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Phospholipids (PLs) are found in all cell types and are required for structural
support and cell activation signalling pathways. In resting cells, PLs are
asymmetrically distributed throughout the plasma membrane with native
procoagulant aminophospholipids (aPLs) being actively maintained in the
inner leaflet of the membrane. Upon platelet activation, aPLs rapidly externa-
lize to the outer leaflet and are essential for supporting the coagulation
cascade by providing binding sites for factors in the cell-based model. More
recent work has uncovered a role for enzymatically oxidized PLs (eoxPLs) in
facilitating coagulation, working in concert with native aPLs. Despite this,
the role of aPLs and eoxPLs in thrombo-inflammatory conditions, such as arter-
ial and venous thrombosis, has not been fully elucidated. In this review, we
describe the biochemical structures, distribution and regulation of aPL externa-
lization and summarize the literature on eoxPL generation in circulating blood
cells. We focus on the currently understood role of these lipids in mediating
coagulation reactions in vitro, in vivo and in human thrombotic disease. Finally,
we highlight gaps in our understanding in how these lipids vary in health
and disease, which may place them as future therapeutic targets for the
management of thrombo-inflammatory conditions.

1. Introduction to cellular lipids
Lipids are hydrophobic molecules found in all cell types and are required for
structural support, energy storage and signalling. They are derived from dietary
sources or generated endogenously within the cell and exist in several forms,
including free fatty acids (FAs) and phospholipids (PLs). Each of these cat-
egories contains large numbers of lipids with distinct molecular structures
and biological properties. Thus they are classified according to common func-
tional groups, structural motifs and other differences such as FA chain length
and hydrocarbon saturation [1]. Their metabolism and transport are highly
regulated by cellular proteins, which include phospholipases, oxidases and
lipid transporters.

FAs are the fundamental category of biological lipids and, therefore, the basic
building blocks of more complex lipids. They comprise a hydrocarbon chain with
a terminal carboxylic acid group and can be saturated or unsaturated depending
on the number of double bonds [2,3]. Recent work by the LIPID MAPS consor-
tium has agreed a shorthand annotation for FAs to describe the number of
carbons and double bonds in a molecule [4]. For instance, stearic acid is described
as FA 18:0, reflecting a fatty acid with 18 carbons and no double bonds. By con-
trast, arachidonic acid is described as FA 20:4, reflecting a fatty acid with 20
carbons and four double bonds, hence it is unsaturated. PLs consist of a glycerol
molecule in which the three carbon atoms act as the backbone for attachment to
two fatty acyl chains forming a hydrophobic tail, and a phosphate headgroup
forming a hydrophilic head, providing it with an ‘amphipathic’ structure that is
essential in maintaining the integrity of cell membranes [5]. More details on the
subtypes and nomenclature of PLs will be provided below.
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Figure 1. A simplified illustration of native phospholipid (PL) plasma mem-
brane relevant to coagulation. Polarized PLs make up the membrane bilayer
of all mammalian cells with phosphate head groups facing the aqueous
phase and hydrophobic fatty acids facing the core. Other lipids and proteins
line the membrane, which may also influence procoagulant membrane activity
(e.g. sphingomyelin), but are outside the scope of this review and therefore not
shown in this figure. PS, phosphatidylserine; PE, phosphatidylethanolamine;
PC: phosphatidylcholine.
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Agonist activation of circulating blood cells leads to sig-
nificant changes to lipid composition and the formation of
new biologically significant ‘bioactive’ lipids which play a
key role in mediating signalling pathways both within
the cell and with other cells [6]. In platelets, for instance,
stimulation with thrombin or collagen leads to structural
alterations to the membrane, including shape change, spread-
ing and degranulation. Of relevance to this review, PLs and
oxylipins (oxygenated FAs) have been demonstrated to be
instrumental to inflammation, coagulation and haemostasis
[1], as will be described in the sections below.

2. Phospholipids
In common with all mammalian cells, the predominant
group of structural lipids in platelets is PLs. These
amphipathic lipids form the membranes of cells and orga-
nelles with the hydrophobic FA portion orientated to the
core and polar phosphate-containing head groups facing
the aqueous phase (figure 1) [1,5]. The resultant bi-lipid struc-
ture is described in the ‘fluid mosaic model’ of plasma
membranes where they form the fluid lipid-rich phase
containing a mosaic of membrane proteins [7].

Glycerol forms the backbone that links the PL head
groups to the FA, with the latter attaching at the sn1 and
sn2 positions (figure 2). Generally, the sn1 FAs are saturated
or monounsaturated and can be linked to the backbone
with an acyl, alkyl (ether) group or alkenyl group (plasmalo-
gen) [8]. The sn2 FAs are typically polyunsaturated (PUFAs)
with longer acyl chains [1,5]. A combination of these vari-
ations and the different FAs can result in hundreds of
unique PL species, of which the most abundant contain pal-
mitic acid (FA 16:0), stearic acid (FA 18:0) or oleic acid (FA
18:1) at sn1; and linoleic acid (LA; FA 18:2), arachidonic
acid (AA; FA 20:4), eicosapentaenoic acid (EPA; FA 20:5) or
docosahexaenoic acid (DHA; FA 22:6) at sn2.

In mammalian cells, there are five main classes of
PLs based on the polar head group (figure 3), specifically
phosphatidylethanolamine (PE), phosphatidylcholine (PC),
phosphatidylglycerol (PG), phosphatidylinositol (PI) and
phosphatidylserine (PS) [5]. The most common of these are
PC and PE, which together amount to approximately two-
thirds of total PLs in innate immune cells [9]. Of note, AA
is present in mammalian PLs with up to 10-fold higher con-
centrations than other PUFAs in circulating blood cells,
such as platelets [5]. This is of particular relevance to this
review as there is evidence that PLs with longer unsaturated
FA chains support coagulation reactions somewhat better
than shorter FA chains [10], as will be discussed below.

3. Native phospholipids and membrane
asymmetry

The PL membrane of resting circulating immune cells is
asymmetric, with the external leaflet being composed pre-
dominantly of PC, which also makes up 40% of total PLs.
By contrast, the cytosol-facing leaflet is enriched in PE and
also PS, which is present in lower amounts [11,12] (figure 1).
This asymmetry of mostly neutral PLs in the outer membrane
and negatively charged PS is regulated by transmembrane
lipid transporters, whereby the ATP-dependent flippase or
translocase keep the aminophospholipids (aPLs) PE and PS
internally facing, whereas the activity of floppase, another
ATP-dependent transporter, regulates the translocation of PC
to the outer membrane [13].

Upon cell activation or apoptosis, PL membrane asymme-
try is disrupted as a result of the rapid flux of aPLs to the
outer surface. This is the result of activation of calcium-
dependent scramblase, which mediates bidirectional move-
ment of PLs [14]. Concurrently, the rise in intracellular
calcium leads to the inactivation of both flippase and flop-
pase, which halts the processes responsible for maintaining
asymmetry [11,13]. The net effect is the externalization of
aPLs, which alters the composition of the outer membrane
and provides a net negatively charged surface. This facilitates
the binding of coagulation factors on the surface, enabling
generation of thrombin and fibrin (described below). Defects
in this process are exemplified by Scott syndrome, a rare gen-
etic disorder caused by a mutation to the TMEM16F
scramblase protein, which causes an inability of platelets to
externalize aPLs, leading to a bleeding phenotype [5,15,16].
Despite an established role in promoting thrombin formation
as part of haemostasis, it remains unknown whether altera-
tions in aPL amounts or FA composition contribute to the
pathology of thrombosis, particularly since many thrombotic
conditions (e.g. acute coronary syndrome) are associated with
persistent thrombin formation, correlating positively with
makers of inflammation such as high-sensitivity C-reactive
protein (CRP) [17]. In addition, there are no pharmacological
inhibitors to date which target native procoagulant PLs for
the management of thrombosis in clinical practice.
4. The coagulation system and its
interaction with aminophospholipids

Our understanding of the coagulation system has evolved con-
siderably from the originally described ‘coagulation cascade’ to
the currently accepted ‘cell-based model’ of coagulation [18].
While both describe reactions that involve proteins known as
coagulation factors, the lattermodel places a significant empha-
sis on interactions of these proteins with cell membranes. To
simplify the description of this model, three overlapping
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Figure 2. Example of a phospholipid molecule demonstrating the sn1/sn2/headgroup positions on the glycerol backbone. In this example, 1-stearoyl-2-arachidonyl-
phosphatidylethanolamine, or PE 18:0a/20:4, is demonstrated with the glycerol backbone highlighted in a green polygon. Structures drawn with the aid of tools on
LIPID MAPS (www.lipidmaps.org).
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Figure 3. Phospholipid classes and chemical structures highlighting the phosphate head groups. In these images, the sn1 fatty acid is stearic acid (FA 18:0) and the
sn2 fatty acid is arachidonic acid (FA 20:4). The structures of the five head groups can also be seen (PI, phosphatidylinositol; PC, phosphatidylcholine; PG, phos-
phatidylglycerol; PS, phosphatidylserine; PE, phosphatidylethanolamine). Structures drawn with the aid of tools on the LIPID MAPS resource (www.lipidmaps.org).
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phases of coagulation have been proposed: initiation, amplifi-
cation and propagation [19]. These reactions require the
presence of calcium ions, coagulation factors and aPLs on the
external leaflet of cell membranes [20,21]. The end result of
this is the formation of fibrin, which stabilizes the platelet
plug and forms a clot to seal the site of the vessel injury and
stop the blood loss. The different phases and contributors to
this process are detailed below and are shown in figure 4.

In the initiation phase, expression of tissue factor (TF) on
extravascular cells is critical for the activation of coagulation.
This transmembrane protein serves as a receptor for factor VII
(FVII) and its activated form (FVIIa). TF is constitutively
expressed on the surface of cells surrounding blood vessels,
such as smooth muscle cells and fibroblasts [22]. Disruption
to vascular endothelial architecture exposes the blood to
TF-expressing cells, leading to the formation of the TF:FVIIa
complex, which activates the coagulation system.
Activation of TF from its encrypted to decrypted confor-
mation may be influenced by co-expression of PS on the PL
membrane, formation of disulfide bonds between cysteine
residues at positions 186 and 209 and interactions with choles-
terol-containing lipid rafts [21,23]. The mechanisms for this are
not entirely defined but are thought to relate to interactions
between PS and TF which expose the substrate binding sites
for other coagulation factors [24]. These interfaces may be
direct physical interactions between the polar PS headgroup
and lysine residues on the TF extracellular domain [25,26], or
relate to an electrostatic contact caused by the PS negative
charge which may align the TF quaternary structure on the
membrane surface to expose the enzymatic active site [25,26].
In both situations, the end result is activation of the TF:FVIIa
extrinsic tenase complex, which initiates coagulation [27,28].
The activation of FVII to FVIIa is mediated by the presence of
low levels of proteases in the circulation, including thrombin
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Figure 4. The coagulation system (cell-based model). Activation of coagu-
lation is driven by tissue factor (TF) expressing cells in the subendothelial
space (1). The TF:FVIIa complex activation of FX to FXa and FIX to FIXa is
termed the ‘initiation phase’, which generates small amounts of thrombin
(2). This is sufficient to activate FV to FVa and FVIII to FVIIIa, leading to the
formation of FIXa:FVIIIa and FXa:FVa complexes on the platelet PL surface
(3). These complexes lead to the formation of more FXa and more thrombin,
respectively, as part of the ‘amplification phase’. More thrombin leads to more
activated platelets and coagulation factors locally, creating a thrombin-forming
‘propagation phase’ loop (4) which leads to the formation of fibrin.
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(FIIa), factor IXa (FIXa), factor Xa (FXa) and factor XIIa (FXIIa)
[29–31]. Upon formationof theTF:FVIIa complex in response to
vessel injury, FVII conversion to FVIIa is significantly increased
by a process of autoactivation [32]. This leads to generation of
more TF:FVIIa complexes which enzymatically cleave factor
X toXa (FXa) and factor IX to IXa (FIXa). Small-scale generation
of FIIa takes place as a result of the action of FXa on prothrom-
bin [33]. FXa binds to tissue factor pathway inhibitor (TFPI) and
the FXa/TFPI complex inhibits the TF/FVIIa complex, termi-
nating the initiation process (see below), after which
coagulation is dependent on the amplification phase.

The amplification phase takes place on the PL surface of
platelets activated by collagen and the small amount of FIIa
generated in the initiation phase. Activation of factor VIII
(FVIII) to FVIIIa and factor V (FV) to FVa takes place as a
result of enzymatic cleavage by FIIa. These serve as cofactors
for FIXa and FXa, respectively, which in turn lead to acceler-
ated generation of FXa by the FIXa:FVIIIa ‘intrinsic tenase’
complex and of thrombin by the FXa:FVa ‘prothrombinase’
complex [19,33].

Loss of membrane asymmetry and exposure of negatively
charged aPLs following platelet activation are critical to both
the initiation and amplification phases as they strongly accel-
erate the reactions of the extrinsic tenase (TF:FVIIa), intrinsic
tenase and prothrombinase complexes [34]. Exposure of the
negatively charged PS leads to electrostatic and hydrophobic
interactions, which increase the binding of gamma-carboxy-
glutamic acid-rich (GLA)-domain-containing coagulation
factors (VIIa, IXa, Xa and II) to the membranes [35]. This is
facilitated by calcium ions, which bind to the GLA domains
and expose a hydrophobic region within the omega loop,
which can then allow the coagulation factor to penetrate
the PL membrane [36]. It is thought that each GLA domain
has a single binding site specific for the carboxyl group on
the PS headgroup as well as additional calcium-binding
sites for interactions with the phosphates on any PL other
than PC. Nuclear magnetic resonance (NMR) analysis has
demonstrated that the PL head-group bends in order to
allow its phosphate to associate with GLA-bound calcium.
Lipids with a PE headgroup can interact with the GLA
domains and enhance the function of PS, whereas the
bulky methyl residues of the PC headgroup make it unable
to participate in this process [36,37]. The increased local con-
centration of coagulation factors on the PL surface enhances
the function and interactions of these proteins. It also facili-
tates transfer of substrate and product between the
coagulation complexes and helps to restrict the activity of
the coagulation process to areas of injury [34].

The accumulated enzyme complexes (tenase and pro-
thrombinase) on the platelet surface support large-scale
thrombin generation as part of the propagation phase [19].
This phase ensures continuous generation of thrombin and
subsequently fibrin to form a sufficiently large clot. Finally,
the fibrin clot is stabilized via the thrombin-mediated acti-
vation of FXIII to FXIIIa (fibrin stabilizing factor), which
covalently links fibrin polymers [33].

The coagulation system is tightly regulated at various stages
by a number of inhibitors which prevent inappropriate acti-
vation. TFPI is a single-chain polypeptide associated with
uninjured endothelium bound to glycosaminoglycans [38,39].
It acts as a protease inhibitor blocking FVIIa and FXa activity
and can also bind protein S, which enhances its anti-FXa
activity [40]. Therefore, the balance between levels of TF
(increased with injury) and TFPI (bound to uninjured endo-
thelium) regulates the initiation phase of coagulation [19].
Healthy endothelium also expresses high levels of thrombomo-
dulin (TM), which binds circulating thrombin and changes its
specificity to prevent it from activating platelets or forming
fibrin [19]. The resultant thrombin:TM complex becomes an
activator of protein C, which regulates the amplification phase
of coagulation alongside its cofactor protein S by proteolytic
inactivation of FVa and FVIIIa [41]. Other regulators of the
coagulation system include circulating inhibitors of thrombin
such as anti-thrombin (ATIII) and alpha-2-macroglobulin [19].
It is worth noting that, for protein C and protein S to function,
they also require the presence of a negatively charged
membrane surface provided by PS externalization [42].

While outside thescopeof this review, theplasmamembrane
includes anumberof other lipids such as sphingomyelinswhose
presence contributes to modulating coagulation reactions. Rest-
ing TF-expressing cells contain abundant levels of
sphinogomyelin in the outer leaflet of the plasma membrane
which, alongside PS sequesteration to the inner leaflet, serves
to maintain TF in an encrypted form [43]. Upon activation,
these cells mobilize acid sphingomyelinase from the lysosomal
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tion [43]. These events contribute to TF activation and were
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Figure 5. The typical oxylipin and enzymatically oxidized phospholipid pathway in
circulating blood cells. Membrane phospholipids can be cleaved by phospholipase
A2 (PLA2) into polyunsaturated fatty acids (PUFAs), such as arachidonic acid (FA
20:4). These PUFAs are oxygenated via the action of cyclooxygenase (COX) or lipox-
ygenase (LOX) enzymes to generate oxylipins, which are referred to as ‘eicosanoids’
if generated from 20-carbon PUFAs such as arachidonic acid (AA). Some oxylipins
may be re-esterified back to the membrane to form enzymatically oxidized phos-
pholipids. The ‘n-’ prefix denotes the enzyme isoforms which are responsible for
generating oxylipin positional isomers at the corresponding ‘n-’ carbon on AA
(e.g. 12-LOX in platelets generating 12-hydroxyeicosatetraenoic acids, or 12-
HETE). HPETE, hydroperoxyeicosatetraenoic acid; LT, leukotriene.
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5. Externalized aminophospholipid species
in platelets and leucocytes

Generally, aPL externalization is detected using flow cytome-
try techniques that rely on the use of annexin V or lactadherin
to label the PS/PE headgroups [45–47]. These techniques
are unable to distinguish between PS and PE, to determine
their absolute quantities or to define their FA compositions.
To address this, a mass spectrometry (MS)-based assay was
developed to allow quantification of both external facing
and total aPLs in platelets and leucocytes [48]. This assay is
based on derivatizing aPL primary amines on the serine
and ethanolamine headgroups using N-hydroxysuccinimide
(NHS) biotin or sulfo-NHS biotin. These reagents allow label-
ling of total aPLs throughout the cell (NHS-biotin) or on
the external face of the plasma membrane only (sulfo-NHS-
biotin)NHS-biotin [49]. Biotinylation of aPLs leads to a
mass shift of 226 a.m.u., which can be measured using a sen-
sitive and specific liquid crystal (LC)-MS/MS method to
distinguish external aPLs from internal forms.

Using this method, human platelets were demonstrated to
externalize 3–4% of their total aPL pool upon activation with
thrombin. These were composed of five molecular species of
PE and three species of PS, with the majority containing AA
at the sn2 position [10,48]. The PE species were PE 16:0p/
20:4, PE 18:0a/20:4, PE 18:0p/20:4, PE 18:1p/20:4 and PE
18:0a/18:1, whereas the PS species were PS 18:0a/18:1, PS
18:1a/18:1 and PS 18:0a/20:4. Apart from a patient
with Scott syndrome whose thrombin-activated platelets had
defective aPL externalization, no published studies to date
have examined potential variations in aPL species on the sur-
face of platelets and/or leucocytes in bleeding or thrombotic
disorders [10,48].

The FA composition of aPLs appears to influence their
procoagulant function. Specifically, coagulation activity is
reduced in PE containing a shorter chain FA (14:0) compared
with PE with AA at sn2 [10]. Similarly, replacing AAwith doc-
osahexanoic acid (DHA) at sn2 reduced procoagulant activity
[10]. The influence of FAs on PE procoagulant activity may
relate to differential interaction with coagulation factors
through their GLA domains driven by the length of the FA
chain [10,50]. Overall, these findings highlight the importance
of FA characterization in studies investigating the procoagu-
lant activity of aPLs, and suggest that simply examining aPL
headgroup externalization (e.g. with annexin V) is insufficient.
6. Oxylipin generation in innate immune
cells

Activation of immune cells leads to hydrolysis of membrane
PLs via the action of phospholipase enzymes, such as phospho-
lipase A2 (PLA2). These generate free PUFAs, which can be
oxygenated by one of three enzymatic pathways: cyclooxygen-
ase (COX), lipoxygenase (LOX) or cytochrome p450 enzymes
(CYP), resulting in the generation of oxylipins [1]. AA is one
of the most abundant PUFA precursors for oxylipin generation
in immune cells, playing a significant role in inflammation,
thrombosis and haemostasis [5]. Group IV cytosolic isoforms
of PLA2 (cPLA2) are highly specific for AA-containing PLs
and are regulated by the mitogen-activated protein kinase
(MAPK) signalling pathway [51–53]. Figure 5 depicts a simpli-
fied version of this pathway, highlighting the COX and LOX
pathways.

There are two COX isoforms, the constitutively expressed
COX-1 and the inflammation-inducible COX-2 [54]. Both
convert AA to prostaglandin H2 (PGH2), which is then
further metabolized by several cell-specific CYP enzymes.
In platelets, the CYP enzyme thromboxane synthase converts
PGH2 to thromboxane A2 (TxA2), which itself is a potent sec-
ondary activator of platelets [55]. It is worth noting that
aspirin and non-steroidal anti-inflammatory medications
(NSAIDs) work predominantly by inhibiting COXs.

LOXs are a group of non-haem iron-containing enzymes
which are expressed in a cell/tissue-specific manner [56].
They oxygenate AA to form hydroperoxyeicosatetraenoic
acids (HPETEs), which are then reduced by glutathione per-
oxidases (GPXs) to form hydroxyeicosatetraenoic acids
(HETEs). The oxygenation process begins with hydrogen
abstraction from the PUFA, followed by radical migration
and the stereospecific addition of dioxygen (figure 6) [57].
The position of the oxygen insertion is dictated by the cell-
specific LOX isoform, which is named based on the most
prominent oxygenation site on AA [59]. Using platelets
as an example, stimulation with potent agonists such as
thrombin leads to the release of AA into the cytoplasm,
which is then oxygenated by 12-LOX on carbon 12 (C12) to
generate 12-HPETE [60–62]. This is then rapidly reduced
via GPX to 12-HETE, which may be released by activated
platelets or re-esterified back to the membrane [63], as will
be described below.
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Other than 12-LOX in platelets, a number of other LOX
enzymes are expressed in immune cells. Monocytes and
neutrophils express 5-LOX, which generates 5-HPETE, a pre-
cursor of 5-HETE, and a number of leukotrienes with potent
inflammatory properties [59]. There are also two 15-LOX iso-
forms in humans which can oxygenate AA to 15-HPETE. Of
these, 15-LOX1 is found in eosinophils, reticulocytes
and interleukin (IL)4/IL13-induced peripheral blood mono-
cytes [57,64]. Unique to 15-LOX1 is the ability to directly
oxygenate intact membrane PLs, as will be described
below. Of specific interest to this review, no pharmacological
inhibitors of LOX exist in current clinical practice, although
some agents blocking target receptors for LOX products are
in use, such as leukotriene receptor antagonists (e.g. montelu-
kast) in asthma. In addition, novel LOX inhibitors are
currently undergoing phase 1 clinical trials to establish their
safety. An example of this is VLX-1005 (previously named
ML355), which has been shown to be an effective inhibitor
of 12-LOX in vitro and in animal studies [65]. This agent
was shown to impair oxylipin generation downstream of
12-LOX and interfere with human platelet adhesion and
thrombus formation at arterial shear over collagen at magni-
tudes comparable to aspirin and to reduce arterial thrombosis
in mouse models of ferric chloride carotid artery injury [66].
However, the specificity and safety of this agent in humans
remains to be tested and is the subject of a phase 1 clinical
trial (NCT04783545) [67].
It is worth noting that COX can also catalyse a LOX-type
reaction which leads to formation of HETEs. This occurs
when the COX dioxygenase activity, where one dioxygen
molecule is introduced to AA, is not followed by a sub-
sequent endoperoxide formation [68,69]. This is the result of
the reduction of peroxyl radicals to form a hydroperoxide
instead of undergoing cyclization. Consequently, this incom-
plete catalytic cycle leads to oxygenation at C11 or C15,
followed by reduction, with resultant formation of 11-HETE
or 15-HETE, respectively [70,71] (figure 7).

Both LOX and COX exhibit stereospecificity when it
comes to oxygenating AA. This is in contrast to non-
enzymatic oxygenation (e.g. by chemical oxidants) of AA,
which generates equal amounts of (S) and (R) enantiomers.
For LOX-generated 12-, 15- and 5-HETEs in immune cells,
the hydroxyl group occurs in the (S) configuration, whereas
COX-generated 11-HETE forms in the (R) configuration. Both
(S) and (R) 15-HETE enantiomers can be formed by COX,
but with a predominance of the (R) stereochemistry [70].

While this review focusesmainlyon enzymatically oxidized
PLs (eoxPLs) and their contribution to coagulation, it is worth
noting that oxylipins (i.e. non-esterified free forms) exhibit
active biological properties, including facilitating haemostatic
reactions [72]. These properties are reported to vary depending
on whether oxylipins are generated from omega-3 (n-3) or
omega-6 (n-6) PUFAs [72]. For instance, oxylipins generated
by COX-1 from AA (n-6) include thromboxane A2 (TxA2), a
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potent agonist of platelets which leads to platelet aggregation.
By contrast, TxA3, generated by the same pathway from eicosa-
pentaenoic acid (EPA; n-3) exhibits only slight pro-aggregatory
activity [73]. In addition, DHA (n-3) metabolism by 12-LOX
produces 11-hydroxy-DHA (HDHA) and 14-HDHA, which
inhibit platelet reactivity downstream of the collagen receptor
glycoprotein VI (GPVI), thereby reducing platelet aggregation
[74]. These observations continue to drive interest in n-3
supplementation in patients at risk of cardiac disease, although
utility in clinical practice is still controversial and not fully
elucidated [75–77]. More on the effects of n-3 versus n-6
PUFAs and their metabolites on haemostasis has been
described in a recent review by Golanski et al. [77].
7. Enzymatic formation of oxidized
phospholipids

Oxylipins can be re-esterified into the membrane to form
eoxPLs which alter the biophysical structure of the platelet
PL surface and modify its functions [1,5]. A prime example
of this is the re-esterification of HETEs back to the PL mem-
brane to generate HETE-containing PLs (HETE-PLs). Over
the last two decades, a number of HETE-PL species generated
downstream of LOX enzymes have been identified following
cellular activation of human immune cells including platelets
[63,78,79]. These were discovered using precursor scanning
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electrospray ionization/tandem spectroscopy, scanning for
the HETE product ion (m/z 319.2), thus identifying a number
of precursor ions corresponding to HETE-PL species [78].
EoxPL generation will be described in more detail in sections
below for both LOX and COX pathways. The role(s) of HETE-
PLs is yet to be fully elucidated in health and disease, although
there is an increasing body of evidence to suggest that these
eoxPLs are important in mediating coagulation reactions [6].
The eoxPL synthesis pathways are described in this section
with a focus on oxylipin modification and re-esterification to
the PL membrane [1,5].

Following the formation of oxylipins described above, acy-
lation with coenzyme A (CoA) may take place via the action of
long-chain fatty acyl-CoA synthase (ACSL). There are numer-
ous isoforms of ACSL, yet they are functionally differentiated
by preference for specific FA chain length, tissue distribution
and subcellular location [80]. Focusing on 20 carbon oxylipins
(also known as eicosanoids) generated from AA, there are at
least five ACSL isoforms (ACSL-1, -3, -4, -5 and -6) implicated
in their conversion from FA to FA-CoA [80]. In vitro, Klett et al.
[81] demonstrated that all five isoforms were able to convert
HETEs to HETE-CoAs, but at differing rates and amounts.
The differences in expression profiles and FA preference for
individual ACSL isoenzymes enables them to channel specific
FAs toward distinct metabolic fates in different tissues [81,82].
Nevertheless, studies on the specific roles of ACSL, their
regulation and substrate preference in immune cells are lacking.

The acyl-CoA generated downstream of ACSL may be
re-esterified into a membrane lysophospholipid (lysoPL) via
the action of an sn2 acyltransferase (also known as lysopho-
spholipid acyltransferase or LPLAT), as depicted in figure 8.
This pathway is well documented in immune cells, where
HETE-PL can be generated acutely on activation of neutrophils
and platelets [63,78,83]. The requirement for hydrolysis and re-
esterification for HETE-PL was demonstrated in both neutro-
phils and platelets using 18O-H2O stable isotope dilution MS
and/or the LPLAT inhibitor thimerosal to block oxygenated
PUFA (oxPUFA) re-esterification [63,79]. The cycle of PL
hydrolysis by PLA2 into FA/lysoPL and subsequent re-esteri-
fication of free FA to a lysoPL by LPLATs is known as Lands’
cycle and has been shown to occur in several immune cell
types [6,63,79].

LPLAT enzymes vary in specificity of re-esterification sub-
strates within Lands’ cycle. For instance, LPCAT demonstrates
selectivity for lysoPC whereas LPEAT is selective for lysoPE
[84,85]. Another family of LPLATs is the membrane-bound O-
acyltransferase (MBOAT), to which the majority of LPCAT
enzymes belong [86–88]. MBOATs are primarily localized
within the endoplasmic reticulum and mitochondria, with 11
human genes for the different isoforms, with specific tissue dis-
tributionpatterns [87]. To complicate this further, someMBOATs
have apreference for specific acyl donors. For instance,MBOAT5
and-7preferentiallyuseAA-CoA[87,89].Despitebeingselective
for lysoPC,MBOAT5 (alsoknownasLPCAT3orLPLATA12 [90])
can esterify fatty acyl-CoAs into lysoPS and lysoPE, indicating
the complexity of these enzyme cycles [91]. It is not known
which of these enzyme isoforms catalyses formation of eoxPL
and whether specificity varies for different oxylipins, or by the
position of the hydroxyl group, in the case of HETEs.

An additional pathway for the generation of eoxPL is
mediated via the action of 15-LOX, which can oxygenate
membrane PLs directly without the need for PLA2 activity
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to release the PUFA [78]. This was demonstrated by Maskrey
et al. [78] using IL4-induced monocytes incubated in buffer
containing 18O-H2O and activated with calcium ionophore
(A23187). In this experiment, no uptake of 15-HETE-18O
into HETE-PEs was seen, implying direct oxygenation of PE
by 15-LOX [78]. Last, recent studies showed that oxygenation
of 2-AA-lysoPL by COX-2, 15-LOX2 and platelet 12-LOX
forms a 2-oxylipin-lysoPL which can be converted to eoxPL
via the action of sn1 acyltransferase [92–94] (figure 8).

It is worth noting that oxPLs and oxPUFAs can be formed
non-enzymatically through uncontrolled oxidation via free rad-
ical mechanisms during cell stress or inflammation. The initial
reactions generate peroxyl radicals which can abstract hydro-
gens from a bismethylene group on PUFAs to form
hydroperoxides. Intermediates formed during this process can
escape to react in an uncontrolledmanner, leading to non-enzy-
matic rearrangements of enzymatic pathway intermediates and
generating a range of non-enzymatic oxPL products [95]. An
example of where these processes take place in human disease
is during atherosclerotic plaque formation as a result of chronic
inflammation. In these plaques, a range of non-enzymatically
generated oxPLs have been described with possible effects on
vascular endothelial cell and macrophage functions [96–99].

8. Platelet enzymatically oxidized
phospholipid species generated
by 12-LOX

Agonist activation of platelets leads to the 12-LOX-driven syn-
thesis of 12-HETE-PL. Studies using precursor ion scanning
demonstrated the generation of four molecular species of
12-HETE-PE and two 12-HETE-PC in response to thrombin
stimulation. These are PE 18:0a/12-HETE, PE 18:0p/12-HETE,
PE 18:1p/12-HETE, PE 16:0p/12-HETE, PC 18:0a/12-HETE
and PC 16:0a/12-HETE. They form within minutes of platelet
activation and their generation is sustained for at least 3 h,
mediated downstream of PAR-1 and PAR-4 receptors [63]. Fur-
thermore, 12-HETE-PL formation required several intracellular
signalling mediators such as calcium, src tyrosine kinase,
protein kinase C (PKC) and secretory PLA2 (sPLA2) [63]. Con-
firming 12-LOX as the enzyme responsible for their formation,
platelets from 12-LOX-deficient mice were found to be unable
to generate12-HETE-PL following agonist activation [100].

Several other eoxPLs generated by 12-LOX have been
reported to be generated by agonist-activated human platelets.
These include 14-hydroxydocosahexaenoic acid (14-HDOHE)
generated from oxidation of DHA esterified into plasmalogen
(16:0p, 18:0p) or diacyl (16:0a, 18:0a) PE species [83]. These
HDOHE-PE are also generated acutely by thrombin-activated
platelets in the same way as 12-HETE-PL, albeit at lower
levels [83]. The role of HDOHE-PL in platelets remains unchar-
acterized. Finally, a study from our group used targeted and
untargeted lipidomic approaches to discover many previously
unknown eoxPLs generated in agonist-activated platelets
[101]. The most abundant of these were monohydroxy lipids
derived from AA, DHA, EPA and other PUFAs. Up to now,
the enzymatic pathways responsible for formation of many of
these lipids remain unknown, and their structures are not fully
characterized. How the platelet eoxPL lipidome varies between
individuals remains unstudied.

The involvement of lipid metabolism in platelets and its
impact on arterial thrombosis was further explored by a
recent study fromManke et al. [102]. Here, the authors describe
annexin A7 (ANXA7) as a regulator of oxylipin metabolism
and calcium-dependent platelet activation downstream of
glycoprotein VI (GPVI). Mice lacking ANAX7 or treated with
its inhibitor demonstrated defective platelet aggregation
downstream of collagen or the GPVI-specific agonist col-
lagen-related peptide, translating to impaired thrombosis in a
ferric chloride carotid injury model [102]. This further empha-
sizes the role of lipids in mediating thrombosis and their
potential application as novel therapeutic targets.
9. Lipoxygenase-generated enzymatically
oxidized phospholipid species in
leucocytes

Human monocytes express 15-LOX when induced with IL4
and can, therefore, oxidize AA to 15-HETE. This enzyme is
considered to be constitutively active, but can be further
enhanced by stimulation ofmonocyteswith calcium ionophore
[78,103,104]. Using precursor ion scanning, 15-HETE-PL were
detected in IL4-induced human monocytes, which increased
upon stimulation with calcium ionophore [78]. These com-
prised four 15-HETE-PE species with either acyl (18:0a) or
plasmalogen-linked FAs (18:0p, 18:1p, 16:0p) at the sn1 pos-
ition [78]. Furthermore, their enzymatic origin was confirmed
using chiral LC, demonstrating a predominance of 15(S)-
HETE attached to the PLs [78,103]. Moreover, usingmonocytes
incubated in 18O-H2O buffer, direct oxygenation of PE by 15-
LOX was demonstrated as described above [78,103]. An anti-
inflammatory role for 15-HETE-PL has been proposed through
binding toll-like receptor 4 (TLR4) accessory proteins such as
CD14 and lipopolysaccharide-binding protein (LPB), and
thus impairing the activation of TLR4 [103].

In addition to 15-HETE-PL, other 15-LOX-generated
eoxPLs havebeen reported in ionophore-stimulated IL4-treated
human monocytes. These include ketoeicosatetraenoic acid
(KETE) containing PE acyl (18:0a) or plasmalogen (18:0p,
18:1p and 16:0p) lipids at the sn1 position [105]. To confirm
their enzymatic origin, studies on macrophages from 12/15-
LOX-deficient mice, the murine analogue to human 15-LOX,
demonstrated an absence of KETE-PE [105]. The generation of
KETE-PE involves both 15-LOX and 15-hydroxyprostaglandin
dehydrogenase (15-PGDH), with the latter responsible for
oxidizing 15-HETE-PE to 15-KETE-PE [105].

Human neutrophils express 5-LOX, which can generate
5-HETE-PL following agonist activationwith bacterial peptides,
chemokines or calcium ionophore [79]. The main 5-HETE-PL
species identified in neutrophils are PC 16:0a/5-HETE, PE
18:0p/5-HETE, PE 18:1p/5-HETE and PE 16:0p/5-HETE.
These are generated in a coordinated mechanism involving
calcium, phospholipase C (PLC), cPLA2 and sPLA2, as demon-
strated by studies using pharmacological inhibitors. In vitro
5-HETE-PL can regulate neutrophil superoxide generation
and the release of neutrophil extracellular traps [79].
10. Cyclooxygenase-generated enzymatically
oxidized phospholipid species

COX-1 is constitutively expressed in leucocytes and platelets.
By contrast, COX-2 is induced in nucleated blood cells during
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inflammation [54,106]. For decades, the role of COXs in
generating prostaglandins and thromboxanes has been recog-
nized [106]. Recently, however, studies demonstrated the
generation of eoxPLs which contain COX-derived prostaglan-
dins [107]. These were shown in lipid extracts from human
platelets activated with thrombin, collagen or calcium iono-
phore analysed using precursor LC-MS/MS for eoxPLs
incorporating PGE2 or PGD2. This technique demonstrated
the presence of several PGE-2 PE species containing 16:0p,
18:1p, 18:0p and 18:0a at the sn1 position. Their formation
occurred within 2–5 min of platelet activation and required
calcium mobilization, PLC, cPLA2 and src tyrosine kinases
[107]. Aspirin supplementation (in vivo) and inhibitors of
re-esterification (in vitro) inhibited their generation, indicating
that they form via COX-1 activity, and downstream LPLAT-
dependent esterification [107]. During identification of these
lipids, other previously unknown COX-1 eoxPLs were also
identified. The characterization of these lipids led to the
identification of eoxPLs which contain 8,9-11,12-diepoxy-
13-hydroxy-eicosadienoic acid (DiEHEDA) generated by
COX-1 oxidation of AA [108,109]. These novel COX-1-
derived eoxPLs use the same generation machinery described
above for prostaglandin-containing eoxPLs, leading to the
generation of four PE eoxPL species containing 16:0p,
18:0p, 18:1p and 18:0a at the sn1 position. The function of
these lipids is as yet unknown, but they appear to activate
neutrophil integrin expression in vitro, which may suggest a
role in modulating inflammation [110]. Finally, COX-derived
15(R)-HETE may be re-esterified into 15-HETE-PL as a by-
product of incomplete cyclization, which may in turn have
a role in facilitating coagulation reactions [58,94,111].
11. The role of enzymatically oxidized
phospholipids in coagulation

In addition to native aPLs, HETE-PLs, lipids which are gen-
erated by LOX enzymes in innate immune cells, have been
shown to play a role in coagulation reactions [6]. Specifically,
all positional isomers of HETE-PL lead to enhanced thrombin
generation in vitro in a dose-dependent manner [100,111].
This is thought to be related to an eoxPL-induced change in
the biophysical properties of the activated cell membrane
which increases the electronegativity of anionic membranes,
enhancing the calcium-dependent binding of coagulation
factors to the surface [100,111].

Native (unoxidized) PC cannot support coagulation factor
binding, and its presence on the external leaflet ensures that
the coagulation system remains inactive in resting cells.
This is in contrast to 12-HETE-PC, which can directly enhance
thrombin generation [11,37,100]. This is facilitated by the
12-HETE hydroxyl group, which bends up to the hydrophilic
surface of the membrane and facilitates interaction with
calcium, the phosphate groups of other lipids and the carbox-
ylate group on PS [63,100]. In addition, the hydroxyl group of
12-HETE-PC may also provide increased electronegativity to
the outer membrane leaflet, which may facilitate electrostatic
interactions with coagulation factors [100]. Indeed, using
both molecular dynamics simulations and calcium-binding
assays, there is evidence that increasing the proportion of
HETE-PL on liposomal surfaces increased calcium binding,
which may be due to increasing electronegativity on the
membrane surface [100,111].
The role of HETE-PL in supporting coagulation was
examined in vivo using mice lacking the platelet Alox12
gene. Alox12−/− mice generated smaller clots in response to
venous injury [100]. In addition, these mice exhibited a bleed-
ing phenotype in a tail-bleeding assay which is rescued by
subcutaneously injecting 12-HETE-PL-containing liposomes
into the tail [100]. Furthermore, the role of 12- and 15-
HETE-PL in eosinophils has also been described as important
to propagating coagulation, haemostasis and thrombotic dis-
ease [112]. This was examined in mice lacking the Alox15
gene, which is responsible for the expression of 12/15-LOX
in murine eosinophils. Alox15−/− mice demonstrated defec-
tive fibrin clot formation and reduced thrombin generation
on the surface of eosinophils [112]. This defect was rescued
by the addition of liposomes containing 12-HETE-PL to eosi-
nophil mixtures, which, in addition to 15-HETE-PL, is a
product of murine 12/15-LOX. The prothrombotic role of
12/15-LOX was demonstrated using a venous injury model
which demonstrated smaller clot formation in Alox15−/−

mice compared with wild-type controls [112]. Finally,
HETE-PL were also demonstrated to play a role in murine
models of abdominal aortic aneurysm (AAA), a condition
that causes thrombus-containing arterial aneurysms. In
these angiotensin-II-treated ApoE−/− mice, deletion of
Alox15 or Alox12 resulted in protection against aneurysm for-
mation. [113]. These findings suggest an in vivo role for
HETE-PL in mediating thrombosis and haemostasis.

The role of eoxPLs in coagulation was also examined in
human studies. Patients with antiphospholipid syndrome
who had experienced a venous thrombotic event had
higher levels of circulating eoxPLs on the surface of platelets
and leucocytes as well as elevated plasma levels of immuno-
globulin G that recognized eoxPLs [100]. This was observed
for both platelet 12-HETE-PL as well as for leucocyte 15-
and 5-HETE-PL [100]. Furthermore, patients undergoing
cardio-pulmonary bypass surgery, who are known to be sus-
ceptible to elevated risk of bleeding following the procedure,
had reduced platelet 12-HETE-PL post-operatively, compared
with their pre-operative levels [111], with the reduction in 12-
HETE-PL hypothesized to be a contributing factor to their
bleeding phenotype. These findings indicate a potential
association of HETE-PL with thrombosis and haemostasis.
12. What remains unknown about
procoagulant phospholipids in
thrombo-inflammation

The evidence presented above describes what is currently
known about aPL distribution and eoxPL generation in
response to inflammation and agonist activation of immune
cells. It also discusses the role that aPLs and eoxPLs have in
promoting coagulation reactions in vitro and in murine
models of thrombosis. Nevertheless, it is not yet known how
aPL and eoxPL profiles in circulating blood cells are impacted
by thrombotic disease (arterial and venous) in humans. There-
fore, more clinical and translational studies characterizing the
procoagulant PL profiles in thrombotic conditions are needed
using contemporary lipidomic techniques that rely on the use
of LC-MS/MS and derivatization methods to facilitate the
detection and quantification of these lipids. In addition, a
mechanistic understanding of the role that these lipids play
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in inflammation and coagulation is needed to move the field
closer towards understanding how they are modulated and
modified.

In summary, characterizing the procoagulant lipidome
from patients with thrombo-inflammatory conditions will
improve our understanding of the role of membrane PLs in
these conditions and their influence on membrane procoagu-
lant potential. This may lead to the identification of PL-based
therapeutic targets for the prevention and treatment of
pathological clotting.
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