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Natural proteins are an important source of therapeutic agents and industrial enzymes.

While many of them have the potential to be used as highly effective medical treatments

for a wide range of diseases or as catalysts for conversion of a range of molecules

into important product types required by modern society, problems associated with

poor biophysical and biological properties have limited their applications. Engineering

proteins with reduced side-effects and/or improved biophysical and biological properties

is therefore of great importance. As a common protein modification, glycosylation has the

capacity to greatly influence these properties. Over the past three decades, research from

many disciplines has established the importance of glycoengineering in overcoming the

limitations of proteins. In this review, we will summarize the methods that have been used

to glycoengineer proteins and briefly discuss some representative examples of these

methods, with the goal of providing a general overview of this research area.
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INTRODUCTION

With the deepening of our understanding of biology, recombinant proteins have become
an important class of biological macromolecules that are widely used in medicine, industry,
agriculture, environmental protection, and other fields (Puetz and Wurm, 2019). In the arena
of medicine, therapeutic proteins, such as antibodies, cytokines/growth factors, and hormones,
are indispensable for the prevention and treatment of cancer, infections, autoimmune diseases,
metabolic genetic diseases, and many other diseases, largely due to their advantages of high
specificity, low toxicity, and defined biological functions. They are now the fastest-growing segment
of the global pharma market (Owczarek et al., 2019). Proteins that are frequently utilized in
industrial, agricultural, environmental protection, and other related fields are enzymes, which
include amylase, lactase, lipase, phytase, xylanase, and cellulase. Enzymes have the advantages
of high catalytic efficiency, high specificity, mild reaction conditions, and less pollution. Their
applications in food, detergent, textile, paper, breeding, new energy, and waste management
industries have greatly improved the quality of produced products, reduced environmental
pollution, and promoted sustainable economic and ecological development (Arbige et al., 2019).
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However, due to the nature of biological macromolecules,
proteins also have their own problems. Because of their large
molecular weight, complex composition and structure, many
proteins have limited solubility and thermal and proteolytic
stability. They can be denatured during storage or are prone
to aggregation and chemical modifications, such as oxidation
and deamidation. The existence of these problems can result
in decreased efficacy of therapeutic proteins and increased
immunogenic side effects. For enzymes, these problems could
lead to their slow development and high production costs, which
in turn limit their industrial applications. Scientists have been
trying for many years to solve these problems (Sinha and Shukla,
2019). They have explored many different methods to engineer
proteins, with the hope of improving their stability, solubility,
and biological activity, decreasing the immunogenicity or other
side effects of therapeutic proteins, and reducing the production
costs of industrial enzymes. Among all the methods tested,
glycoengineering appeared to be one of the most promising for
future research.

Glycoengineering is a method of improving the properties
of proteins by changing their glycosylation (Goochee et al.,
1991; Sinclair and Elliott, 2005; Beck and Reichert, 2012;
Dicker and Strasser, 2015). Glycosylation of proteins refers
to the attachment of glycans to proteins in the form of
covalent bonds (Figure 1) (Spiro, 2002). Glycans can also be
called carbohydrates, sugars, monosaccharides, oligosaccharides,
or polysaccharides. Glycosylation is a major form of post-
translational modification (PTM) of proteins. Glycosylation can
occur on the side chains of many amino acid residues of proteins
in a number of different ways. The two most common ways are
to attach glycans to the side chain nitrogen (N) atoms of Asn
residues and to the side chain oxygen (O) atoms of Ser and Thr
residues. Depending on atoms to which glycans are linked, these
two types of glycosylation are called N-linked glycosylation and
O-linked glycosylation, respectively. In addition to the different
side chain atoms in the glycosidic linkage, there are also many
other differences between these two types of glycosylation. For
example, in eukaryotic cells where glycosylation is widely present,
the first sugar residue that is directly attached to Asn is usually
β-linked N-acetylglucosamine (β-GlcNAc), while the ones on
Ser and Thr side chains include many different structures, such
as β-GlcNAc, α-linked N-acetylgalactose (α-GalNAc), α-linked
mannose (α-Man), α-linked fucose, β-linked xylose, α- or β-
linked galactose and glucose (Figure 1).

Protein with glycosylation are called glycoproteins. Many
years of research has demonstrated that glycosylation is an
important PTM that plays important roles in regulating the
properties of proteins (Rudd et al., 1994; Boyd et al., 1995; Van
den Steen et al., 1998). By forming hydrogen bonds or other non-
covalent interactions with amino acid residues of the proteins
to which they are attached, glycans can improve the folding
efficiency and conformational stability of proteins, prevent
their abnormal aggregation, increase their water solubility,
and decrease their rate of thermal denaturation, proteolytic
inactivation and chemical degradation (Varki, 2017). In addition,
glycans can also directly participate in the interaction with other
macromolecules, viruses, and cells, thereby leading to altered

substrate binding affinity and specificity, and biological activity
of glycoproteins. Compared with other types of PTMs and
amino acidmutations, the greatest advantage of glycoengineering
is that, when glycosylation sites and glycan structures are
selected appropriately, this method is capable of simultaneously
improving many different properties of proteins. Such an
advantage has aroused great interest of scientists to explore this
new frontier.

Since the 1980s, scientists have started to use
glycosyltransferases and glycosidases to add sugars to and
remove sugars from oligosaccharide chains of proteins by
utilizing in vivo (cellular) genetic technologies and in vitro
enzymatic methods (Lee et al., 1989; Lairson et al., 2008; Bennett
et al., 2012; Albesa-Jove et al., 2014; Janetzko and Walker, 2014;
Moremen and Haltiwanger, 2019). Their efforts have led to many
important findings, and the discovery and development of many
therapeutic proteins and enzymes with improved properties
and functions. But on the whole, the number of successfully
commercialized enzymes and approved therapeutic proteins
that have been developed through protein glycoengineering is
small, with probably the most well-known one being darbepoetin
alfa, a novel therapeutic agent for renal anemia (Elliott et al.,
2003). A possible explanation for the small number is that
sufficient understanding of the structure-function relationship
of protein glycosylation has not been achieved and reliable
scientific theories have not been fully developed to guide
the glycoengineering efforts. In order to improve the success
rate of protein glycoengineering, scientists need to conduct
more research into the relationship between the structure and
performance of glycoproteins. Although it may take a long time
to establish reliable guidelines for predicting the outcomes of
protein glycoengineering, more and more encouraging results
have been obtained in recent years. In this review, we will
summarize and compare some of the representative results, with
the goal of providing a general picture of this research area.

This review is intended to provide a brief introduction to
the protein glycoengineering area. We will only touch upon
a limited number of examples for each research direction.
Interested readers may refer to more comprehensive reviews
for detailed information (Bailey, 1991; Wright and Morrison,
1997; Saxon and Bertozzi, 2001; Bretthauer, 2003; Sinclair
and Elliott, 2005; Hamilton and Gerngross, 2007; Beck et al.,
2008; Beck and Reichert, 2012; Beckham et al., 2012; Baker
et al., 2013; Merritt et al., 2013; Dicker and Strasser, 2015;
Geisler et al., 2015; Greene et al., 2015; Buettner et al., 2018;
Mimura et al., 2018; Montero-Morales and Steinkellner, 2018;
Tejwani et al., 2018; Wang et al., 2018, 2019; Yates et al.,
2018; Agatemor et al., 2019; Harding and Feldman, 2019;
Mastrangeli et al., 2019). In addition to glycoengineering using
naturally occurring glycans and glycosidic linkages to improve
the properties of proteins, there are many research efforts
geared toward chemical and enzymatic synthesis of glycans,
development of glycan-based vaccines and adjuvants, or using
unnatural glycans and site-selective conjugation chemistry to
achieve protein glycoengineering objectives. Detailed discussions
of these efforts are beyond the scope of this review. The
necessary information about these research studies can be found

Frontiers in Chemistry | www.frontiersin.org 2 July 2020 | Volume 8 | Article 622

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ma et al. Protein Glycoengineering

FIGURE 1 | Protein glycosylation. The two most common types of glycosylation are N- and O-linked glycosylation. The consensus sequence for N-glycosylation is

Asn-Xaa-Ser/Thr (where Xaa is not Pro). No consensus sequence for O-glycosylation has been established. In eukaryotic cells, the first sugar residue of N-glycans is

usually β-GlcNAc, while the first residue of O-glycans can be β-GlcNAc, α-GalNAc, α-Man or other monosaccharide units. R = H or Me, R1, and R2 = Amino acid

side chains.

in excellent review articles by Saxon and Bertozzi (2001), Sola
et al. (2007), Gamblin et al. (2009), Wolfert and Boons (2013),
Krasnova and Wong (2016), Wu et al. (2017), Sun et al.
(2018), Wen et al. (2018), Guberman and Seeberger (2019),
Moremen and Haltiwanger (2019), and Rahfeld and Withers
(2020).

Protein glycosylation is defined by glycosylation sites and
glycan structures. Accordingly, protein glycoengineering is
carried out by varying two parameters: site and structure, and
more specifically, by changing the number and position of
the glycosylation sites and/or by changing the structure of
glycans (including linkage type, chain length, and composition)
at individual glycosylation sites. Based on the way how
glycoproteins are produced, protein glycoengineering can be
roughly divided into two main categories (Wang et al., 2019). In
one category, glycoproteins are produced by cell expression. In
the other category, they are prepared through chemical synthesis,
including biochemical and organic synthesis (Rich and Withers,
2009). Here, we will first review glycoengineering methods based
on cell expression, and then discuss chemical synthesis-based
glycoengineering methods.

CELL-BASED PROTEIN
GLYCOENGINEERING

In the past 30 years, many different methods have been developed
to engineer cells of animals, plants, insects, yeasts, bacteria,
etc. to express proteins with desired glycosylation patterns.
These methods mainly use gene knockout, knockdown, knock-
in, overexpression, mutation, or small molecule suppression
technologies to change the type and concentration of glycosidases
and glycosyltransferases that are available inside these cells,
thereby changing the glycosylation patterns of interested proteins
expressed in them. Recent advances in gene editing tools,

especially the CRISPR/Cas9 system, has enabled more rapid and
cost-effective cell glycoengineering (Chan et al., 2016; Chung
et al., 2017; Mabashi-Asazuma and Jarvis, 2017; Jansing et al.,
2019; Karottki et al., 2020). Currently, the most widely used cells
for protein glycoengineering are mammalian cells.

Glycoengineering Based on Mammalian
Cells
Since the 1980s, mammalian cells, mainly Chinese hamster ovary
(CHO) cells, have been used for the production of glycosylated
recombinant therapeutic proteins (Tejwani et al., 2018; Wang
et al., 2018). Compared to human cell lines, CHO cells tend
to add a small amount of non-human glycans α-galactose (α-
Gal) and N-glycolylneuraminic acid (Neu5Gc) to recombinant
proteins (Hokke et al., 1990). If their quality is not well controlled,
engineered glycoproteins produced by this expression system
may cause immune response. Despite thisminor limitation, CHO
cells offer multiple advantages. First, they can be cultured in
large-scale bioreactors and their production rate of glycoproteins
is much higher than that of human cells. Second, due to the
natural differences in species, CHO cells are much less likely to
transmit human pathogens. Because the advantages outweigh the
disadvantages, CHO cells have become one of the most widely
used mammalian cell expression system for the production
of glycoproteins.

One protein glycoengineering strategy based on CHO cells
is to modify the structure of glycans on proteins through
gene knockout technologies, so as to achieve the goal of
improving their properties. A representative work in this regard
is to enhance the antibody-dependent cell-mediated cytotoxicity
(ADCC) of immunoglobulin (IgG) antibodies by knocking
out α-1,6-fucosyltransferase (FUT8). ADCC is an important
mechanism of antibody therapeutics. Antibodies recognize and
bind to surface antigens of target cells (e.g., cancer cells) through
the antigen binding fragments (Fab), and interact with crystalline
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FIGURE 2 | Antibody-dependent cellular cytotoxicity (ADCC). ADCC is

triggered when the Fab domain of an antibody binds to an antigen on the

target cell and the Fc domain of the same antibody molecule binds to the FcR

on the effector cell.

fragment (Fc) receptors (FcR) on effector cells (such as natural
killer cells) via the Fc portion. After the interaction of Fc with
FcR, immune effector cells are activated and secrete cytotoxic
molecules to kill target cells. This process is called ADCC
(Figure 2). Enhancement of ADCC can be achieved by increasing
the binding affinity of antibodies to Fc receptors, which in turn
can be accomplished by modifying the glycosylation of the Fc
region of IgG.

The highly conserved Asn residues at position 297 (N297) of
the IgG Fc regions are N-glycosylated (Wright and Morrison,
1997; Beck et al., 2008; Reusch and Tejada, 2015; Mastrangeli
et al., 2019). Previous studies have found that the fucose
residue attached via α-1,6-linkage to the innermost N-GlcNAc
of the N-glycans at N297 is the key residue for modulating
ADCC. Removal of the core fucose moiety from IgG-Fc glycans
can significantly increase the binding affinity of Fc for FcR,
thereby enhancing ADCC (Shields et al., 2002). FUT8 is the
sole enzyme that catalyzes the transfer of fucose from GDP-
fucose to N-linked oligosaccharides. Therefore, knocking out
the FUT8 gene in CHO cells would be a promising method
for producing therapeutic IgG antibodies with enhanced ADCC
(Yamane-Ohnuki et al., 2004). This concept was validated
experimentally. In a representative study, Yamane-Ohnuk et al.
successfully generated FUT8−/− CHO/DG44 cell lines by
sequential homologous recombination. Their expression results
showed that the anti-CD20 (IgG1) antibody produced by their
cell line had significantly increased binding affinity to the
human receptor FcγRIIIa, and the ADCC of this antibody was
enhanced to∼ 100-fold compared with that produced in normal
CHO/DG44 cells.

Previous studies have shown that other monosaccharides of
N-glycans attached to Asn297 of IgG could also regulate ADCC
(for example, the bisecting GlcNAc linked β-1,4 to the mannosyl
residue in the core pentasaccharide Figure 3; Davies et al., 2001).
During the biosynthesis of N-glycans, the key enzyme that
catalyzes the introduction of bisecting GlcNAc into N-glycans is
the β-1,4-N-acetylglucosaminyltransferase III (GnTIII). Based on
this knowledge, Umana et al. (1999) constructed a GnTIII cDNA

transfected CHO cell line. By promoting the overexpression of
GnTIII, they were able to obtain IgG antibodies with increased
bisecting GlcNAc. Their results showed that the ADCC of the
produced IgG antibody is much higher than that of antibodies
containing less bisecting glycans, suggesting that bisecting
GlcNAc has a positive impact on ADCC.

However, although both fucose removal and bisecting GlcNAc
addition enhance ADCC of antibodies, the magnitude of the
increase caused by these two different types of modifications is
quite different. The increase caused by the modification of N-
glycans by bisecting GlcNAc is generally less than 10-fold, which
is much lower than that observed with the removal of fucose. In
addition, the success rates of these twomethods are also different.
Glycoengineering carried out by removing fucose residues has a
higher success rate than that by adding bisecting GlcNAc. Indeed,
Yamane-Ohnuki et al. (2004) has argued that bisecting GlcNAc
may have no effect on ADCC. Therefore, the former method is
currently more widely used.

The high variability and controversial reliability of the results
of protein glycoengineering based on bisecting GlcNAc was
related to the previous lack of a clear and definite understanding
of this type of glycosylation and how it is regulated (Shinkawa
et al., 2003). These glycoengineering studies were performed
using empirical knowledge. Without a theoretical foundation,
little was known about how glycosylation affects protein
properties, and under what circumstances it could improves
protein properties. The glycoengineering design in such a way
is not very scientific and therefore would inevitably produce
controversial results. To reverse this situation, a deeper and
clearer understanding of protein glycosylation is required. An
excellent example demonstrating this point is the work by Ferrara
et al. (2006). Through their research, they found that the high
bisecting GlcNAc level introduced by overexpression of GnTIII
inhibited the core fucosylation, which led to an increase in the
proportion of N-glycans without fucose (Ferrara et al., 2006).
This finding suggested that the bisecting GlcNAc may regulate
ADCC indirectly and therefore, its effect is not very predictable.

Increasing the content of other monosaccharides on
N-glycans in the Fc region of IgG antibodies, such as
the penultimate Gal and terminal N-acetylneuraminic acid
(Neu5Ac/sialic acid) residues, has also been shown to improve
the performance of antibodies, including enhancing their
ADCC, complement-dependent cytotoxicity (CDC), and
anti-inflammatory activities (Tsuchiya et al., 1989; Raymond
et al., 2015). Similar to the previous uncertain role of bisecting
GlcNAc in the ADCC, the effects of the presence of Gal and
Neu5Ac on IgG antibodies are also not quite clear. Again, this
is mainly due to the current lack of a deep understanding of
protein glycosylation. The reason why it is difficult to improve
the understanding of glycosylation is that there are not many
available tools to accurately control or determine the composition
of glycoproteins. For example, when increasing or decreasing the
expression of one or more enzymes involved in the biosynthesis
of glycans, it is hard to find a robust analytical tool that would
allow one to assess whether the change in their expression
would affect the functions of other glycosyltransferases and/or
glycosidases. Even if this is not so, the inherent heterogeneity
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FIGURE 3 | Fc-glycosylated immunoglobulin G (IgG). Depicted is a complex type N-linked glycan with a core fucose.

in the sugar moieties makes it difficult to describe precisely the
composition of glycoproteins produced by recombinant host
cells (Kodama et al., 1991; Higel et al., 2016). Glycosylation
is not template-driven and heterogeneity of glycoproteins
arises from the presence of different glycan structures at one
glycosylation site (microheterogeneity) and different degrees of
glycosylation site occupancy (macroheterogeneity). Due to the
heterogeneity, glycoproteins typically exist as complex mixtures,
which can consist of several tens to more than one hundred
different glycoforms (Toll et al., 2006; Yang et al., 2016). The
extent of heterogeneity can vary depending on glycoproteins
and their production methods. Researchers from many different
disciplines have undertaken considerable efforts to develop
and optimize methods and tools for the control and analysis
of the heterogeneity of recombinant glycoproteins and have
achieved encouraging success. For example, by developing
computation models of protein glycosylation, researchers are
now able to provide guidance on the design of optimal strategies
to obtain a target glycosylation profile with desired properties
(Umana and Bailey, 1997; Grainger and James, 2013; Spahn
et al., 2016, 2017; Krambeck et al., 2017; Sokolov et al., 2018;
Liang et al., 2020). By improving chromatographic separation
and analytical tools such as capillary electrophoresis, high
performance liquid chromatography and mass spectrometry,
researchers have made significant advances in the determination
of the identity and quantity of differently glycosylated protein
forms (glycoforms) (Domann et al., 2007; Zaia, 2008; Artemenko
et al., 2012; Campbell et al., 2014; Zhang et al., 2016). Continued
progress in these areas is expected to further broaden and deepen

the understanding of the role of different monosaccharide
units in regulating the properties of antibodies, thus making
the cell-based glycoengineering results more predictable in
the future.

Besides changing glycan structure at specific glycosylation
sites, glycoengineering can also be performed by changing the
number of glycosylation sites. The most representative example
in this regard is the glycoengineering of human erythropoietin
(hEPO) (Egrie and Browne, 2001). The main medical use of
hEPO is to treat anemia, especially anemia caused by chronic
kindney disease, cancer radiotherapy and chemotherapy. The
purpose of hEPO glycoengineering, simply put, is to extend
its half-life in vivo by increasing the number of its N-linked
glycosylation sites. Naturally occurring hEPO contains three
N-glycosylation sites and one O-glycosylation site (Figure 4).
Neu5Ac located at the terminal position of N-linked glycans
is important for the circulating half-life of proteins because
it can help reduce the chance of a protein being taken up
into hepatocytes by endocytosis, filtered by the glomeruli, and
degraded by proteases (Morell et al., 1971). Through careful
research and analysis, Elliott et al. (2004) found that it is
much easier to add new N-glycosylation sites to hEPO than to
increase the number of O-linked ones. The main reason for
this observation is that N-glycosylation sites are defined by the
consensus sequence (or sequon), Asn-Xaa-Thr/Ser, where Asn
is the glycosylation site and Xaa is any natural amino acid
except Pro. Although it is not guaranteed that Asn residues in
all consensus sequences can be glycosylated, the probability of
them bearing N-glycans is very high. Unlike N-glycosylation,
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FIGURE 4 | Glycosylated human erythropoietin (hEPO). Natural hEPO contains

four glycosylation sites that are located at Asn24, Asn38, Asn83, and Ser126.

they found that O-glycosylation does not appear to be controlled
by the primary sequence context and has no clear consensus
sequences, and thought that it may be directed by the secondary
or tertiary structure and occurs only in a very few sites that
could meet its conformational requirements (Elliott et al., 1994).
Guided by these empirical findings, Elliott et al. decided to only
introduce new N-glycosylation sites into hEPO via site-directed
mutagenesis. When the DNA sequence encoding the mutant
hEPO was expressed in CHO cells, five N-glycans and one O-
glycan were added to its surface. These two additional N-glycans
greatly increased the content of Neu5Ac on hEPO, and thus
helped reduce its rate of clearance from the bloodstream and
improved its clinical efficacy.

In addition to the glycoengineering method of adjusting
the expression and activity of enzymes involved in glycan
biosynthesis and the method of increasing the number of
glycosylation sites, another commonly used method is metabolic
glycoengineering, a technique that was developed almost thirty
years ago where protein glycosylation can be altered by changing
the concentrations of monosaccharides or nucleotide sugars in
the culture media (Bailey, 1991; Gramer et al., 2011; Buettner
et al., 2018; Agatemor et al., 2019). A representative example
is the study by Gu and Wang (1998) in which 20mM of N-
acetylaminomannose (ManNAc) was added to the culture media
of CHO cells. They found that the supplement was able to
decrease the proportion of incompletely sialylated N-glycans
at Asn97 of interferon-γ (IFN-γ) from 35 to 20% without
any adverse effect on cell growth and protein production. In
mammalian systems, ManNAc is a metabolic precursor for the
biosynthesis of Neu5Ac. It is converted into Neu5Ac in the
cytosol, and following that, Neu5Ac enters the nucleus and
is activated to form CMP-Neu5Ac. Finally, CMP-Neu5Ac is
transported to the Golgi apparatus where Neu5Ac is transferred

to an oligosaccharide chain. In this manner, the increase in the
concentration of ManNAc leads to an elevated level of Neu5Ac,
which in turn leads to an extended half-life of glycoproteins.
In addition to ManNAc, a wide range of metabolite precursors,
glycosyltransferase inhibitors, pH modulators, as well as cell
culture parameters (e.g., pH, temperature) have also been
explored for protein glycoengineering (Sha et al., 2016; Ehret
et al., 2019). The glycoengineering method based on metabolism
and based on the regulation of enzyme expression and activity
are similar in principle, both of which achieve changes in glycan
structures by interfering the pathway of N-glycan biosynthesis. It
is thus conceivable that the metabolic glycoengineering method
is also limited by the nature of the CHO cell expression
system. Proteins glycoengineered using this method also exist as
inseparable heterogeneous mixtures of glycoforms.

Apart from CHO cells, there are many other mammalian
cell lines that have been utilized for protein glycoengineering,
with the more frequent ones being mouse myeloma cells NS0
and SP2/0 (Lifely et al., 1995). The advantages of these cells for
glycoengineering are very similar to those of CHO cells, i.e., they
are also relatively easy to use and can give a high yield of proteins.
Their disadvantages are also similar to those of CHO cells, that
is, the engineered glycoproteins produced by the cells are in
the form of heterogeneous mixtures, and may contain traces of
non-human monosaccharides like α-Gal and Neu5Gc, etc.

Glycoengineering Based on
Non-mammalian Cells
Scientists have also chosen many different types of non-
mammalian cells for protein glycoengineering, including plant,
insect, yeast, and bacteria cells. Compared with mammalian
cells, plant cells have several advantages, the most important
of which is that the glycoproteins produced in plant cells are
more homogeneous than those synthesized in mammalian cells
(Montero-Morales and Steinkellner, 2018). The reason for this is
that plant cells normally produce only a few N-glycans, with two
of them, namely GnGnXF and MMXF, accounting for more than
90% of the total (Figure 5) (Chen, 2016). Therefore, plant cells
have the potential to generate glycoproteins with better defined
N-glycan structures. A high degree of homogeneity would
better help establish the detailed contribution of glycans to the
physicochemical and biological properties of proteins and such
information would be beneficial for protein glycoengineering.
Other advantages of plant cells as a production host include
fast production of glycoproteins and high tolerance toward
manipulation of N-glycan biosynthetic pathways. A disadvantage
of plant cells is that glycoproteins produced by such cells
usually contain plant-specific core α-1,3-fucose and β-1,2-
xylose, which are absent in humans. Glycoproteins decorated
with such monosaccharides may elicit immune responses. The
advantage and disadvantage of the insect expression system
are similar to those of plant cells. It is also a high-yielding
expression system and easy to use, but can incorporate non-
human glycan structures, including the α-1,3-fucose moiety, into
target glycoproteins (Geisler et al., 2015). The major difference
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FIGURE 5 | N-linked glycans on glycoproteins produced in different expression systems.

between these two non-mammalian expression systems is that
they produce different glycan structures (Figure 5).

The methylotrophic yeast Pichia pastoris has also been
developed for protein glycoengineering (Cereghino and Cregg,
2000; Bretthauer, 2003; Choi et al., 2008). Compared with
mammalian cells, yeast can be cultured at a higher cell
density, which makes glycoprotein production more efficient
and production costs much cheaper. However, O-linked glycans
in Pichia pastoris are typically linear chains of oligomannoses
and N-linked glycans are of the high-mannose type (Figure 5).
Therapeutic glycoproteins carrying such glycan structures can be
easily cleared from the body due to the lack of terminal Neu5Ac
residues. Recently, bacteria have also attracted great interest in
their potential use for protein glycoengineering as a fast, simple,
and low-cost expression system (Baker et al., 2013; Merritt et al.,
2013; Yates et al., 2018). However, glycans in bacteria are also
significantly different from human glycans (Figure 5) (Du et al.,
2019; Harding and Feldman, 2019). In order to circumvent the
risk of immunogenic reactions from non-human glycans, several
approaches to humanizing yeast and bacterial N-glycosylation
pathways have been attempted over the last twenty years
(Hamilton and Gerngross, 2007). For example, Hamilton et al.
(2006) engineered the protein glycosylation pathway in Pichia
pastoris by knocking out four yeast-specific glycosylation genes
and introducing 14 heterologous glycosylation genes. Using
humanzied Pichia pastoris expression system, they were able to
produce hEPO containing predominantly human N-glycans that
had greater than 90% terminal sialylation. However, although
today there are many selections of non-mammalian systems
available for protein glycoengineering, they have not been widely
applied in the production of therapeutic glycoproteins, largely
due to the complexity of these expression systems.

Non-mammalian cells can also be applied for the
glycoengineering of industrial enzymes. Unlike therapeutic

proteins, where immune response is a concern, industrial
enzymes are not products for direct human use and, therefore,
there is no need to humanize the glycosylation pathways
in these cells. Currently, the methods for industrial enzyme
glycoengineering mainly include changing the structures of
glycans on industrial enzymes by switching their expression
systems, by optimizing the culture conditions, or by changing
the number of glycosylation sites through amino acid mutations.
In this research area, one of the relatively more explored
industrial enzyme families is the cellulase family (Beckham
et al., 2012; Greene et al., 2015). Cellulases are glycoside
hydrolases (GHs) that can decompose cellulose in wood,
agricultural residues and municipal solid wastes into shorter-
chain sugars, such as cellodextrin, cellobiose, and glucose,
which could then be converted to bioethanol through a
fermentation process. In the process of bioethanol production,
the enzymatic activity of cellulase plays a crucial role. In
order to improve the performance of cellulase, Adney et al.
(2009) inactivated the N-glycosylation site at the position
384 of the Trichoderma reesei Family 7 cellobiohydrolase
(TrCel7A) by mutation and expressed the resulting mutant
enzyme in a different host, Aspergillus niger var. Niger, which
is a fungus and one of the most common species of the genus
Aspergillus. By comparing the bacterial cellulose hydrolysis
time courses for the wild-type TrCel7A and the mutant, they
found that the removal of a glycan at N384 resulted in the
improvement of the activity of the enzyme by 70% after 120 h.
However, although enzyme glycoengineering has received
more and more attention in recent years, the glycoengineering
outcomes are still not satisfactory. In order to get better
results faster, more detailed research is needed to answer some
fundamental questions that have not been answered. These
questions are essentially the same as the ones for therapeutic
protein glycoengineering research: what, how, and why
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specific glycosylation patterns can improve the performance
of enzymes.

CHEMISTRY-BASED PROTEIN
GLYCOENGINEERING

Over the past 40 years, substantial progress has been made
in all aspects of cell-based protein glycoengineering, including
optimization of fermentation conditions, genetic modification
of glycoprotein expression hosts, glycoprotein purification,
composition analysis, and characterization. However, challenges
that limit the wide application of this approach in industry
and medicine still exist. As aforementioned, the challenges are
mainly related to the inseparable and unpredictable nature of
glycoform mixtures produced by different cells. Because it is
still difficult to precisely and effectively quantify heterogeneous
glycoform mixtures, it is not trivial to obtain definitive and
reliable information about the changes in properties caused
by protein glycoengeering. In order to meet these challenges,
scientists have explored various technologies to simplify the
complexity of glycoprotein samples, such as those involved the
use of protein glycosylation pathway engineering and those
based on the use of biochemistry and organic chemistry. These
technologies do not in any simple sense replace or exclude each
other, but rather complement and enrich each other.

Compared with cell-based technologies, chemistry has the
advantage of being relatively more precise and flexible for the
production of homogeneous glycoforms of proteins, but has the
disadvantage of being more labor-intensive and less useful in
large-scale production. In theory, chemistry allows for the small-
scale preparation of homogeneous glycoforms with any glycans
or any amino acid sequences, which can meet the requirement
of structural diversity and representativeness of research samples
for both basic research and protein glycoengineering studies.
However, in addition to the above-mentioned disadvantage,
chemistry as a tool is currently still immature: many crucial
steps for glycoprotein synthesis have not been well optimized and
most essential starting materials are not commercially available.
It is thus still difficult for non-professionals to use chemistry to
perform protein glycoengineering.

Glycoengineering Based on Biochemistry
Protein glycoengineering based on biochemistry methods is
mainly accomplished through the use of biochemical reactions
catalyzed by a variety of glycosidases and glycosyltransferases
(Rothman et al., 1989; Nemansky et al., 1995; Hodoniczky
et al., 2005). Glycosidases catalyze the cleavage of glycosidic
bonds, while glycosyltransferases catalyze the opposite reaction,
glycosidic bond formation, mainly using sugar nucleotides as
glycosyl donors. Glycosidases are broadly classified as exo-
and endo-glycosidases. Exo-glycosidases sequentially remove
monosaccharides from the non-reducing end of glycans. Endo-
glycosidases are capable of cleaving specific glycosidic bonds
inside the glycan chains.

In recent years, the application of glycosidases and
glycosyltransferases to protein glycoengineering, including
the development of a cell-free glycoprotein synthesis technology,

has greatly advanced this field (Jaroentomeechai et al., 2018;
Wen et al., 2018; Kightlinger et al., 2019; Moremen and
Haltiwanger, 2019; Rahfeld and Withers, 2020). A prominent
aspect in the advance is to make us realize the importance of
subtle variations in glycan structures to protein performance
(Washburn et al., 2015). A representative example is that by
changing the glycosidic linkages between the terminal sialic
acid residue and the penultimate galactose residue, Anthony
et al. was able to greatly improve the therapeutic efficacy of
intravenous immunoglobulin (IVIG) (Anthony et al., 2008). As
a blood product, IVIG is a treatment for autoimmune diseases
including immune thrombocytopenia, rheumatoid arthritis, and
systemic lupus erythematosus. Just like many other glycosylated
antibodies, its N-linked glycans at amino acid position 297
have many different structures, some without the terminal
Nue5Ac and some with α-2,6-linked or α-2,3-linked Neu5Ac
(Kaneko et al., 2006). In their work, Anthony et al. (2008)
found that when IVIG was treated with α-2,6-neuraminidase,
the anti-inflammatory activity of IVIG was completely lost.
When digested with α-2,3-neuraminidase, its activity was not
affected. This observation suggested that the anti-inflammatory
activity of IVIG may be directly correlated with the presence
of α-2,6-Neu5Ac. Under the guidance of this hypothesis, they
first removed Neu5Ac residues from glycans at the Asn297 site
of IVIG-derived Fc fragments with α-2,3/6-neuraminidase, and
then use β-1,4-galactosyltransferase and α-2,6-sialyltransferase to
increase their homogeneity and α-2,6-sialylation level (Figure 3).
Biological tests confirmed that the resulting Fc fragments had
the same anti-inflammatory activity at significantly reduced
doses. The success of this glycoengineering effort illustrated the
importance of increasing the level of glycoprotein homogeneity
to enhance the capability of protein glycoengineering.

Although relatively homogeneous glycoproteins can be
prepared through the combined use of glycosidases and
glycosyltransferases, this is a rather complex process largely
due to the current limitations of glycosyltransferases and of
the reactions they catalyze. Glycosyltransferases typically add
specific monosaccharides one at a time to specific substrates
and to specific sites on these substrates. In addition, many
glycosyltransferases and sugar nucleotide donors are either
expensive or not commercially available. All these facts render
it not very straightforward to apply glycosyltransferase-catalyzed
multistep reactions to generate a large number of homogeneous
glycoforms bearing structurally closely related glycans to meet
the research needs of protein glycoengineering. To overcome
these limitations, it is necessary to replace the stepwise
enzymatic approach with a highly convergent one. The key
to achieving a convergent synthesis is to find enzymes that
can catalyze the attachment of oligosaccharides relatively non-
specifically to a variety of substrates. To meet this demand,
a new class of enzymes has been developed. They are named
“glycosynthases” (Mackenzie et al., 1998;Malet and Planas, 1998).
Glycosynthases are generally derived from glycosidases through
genetic mutations. In the presence of activated oligosaccharide
donors, glycosynthases can transfer en bloc the oligosaccharides
onto different glycoprotein acceptors in high yields (Figure 6).

The glycoengineering method based on glycosynthase-
catalyzed transglycosylation is similar to that based on

Frontiers in Chemistry | www.frontiersin.org 8 July 2020 | Volume 8 | Article 622

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ma et al. Protein Glycoengineering

FIGURE 6 | Glycosynthase-catalyzed N-glycosylation using oxazoline donors. R = H or Me, R1 = Amino acid side chains.

glycosyltransferase-catalyzed reactions. It also requires the
removal of a large portion of N-linked glycans from glycoproteins
by glycosidases before the transglycosylation reaction. This
method was invented more than two decades ago and the
current most commonly used one employs oligosaccharide
oxazolines as donor substrates (Figure 6; Wei et al., 2008; Wang
et al., 2019). The development of glycosynthase enzymes has
helped solve the problem of structural diversity of glycoforms
required by glycoengineering research to a certain extent. For
example, Lin et al. (2015) were able to generate more than a
dozen of homogeneous antibody glyco-variants, i.e., variants
with different glycosylation patterns, using this type of enzymes.
By comparing the activities of synthetic glyco-variants, they
found that the complex-type biantennary N-glycans with two
terminal α-2,6-linked Neu5Ac residues seemed to be optimal
structures. Antibodies modified with such glycans showed
enhanced activities against cancer, influenza, and inflammation.

In addition to increasing the diversity of glycoforms for
research, the glycosynthase-based method can also be applied
to achieve glycosylation site selectivity, that is, attaching
different glycans to different glycosylation sites. In an example
of such study, Giddens et al. (2018) successfully prepared
several antibody variants with different N-glycans at the
glycosylation sites in their Fc and Fab regions through
the combined use of three endoglycosidases (Endo-S, Endo-
S2, and Endo-F3), 1,6-fucosidase from Lactobacillus casei,
and endoglycosidase mutants. They found that the antibody
containing sialylated N-glycans on the Fab fragments and
non-fucosylated ones on the Fc fragments had enhanced
binding capacity to the FcγRIIIa receptor and greatly improved
ADCC activity.

The advantage of in vitro enzymatic glycoengineering is that,
by improving the structural control of protein glycosylation, it
allows for relatively easy access to homogeneous glycoforms.
With such research samples, quantitative structure-function
relationships can be derived to guide the design of new
protein glycoengineering research. However, the efficiency of
this method is currently still limited due to the limited
commercial availability of oligosaccharide substrates, limited
range of substrates that can be tolerated by glycosynthase
enzymes and the difficult-to-control glycosylation site selectivity.
It is also challenging to use this method in large-scale. Because
of these limitations, the diversity and quantity of generated
samples may not be high enough to meet the requirement,
and thus the research process could be slow and the identified
glycoformsmay not be the best choices for future use. In addition,
because of the differences in the enzymes involved in protein O-
glycosylation, it is currently still difficult to enzymatically transfer
oligosaccharides en bloc to O-glycosylation sites. But thanks to
the development of useful software like ISOGlyP andNetOglyc, it
is now possible to predict O-glycosylation sites based on sequence
and structure features of proteins (Hansen et al., 1998; Leung
et al., 2014).

Glycoengineering Based on Organic
Chemistry
Engineering O-linked protein glycosylation can be achieved by
organic synthesis. This technique can also significantly expand
the structural diversity of glycoforms. These advantages mainly
come from the more precise and flexible nature of organic
synthesis. Unlike many other methods, organic synthesis enables
the modification of glycoprotein structures at the atomic level. In
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theory, it could allow scientists to prepare glycoforms containing
any number of glycosylation sites and any type of glycan
structures that are required for protein glycoengineering research
(Price et al., 2012; Chaffey et al., 2018).

In the past two decades, with the development of
synthetic methods for the preparation of glycans and
proteins, total chemical synthesis of glycoproteins was also
developed (Fernandez-Tejada et al., 2015). The current
strategy for glycoprotein synthesis relies on native chemical
ligation/metal-free desulfurization (NCL/MFD) to connect
synthetic peptides and glycopeptide fragments together.
After that, the resulting long glycopeptide chains can be
folded in vitro to form biologically active glycoproteins.
The peptides for glycoprotein synthesis can be prepared
from commercially-available protected amino acids by
solid-phase peptide synthesis (SPPS). N-glycopeptides
can be synthesized by condensation of glycosyl amines
with side-chain-unprotected aspartic acids in partially
protected peptides. O-linked glycopeptides can be made by
incorporating O-glycosylated amino acid building blocks
during SPPS.

Among the studies undertaken, the most representative one
is the case of the chemical glycoengineering of hEPO. In their
study, Wang et al. (2013) first applied the NCL/MFD technology
to assemble the sequence of glycosylated hEPO from three
N-glycopeptides, one O-glycopeptide and one peptide, which
was then folded in a cysteine-cystine redox system to produce
the final three-dimensional structure of hEPO. The resulting
glycoform has the expected biological activity (Figure 4). This
work for the first time provided sufficient experimental evidence
for the feasibility of protein glycoengineering based on a chemical
synthesis strategy, and laid a solid foundation for further
development in this research area.

Using chemical approaches, two research groups were able to
develop new guidelines for N- and O-linked glycoengineering
of proteins (Chaffey et al., 2018). In their work, Price et al.
(2012) provided a theoretical principle to guide the design of
protein N-glycoengineering, which stated that “incorporating the
enhanced aromatic sequons into appropriate reverse turn types
within proteins should enhance the well-known pharmacokinetic
benefits of N-glycosylation-based stabilization by lowering the
population of protease-susceptible unfolded and aggregation-
prone misfolded states”. An enhanced aromatic sequon normally
is a five- or six-residue sequence that contains an aromatic amino
acid being located two or three resides away from the N-terminus
of the consensus sequence of N-linked glycosylation (Asn-Xaa-
Thr/Ser). The five-residue sequence forms a type I β-turn, while
the six-residue one forms a type II β-turn. This principle was
confirmed in practical applications like the N-glycoengineering
of β-sheet-rich 34-residue WW domain from the human Pin1
protein (PinWW). By replacing the loop 1 of PinWWwith a five-
residue enhanced aromatic sequon, Phe16-Ala18-Asn19-Gly20-
Thr21, and glycosylating the Asn19 with N-GlcNAc, Price et al.
(2011) were able to significantly increase its melting temperature.

By systematically studying the effects of O-linked glycans on
the properties of a family 1 carbohydrate binding module, Patrick
et al. established a guideline for protein O-glycoengineering,
which stated that “O-linked glycoforms with better overall

properties can be generated by collaboratively varying glycan
structures and adjacent amino acids within unstructured regions
that are important for biological function and/or susceptible to
proteolytic cleavage and other undesired degradation reactions”
(Chaffey et al., 2018). The validity of this guideline was confirmed
by the glycoengineering study of a therapeutic protein, human
insulin. In this study, they demonstrated that O-mannosylation
of insulin B-chain Thr27 reduced its susceptibility to proteases
and self-association (Guan et al., 2018).

However, although protein glycoengineering based on organic
chemistry has some advantages, it also has a big disadvantage,
that is, organic synthesis of glycoproteins as a new technology
has not been well optimized and currently, it can only be
utilized by experienced researchers. In order to make this
glycoengineering approach widely accepted and used, more
efforts need to be put to improve the synthesis of oligosaccharides
and glycopeptides and the efficiency of the ligation of
peptide/glycopeptide fragments. Perhaps more importantly, it is
necessary to expedite the commercialization process of glycan
building blocks, oligosaccharides, and glycopeptides and even
synthetic glycoforms, because the easy access to these substances
usually could help scientists gain and maintain their interest in a
research area.

CONCLUSIONS AND OUTLOOK

Protein glycoengineering as an important way to improve the
performance of therapeutic proteins and industrial enzymes
has attracted substantial interest over the past few decades
(Neustroev et al., 1993; Elliott et al., 2003). However, due to the
lack of reliable guidance, this technology is still in its infancy, and
the degree of its acceptance in the scientific community is not
high. At present, because biology-based methods are relatively
easy to implement, some of them, especially those involving
the manipulation of protein N-glycosylation pathway are more
frequently employed in protein engineering research. Although
such methods provide some results more quickly, the results may
have some uncertainty due to the heterogeneity and low purity
of research samples (Mimura et al., 2018). Chemistry-based
methods, especially organic synthesis, can help overcome some
of the uncertainty issue because they can produce structurally
defined homogeneous glycoforms. But organic synthesis has its
own weakness. It is difficult to use and is complex, expensive
and time-consuming.

In order to solve the present predicament, these different
methods need to be better combined to increase the practical
applicability and the success rate of protein glycoengineering.
A possible combination strategy is as follows: organic and/or
enzymatic synthesis is used to deeply understand the structure-
property relationships of representative model glycoproteins that
have relatively small sizes and simple structures. Theoretical
predictions derived from the high-level understanding of protein
glycosylation can then be used to guide protein glycoengineering
efforts (Umana and Bailey, 1997; Grainger and James, 2013;
Spahn et al., 2016, 2017; Krambeck et al., 2017; Sokolov et al.,
2018; Liang et al., 2020). Finally, cell-based methods can be
used to more quickly obtain designed glycoforms in large-scale.
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Previous studies have suggested the feasibility of this strategy. It
is expected that such a strategy, once fully established, should
greatly promote the advancement of protein glycoengineering in
the future.
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