in the mouse have suggested 
additional roles for FMO3 in health and disease, such 
as modulating cholesterol metabolism [96], glucose, and 
lipid homeostasis [78], and as a target for downregulation 
by insulin [58]. Since adipocyte secretion of leptin and 
insulin occurs in proportion with the volume of adipose 
tissue under “normal” circumstances, this may partially 
explain the negative correlations between body fat % and 
expression of ApoM and Fmo3.

In the current study, the hepatic gene expression lev-
els of Aldh1a1 and Adipor2 were positively correlated 
with body fat %. Aldh1a1 encodes the protein aldehyde 
dehydrogenase 1 family, member A1 (ALDH1A1), also 
known as retinaldehyde dehydrogenase 1 (RALDH1), 
which is a prominent enzyme in the oxidative pathway 
of alcohol metabolism. However, various studies in mice 
have shown that ALDH1A1 also modulates hepatic glu-
coneogenesis and lipid metabolism through its role in 
retinoid metabolism [39], and upregulation of ALDH1A1 
is associated with reduced adiponectin expression in adi-
pose tissue after high-fat diet feeding [44]. Furthermore, 
mice without ALDH1A1 are resistant to diet-induced 
obesity, and inhibition of ALDH1A1 in mice suppresses 
weight gain [27, 28], which is consistent with our finding 
and illustrates the potential for ALDH1A1 as a drug tar-
get for obesity prevention or treatment. Adipor2 encodes 
adiponectin receptor 2 which interacts with adiponectin 
to mediate fatty acid oxidation and glucose uptake [103]. 
An agonist of adiponectin receptor 2, the adipokine adi-
ponectin, is inversely correlated with body fat mass and 
visceral adiposity in humans, though the mechanisms of 
how adiponectin’s interactions with its receptors to elicit 
antidiabetic, anti-atherogenic, and anti-inflammatory 
effects are not fully understood [63].

After confirming the relationship between expression 
of genes related to obesity and body fat % in the CC, we 

investigated the effects of genetic background (strain) 
and diet on hepatic gene expression levels. Similar to adi-
posity and the obesity-related traits examined in our pre-
vious study [101], genetic background had a far stronger 
effect on hepatic gene expression than diet, as shown by 
the overwhelmingly larger number of significant DEGs 
by strain (9436) compared to the number of DEGs by 
diet (1344). Interestingly, gene expression of 28.9% of 
diet DEGs was significantly correlated with adiposity 
(389/1344) compared to 25% of strain DEGs (2367/9436). 
Of the top 20 most significant diet DEGs identified in the 
CC, carbamoyl-phosphate synthase 1 (Cps1), isovaleryl-
CoA dehydrogenase (Ivd), neuropilin 1 (Nrp1), and 
pyruvate kinase L/R (Pklr) were previously found to be 
associated with obesity traits in humans [38, 51, 69, 72, 
108], but only one of the top 20 most significant strain 
DEGs was associated with at least one obesity trait in 
humans, namely glycerophosphodiester phosphodiester-
ase domain containing 3 (Gdpd3) [108].

Gene enrichment analysis of DEGs revealed differ-
ent trends between DEGs by diet compared to strain. 
DEGs by diet showed enrichment for KEGG pathways 
and Gene Ontology (GO) biological processes related 
to numerous types of metabolism, amino acid synthe-
sis, and nonalcoholic fatty liver disease, whereas DEGs 
by strain showed enrichment for cell function pathways, 
type 1 diabetes, and fatty acid metabolism. Like KEGG 
pathway enrichment, GO term enrichment for cellu-
lar components and molecular functions also showed 
distinct differences between DEGs by diet compared 
to strain; DEGs by diet showed enrichment for multi-
ple cellular components related to the mitochondrion, 
endoplasmic reticulum, and cell membrane, while DEGs 
by strain showed enrichment for cellular components 
related to the cell membrane, extracellular components, 
and cell surface. In terms of molecular functions, DEGs 
by diet showed enrichment for metabolism and binding 
for nutrients and small molecules such as cofactor bind-
ing, vitamin B6 binding, catalytic activity, and electron 
transfer activity, while DEGs by strain showed enrich-
ment for binding related to general cell and tissue func-
tions, such as extracellular matrix, collagen, signaling 
receptor, and fibronectin binding. The culmination of our 
results suggests that generally, diet alters gene expression 
for “acute” metabolic processes sensitive to environmen-
tal changes, but genetic background more heavily influ-
ences overall “essential” cellular function.

Having identified genes with expression strongly influ-
enced by diet or strain, we used the GWAS catalog as a 
guide to highlight clinically important genes found in our 
study by determining which DEGs may be most relevant 
to obesity-related traits in humans. The comparison 
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between DEGs in the CC and genes in the GWAS cata-
log revealed that 65 diet DEGs and 431 strain DEGs cor-
related with body fat % in the CC have previously been 
identified as associated with obesity-related traits such 
as body fat distribution, BMI, waist-hip ratio, weight, 
and fat body mass in humans. One caveat regarding the 
number of DEGs in the CC found to be associated with 
obesity-related traits in humans is that our study focused 
only on gene expression in the liver of CC mice, while the 
genes listed in the GWAS catalog associated with obesity 
traits include candidates found in multiple tissue types; 
thus, including gene expression from additional tissue 
type such as brain or adipose tissue could yield addi-
tional candidate genes. Nonetheless, we identified genes 
expressed in the liver whose expression levels were either 
under genetic regulation, influenced by diet, or correlated 
with body fat %, which were also clinically important in 
humans using the CC panel as a model for obesity, which 
enabled the use of genetic “replicates” with high genetic 
diversity so that the results from this study are additive 
in scope.

In our list of genes whose gene expression lev-
els were significantly correlated with body fat % that 
have previously been associated with obesity-related 
traits in humans, some genes exclusively differentially 
expressed by diet found in our current study include 
increased sodium tolerance 1 homolog (Ist1) [32], chro-
modomain protein, Y chromosome-like (Cdyl) [87], 
and NIPBL cohesin loading factor (Nipbl) [87], while 
genes exclusively differentially expressed by strain were 
lysophospholipase-like 1 (Lyplal1) [22, 38, 49, 69, 87, 
94], leucine-rich repeat (in FLII) interacting protein 1 
(Lrrfip1) [67], and neurotrophic tyrosine kinase, receptor, 
type 2 (Ntrk2) [1, 38, 69, 108]. Lastly, genes differentially 
expressed by both strain and diet include F-box protein 
21(Fbxo21) [38, 69, 108], alanyl-tRNA synthetase (Aars) 
[38, 108], and BRCA1-associated protein (Brap) [32, 88, 
98]. Our findings highlight which candidate genes previ-
ously described in the literature have the highest poten-
tial for successful future validation studies.

Using the between- and within-strain mean square 
values derived from linear models, we calculated H2 esti-
mates to quantify the degree to which genetic variation 
affects hepatic gene expression level variation. For the 
11,542 genes included in our analysis, the range of coeffi-
cient of genetic determination (g2) was broad as expected 
(g2 = −0.056–0.983), but the median was lower than 
anticipated (g2 = 0.173) given the strong effect of strain 
on the expression of most genes. Median H2 estimates 
by DEG status increased slightly but not drastically (diet 
DEG g2 = 0.195, strain DEG g2 = 0.211), while H2 esti-
mates remained similar, suggesting that differences in 
macronutrient composition did not have a large impact 

on hepatic gene expression in this study. Upon exami-
nation of the relative heritable variation that can be 
attributed to strain, diet, and strain × diet effects for all 
genes, the largest proportion of heritable variation for 
gene expression can be attributed to genetic background 
(strain) on average (30.3%), while the proportions of her-
itable variation for gene expression attributed to diet 
(3.9%) and strain × diet interactions (2.6%) were much 
smaller, which reaffirms the strong effect of strain on 
gene expression relative to diet and strain × diet effects. 
However, one caveat of these approximations is that 
increasing the sample size would provide a better estima-
tion of the relative heritable variation since the number 
of mice per strain per diet is relatively low, so the estima-
tion of strain × diet effect may not be precise.

Since obesity is a complex trait regulated by multiple 
genes, we used a gene co-expression network approach 
including the 11,542 expressed genes to find groups of 
genes that are similarly regulated by diet or strain and 
identified 13 gene modules comprised of a wide number 
of genes from 42 to 3319. Consistent with our DEG anal-
yses, all modules were comprised largely of genes that 
were strain DEGs (> 69%), while the proportion of diet 
DEGs (0–49.5%) and genes with expression significantly 
correlated with body fat % (15.1–69.0%) varied much 
more widely, illustrating the variable effect of diet on 
gene expression compared to genetic background. Spear-
man’s correlation of the MEs for identified modules with 
phenotypic data revealed six modules related to body fat 
%: tan, pink, salmon, magenta, red, and yellow. The MEs 
for all of these modules differed significantly by diet, 
except for the salmon module, suggesting that differ-
ences in diet macronutrient composition induce changes 
in gene expression for entire groups of genes. Similar to 
diet, the MEs for most of the modules also differed sig-
nificantly by strain, except for the pink and tan modules. 
However, it is important to note that the ME variation 
within each strain appeared much higher for these two 
modules than the magenta, red, and salmon modules, an 
observation shown through the ability of utilizing genetic 
“replicates” with high genotypic and phenotypic diversity 
that is inherent to the CC; in fact, increasing the number 
of “replicates” would enhance the ability to find signifi-
cant strain-by-diet differences. Thus, we show that both 
diet and strain may strongly affect hepatic gene expres-
sion, and that the CC can be used to interrogate the 
sources of inter-individual variation that underlies the 
variable response to diet observed in humans and mice.

Enrichment analysis performed using the lists of genes 
assigned to each module allowed us to assess which mod-
ules identified in the CC may be most biologically rel-
evant to obesity and human health. Of the six modules 
whose MEs were significantly correlated with body fat %, 
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the number of enrichment terms were few to none for the 
salmon, pink, and tan modules, but the magenta, red, and 
yellow modules were significantly enriched for numer-
ous functional pathways, biological processes, and/or 
diseases. For example, the magenta module was enriched 
for pathways related to endoplasmic reticulum (ER) func-
tion and contained 163 genes total, with 16 strain DEGs 
and five DEGs by both diet and strain associated with at 
least one obesity trait in humans. Two DEGs associated 
with obesity in humans from the magenta module that 
merit further study are stress-associated endoplasmic 
reticulum protein 1 (Serp1) and UDP-glucose glycopro-
tein glucosyltransferase 1 (Uggt1). Serp1 participates in 
the metabolism of proteins in the ER by protecting tar-
get proteins against degradation [102] and was differ-
entially expressed by strain in the CC. Similarly, Uggt1 
encodes the enzyme UDP-glucose:glycoprotein gluco-
syltransferase (UGT), which is also located in the lumen 
of the ER and provides quality control for protein trans-
port by selectively enabling misfolded glycoproteins to 
rebind calnexin, resulting in either the proper folding of 
the glycoprotein or exposure to degradation enzymes if 
proper folding fails to occur [15]; Uggt1 was differentially 
expressed by both diet and strain in the CC. Studies have 
demonstrated that hepatic ER stress induced by obesity 
can lead to the development of hepatic insulin resist-
ance and gluconeogenesis, likely through the activation 
of the JNK pathway [40, 62, 105]. Our findings reaffirm 
the association between obesity and alterations in hepatic 
gene expression related to ER function, suggest potential 
candidate genes for future study in relation to patient 
screening for diabetes risk, and provide a link between 
diet, five hepatic ER genes, obesity, and insulin resistance.

Focusing on nine major genes pivotal to insulin signal-
ing expressed in the liver of CC mice, the expression lev-
els of six genes were significantly correlated with body fat 
% (Ide, Insig1, Insr, Irs2, Jak1, and Pik3r1), while six genes 
were only differentially expressed by strain (Hmga1, Ide, 
Insig1, Insig2, Irs1, and Jak1) and two genes were differen-
tially expressed by both strain and diet (Irs2 and Pik3r1). 
Although all nine genes except Jak1 were assigned to a 
module in our network analysis, only Insig1, Insig2, and 
Irs2 were found in the enriched modules correlated with 
body fat % (magenta, red, or yellow). Assigned to the red 
module, Insig1 (insulin-induced gene 1) illustrates one 
pathway that insulin signaling regulates to alter lipid 
metabolism in both mice and humans [61]. In the livers 
of transgenic mice, overexpression of the INSIG1 pro-
tein reduces insulin-stimulated lipogenesis by inhibiting 
processing of sterol regulatory element-binding proteins 
(SREBPs) in the ER, membrane-bound transcription fac-
tors that activate lipid synthesis [17]. In humans, INSIG1 
variants have been shown to influence obesity-related 

hypertriglyceridemia [83]. Two genes crucial to insulin 
signaling that were assigned to the yellow module  were 
Insig2 (insulin-induced gene 2) and Irs2 (insulin receptor 
substrate 2). Similar to Insig1, Insig2 obstructs process-
ing of SREBPs by binding to SREBP cleavage-activating 
protein in the ER, which results in blockage of cholesterol 
synthesis [100]. Genetic variants in INSIG2 (rs75666605) 
have been associated with severe obesity in a North 
Indian human population [68] and increased blood pres-
sure and triglyceride levels in Brazilian obese patients 
[60]. Differentially expressed by both strain and diet, 
IRS2 is a vital mediator of insulin signaling since it acts 
as an immediate downstream substrate of insulin recep-
tors and activates a cascade of serine-protein kinases 
to modulate numerous metabolic processes [2, 14]. In 
mice, conditional knockout of Irs2 led to increased appe-
tite and insulin resistance that progressed to diabetes 
[48] and lower levels of thyroid hormones [34]. In sum-
mary, our findings help explain the influences of genetic 
background and dietary macronutrient composition on 
clinically significant genes involved in insulin response 
relative to obesity development.

For future studies, investigating the transcriptome 
and epigenome of both adipose tissue and hepatic tis-
sue together would further clarify the genetic and die-
tary mechanisms that drive the cross talk between tissue 
types to modulate energy balance and insulin response in 
the context of obesity development. If possible, integrat-
ing microbiome data would provide yet another “piece of 
the puzzle” for the elucidation of how genetic and envi-
ronmental factors interact in the development of obe-
sity. Nonetheless, our findings show that both variation 
in genetic background and diet can strongly influence 
hepatic gene expression of both individual genes and 
groups of related genes relevant to obesity.

Conclusions
This study determined the relationship between genetics 
and macronutrient composition on hepatic gene expres-
sion relative to obesity. To relate adiposity and obesity-
related traits to hepatic gene expression, correlations 
were performed using phenotype data and microarray 
data, revealing 2552 genes whose expression levels were 
significantly correlated with adiposity. In general, the 
effect of strain was much stronger than diet on hepatic 
gene expression as demonstrated by differential gene 
expression analysis which found over 9000 genes dif-
ferentially expressed by strain compared to 1344 genes 
differentially expressed by diet. Interestingly, diet differ-
entially expressed genes (DEGs) were enriched for many 
biological pathways associated with substrate metabo-
lism, whereas strain DEGs were enriched for pathways 
less sensitive to environmental perturbations. Because 
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common obesity is caused by multiple genes, weighted 
gene co-expression network analysis (WGCNA) was per-
formed to identify clusters of related genes grouped into 
“modules.” Multiple gene modules were found that dif-
fered in average expression by both diet and strain, where 
three of the gene modules were correlated with adipos-
ity and enriched for biological pathways related to obe-
sity development. By combining all the analyses above 
and searching in the genome-wide association stud-
ies (GWAS) catalog, the list of obesity candidate genes 
found via GWAS in humans can be narrowed down to 
increase the success of future functional validations stud-
ies. Furthermore, we demonstrated that both strain and 
diet influence expression of individual genes as well as 
the expression for groups of related genes. By integrat-
ing phenotype data into our analysis, we found both indi-
vidual genes and gene modules expressed in the liver that 
were related to adiposity and other clinical traits. This 
work sheds light on one way that genetic background 
and diet influence adiposity, where the identification of 
genes expressed in the liver related to adiposity provides 
concrete preliminary suggestions of specific “intermedi-
ary” mechanisms that bridge genetics and diet with obe-
sity such as insulin signaling, which may be validated 
in future studies and contribute to the field of precision 
nutrition.

Methods
Animals, husbandry, diets, and phenotyping
Details on the origin, housing, husbandry, treatment of 
the CC mice, diet compositions, and phenotyping have 
been described previously [101]. Briefly, female mice 
from 22 CC strains (total n = 204) were obtained from 
the UNC Systems Genetics Core Facility in 2016 and 
put on either a high-protein (n = 102) or high-fat high-
sucrose (n = 102) diet for 8 weeks followed by analysis of 
body composition, metabolic rate, and physical activity. 
After 8 weeks on experimental diets, mice were eutha-
nized following a 4-h fast for the collection of blood and 
liver tissue. Subsequently, circulating cholesterol, tri-
glyceride (TG), glucose, albumin, creatinine, urea/BUN, 
aspartate transaminase (AST), and alanine transaminase 
(ALT) levels were quantified using the Cobas Integra 400 
Plus (Roche Diagnostics, Indianapolis, IN), according 
to manufacturer’s instructions. Circulating insulin was 
measured using an ultrasensitive mouse insulin ELISA 
(ALPCO Diagnostics, Salem, NH) per manufacturer’s 
instructions. Trimethylamine N-oxide (TMAO), cho-
line, betaine, and carnitine were quantified using liquid 
chromatography-mass spectrometry (LC-MS) methods 
as described with modifications [95]. Metabolic health 
scores were calculated using measurements of sev-
eral metabolic risk factors (circulating glucose, insulin, 

glucose/insulin ratio, cholesterol, triglycerides, and body 
fat %) to approximate overall metabolic health [101].

Microarray analysis for identification of gene expression 
levels associated with post‑diet traits and differentially 
expressed genes in liver tissue
Methods of RNA extraction from livers and evalua-
tion of RNA integrity were performed as previously 
described [8]. Randomly selecting 3 mice per stain per 
diet for microarray analysis, high-quality RNA was avail-
able from livers of 127 of the 204 CC mice and hybrid-
ized to Affymetrix Mouse Gene 2.1 ST 96-Array Plate 
using the GeneTitan Affymetrix instrument (Affymetrix, 
Inc., Santa Clara, CA) according to standard manufac-
turer’s protocol. The robust multiarray average (RMA) 
method was used to estimate normalized expression 
levels of transcripts (median polish and sketch-quantile 
normalization) using the affy R package [23]. The qual-
ity of sample arrays was then assessed using the R pack-
age arrayQualityMetrics [37] for outlier detection using 3 
methods: distance between arrays/principal component 
analysis, computation of the Kolmogorov-Smirnov sta-
tistic Ka between each array’s intensity distribution and 
the intensity distribution of the pooled data to compare 
individual array intensity to the intensity of all arrays, 
and computing Hoeffding’s statistic Da to check indi-
vidual array quality. Sample arrays identified as outliers 
by all three methods were removed, i.e., a sample array 
was removed if all three methods indicated that it was an 
outlier, leaving 123 out of 127 arrays for analysis (Supple-
mentary Table 12, Additional file 2).

Probes and transcript cluster IDs (TC IDs) were first 
filtered as described [70], resulting in the total number of 
24,004 unique probes post-filter corresponding to 23,626 
genes. Next, TC IDs were kept for analysis if their median 
expression was above the mean of all TC ID medians 
or if their median expression was above the mean of all 
TC ID medians in over 12.5% of samples, based on the 
assumption that by chance, one of the 8 founders may 
be contributing low/no expression alleles. For TC IDs 
associated with the same gene, the TC ID with the high-
est expression was selected to represent that gene so that 
each gene was represented by a unique TC ID for analy-
sis, resulting in 11,542 TC IDs (genes) used for differen-
tial gene expression analysis and correlations between 
gene expression levels and phenotype data.

After filtering TC IDs and arrays for quality, calcu-
lations of multiple biweight midcorrelations (bicor) 
and their corresponding Student correlation p-values 
were performed for the unique TC IDs correspond-
ing to 11,542 genes using the bicorAndPvalue function 
from the weighted gene co-expression network analy-
sis (WGCNA) R package [45] to ascertain which genes’ 
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expression in the liver was correlated with post-diet 
traits. Next, differential gene expression analysis was 
performed using the linear models for microarray anal-
ysis (limma) R package version 3.6.1 [73] and methods 
described [66] to find genes that were significantly dif-
ferentially expressed by diet or CC strain. Genes with a 
Benjamini-Hochberg (BH)-adjusted p-value < 0.05 were 
designated as differentially expressed (DE). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
and gene ontology (GO) enrichment analyses were per-
formed using the kegga and goana functions in limma 
for differentially expressed genes with the false discovery 
rate (FDR) cutoff set to 0.05.

Broad‑sense heritability estimates and diet intraclass 
correlations of hepatic gene expression levels
Broad-sense heritability (H2) estimates and the intraclass 
correlations (ICC) for diet were calculated as described 
previously [101] for the 11,542 genes used in limma anal-
ysis to assess the degree of influence on gene expression 
variation from genetics (strain) and diet, respectively. H2 
was estimated by calculating the intraclass correlation 
(rI) and the coefficient of genetic determination (g2) using 
mean square between (MSB) strains and mean square 
within (MSW) strains values derived from linear regres-
sion analysis [20]. The following linear models were fit 
using the lm function and implementing Satterthwaite 
approximations on the output of lm as described [54] to 
obtain MSB and MSW values for rI and g2 calculations: 
(1) a “full” additive model with strain, diet, and week 
(mouse “batch”) as variables fitted with gene expression 
data from both experimental diets, (2) a “HP” additive 
model including strain and week as variables fitted with 
gene expression data from only mice fed the HP diet, 
and (3) a “HS” additive model including strain and week 
as variables fitted with gene expression data from only 
mice fed the HS diet. H2 estimates derived from mod-
els fitted with data from all mice post-diet compare the 
contribution of genetics (strain) and diet overall to her-
itable gene expression level variance, while diet-specific 
H2 estimates were calculated to discern differences in 
heritability affected by differences in macronutrient com-
position. The diet ICCs were calculated using the mean 
square between (MSB) diets and mean square within 
(MSW) diets derived from the “full” additive linear model 
described above. Additional linear mixed model analyses 
with strain, diet, and strain × diet interactions as all ran-
dom effects were performed for each gene to estimate the 
relative heritable variation in gene expression that can be 
attributed to strain, diet, and strain × diet effects.

Weighted gene co‑expression network analysis (WGCNA)
The WGCNA R package was used to identify mod-
ules for the 11,542 expressed genes used in microarray 
analysis of differentially expressed genes since complex 
traits often result from changes in expression of multiple 
genes. Expression data from the 123 non-outlier sample 
arrays were used to detect modules, which are groups of 
highly correlated genes with similar connection strengths 
[24, 106]. The soft threshold was chosen by running the 
pickSoftThreshold function to determine the best fit to a 
scale-free topology, and beta was set to 5 because it was 
the lowest power value where the R2 value crossed the 0.9 
threshold for approximate scale-free topology and con-
nectivity measures implicated the possibility of finding 
highly connected genes. The blockwiseModules function 
was run to construct the unsigned network in one block, 
calculate an adjacency matrix with Pearson correlations, 
calculate the topological overlap matrix (TOM) using 
the signed method, cluster genes using the default aver-
age linkage hierarchical clustering, and establish mod-
ules by the dynamic hybrid tree cut method [45]. Next, 
the mergeCloseModules function was used to merge 
closely related and highly correlated modules. Module 
eigengenes were calculated, and Spearman’s correlations 
were performed between module eigengenes and meas-
ured phenotypes. KEGG pathway enrichment and gene 
ontology analyses were performed on genes within each 
module using Enrichr as described [70] to see which 
modules contained genes associated with biological func-
tion or diseases. Cytoscape [77] was used to generate a 
visualization of the relationship between genes within a 
module, using the magenta module as an example.

Human GWAS catalog analysis
Entries in the EMBL-EBI Human GWAS catalog v1.0.2 
accessed in 2021 were indexed to matching mouse genes 
[4] to compare the DEGs found in the CC with homolo-
gous genes in humans. Human gene symbols from the 
“MAPPED_GENE” catalog column (described here: 
https://​www.​ebi.​ac.​uk/​gwas/​docs/​metho​ds/​curat​ion) 
were matched against mouse gene symbols after case 
normalization, white space removal, and, in the case of 
multiple mapped genes, delimiter separation.

Additional statistical analyses
All statistical analyses were performed in R (v.3.6.1) [71]. 
Diet or strain effects on module eigengenes were assessed 
using the two-group Mann-Whitney U (Wilcoxon rank) 
test or Kruskal-Wallis statistical test, respectively. The 
Mann-Whitney U (Wilcoxon rank) test and Kolmogo-
rov-Smirnov test were performed to test whether the 
distributions of diet-specific H2 estimates (g2) differed 

https://www.ebi.ac.uk/gwas/docs/methods/curation
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significantly. In general, p-values were adjusted using the 
Benjamini-Hochberg (BH) method where indicated.
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