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cell is pluripotent with the ability of developing into different tissue 
types. Somatic stem cell in each organ is considered to be quiescent 
most of time with limited number and capable of self‑renewing 
and differentiation maintained in a homeostatic balance. Isaacs and 
Coffey4 first proposed that prostate stem cell resides in basal cell 
population; its expansion underlies the development of benign prostatic 
hyperplasia (BPH). Further study suggested that enrich stem cell is in 
the proximal duct of prostate.5 During normal prostate development, 
androgen binding to the AR in surrounding stromal cells plays a key 
role of basal stem cell different into luminal cell population.6 Recent 
study using gene‑tracing technology indicated that luminal cell 
population has stem cells as well with less potency than basal stem 
cell.7 For CSC, its self‑renewal ability allows a single cell remained 
after therapies to repopulate entire tumor population as therapeutic 
resistance. Further, the pluripotency of CSC is capable of differentiating 
into different cell types such as neuroendocrine. It has been reported 
that prostate CSC is likely derived from basal cell population.8 
Normal prostate gland can be divided into epithelial, stromal, and 
neuroendocrine cells; the epithelial cells include luminal and basal cells. 
Among all these heterogeneous cell types in the normal prostate, the 
gene expression profile of basal cell is highly correlated with that of stem 
cell. Noticeably, the basal cell gene profiles are enriched in advanced, 
anaplastic, castration‑resistant, and metastatic PCa in the human PCa 
sample set.9 However, it is still unclear whether clonal expansion and/or 
adaptation through epithelial‑to‑mesenchymal transition (EMT)10–12 or 
transdifferentiation13 during therapies results in the expansion of CSC.

Several markers have been commonly used to identify CSC 
population including CD44, stem cell antigen  (Sca‑1 or Ly6A), 
prominin‑1  (CD133), and ATP‑binding cassette subfamily G 
member 2 (Junior blood group) (ABCG2). CD44 is often associated 

INTRODUCTION
Prostate cancer (PCa) remains the most commonly diagnosed cancer, 
from the 2017 cancer statistic report, there were 180 890 estimated new 
cases in 2017, and PCa is also the third leading cause of death, with 
26 120 estimated deaths in the United States.

Clinical treatment for primary PCa includes radical prostatectomy 
and radiotherapy. Androgen deprivation therapy (ADT) is commonly 
used to decrease the androgen‑dependent tumor burden of metastatic 
PCa  (mPCa). Castration‑resistant PCa  (CRPC) is defined as the 
reappearance of cancer lesion from metastatic site(s) often with 
rising prostate‑specific antigen  (PSA) in patient’s serum. CRPC is 
recognized as the end‑stage disease since patients do not respond 
to chemotherapeutics very well with average 6‑month to 1‑year 
survival. Although recent introduction of second‑line anti‑androgen 
agents has prolonged patients’ survival, PCa eventually develops 
therapy‑resistant phenotypes. Clinically, therapy‑resistant tumors can 
be divided into several different phenotypes such as neuroendocrine, 
androgen receptor (AR) variants, and AR hyperactivation due to gene 
amplification and/or mutation, which raise a critical question for the 
cell origin of these subtypes. Many studies have demonstrated the 
presence of stem‑like population in normal prostate and abnormal 
prostate,1–3 which raises the potential role of cancer stem cell (CSC) in 
cancer progression. In this article, we have summarized the potential 
pathways associated with CSC leading to CRPC and the possible 
therapeutic strategies to improve the clinical outcomes of PCa patients.

CANCER STEM CELL IN CRPC
Cell markers for CSC
The CSC theory, as a potential mechanism for CRPC, has raised 
significant attention in recent years. In general, embryonic stem 
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with CSC, which is a cell membrane receptor that is involved 
in cell–cell interactions, adhesion, and migration. Especially, 
cells expressing CD44, but lacking CD24  (CD44+CD24−) PCa 
cells, were identified as the CSC population with in  vivo and 
in vitro models.14 These CD44+CD24− PCa cells have the ability of 
forming spheres and producing tumor from a single cell, which is 
known as stem cell self‑renewal ability. Sca‑1 is a mouse glycosyl 
phostidylinositol‑anchored surface protein that expressed by stem 
cells or progenitor cells. However, the human homolog of Sca‑1 has 
not been identified yet. Studies in mouse model demonstrated that 
cells with Sca‑1 expression have tumor‑initiating ability, and tumor 
cells expressing higher Sca‑1 were correlated with their aggressive 
phenotype.15,16 CD133 is a transmembrane glycoprotein, and is known 
as a marker for basal stem cell as well as PCa‑initiating cell. Richardson 
et al.17 reported that a subset of CD133+ population exhibited higher 
clonogenic potential than CD133−  population. Furthermore, these 
CD133+ populating can fully differentiate to prostatic acini from in vivo 
animal model. In addition, studies demonstrated that CD133 involved 
in cell growth, cell development, and tumor progression, in which the 
expression of CD133 was significantly increased in cancer‑initiating 
cells using patient‑derived primary cell model.18 ABCG2 is the 
ATP‑binding cassette membrane transporter. Patient‑derived cells 
with high ABCG2 expression correlated with cell that expresses stem 
cell markers, and these subsets of cells have shown to gain multidrug 
resistance and be responsible for the recurrence of PCa.19 Although 
these CSC markers20 listed in this review are indeed correlated with 
CSC population associated with cancer progression, recurrence, and 
therapy resistance, there is still lacking a specific PCa CSC marker.

Molecular signaling pathways lead to CSC in CPRC
Three signaling pathways have been suggested to be critical for CSC 
development including Wnt, Sonic Hedgehog, and Notch signaling 
pathways. Several reports have demonstrated that targeting these 
signaling pathways along with conventional treatment can prevent 
the emergence of CRPC.21,22

Wnt
In the canonical of Wnt pathway, Wnt ligands bind to Frizzled and 
low‑density lipoprotein receptor–related protein (LRP) 5/6, which activate 
downstream molecular targets, leading to the accumulation and nuclear 
translocation of β‑catenin, subsequently affecting cell survival; while, in the 
noncanonical pathways, Wnt activates downstream effectors and activates 
targeted gene expression and cytoskeleton rearrangement, resulting in 
altered cell survival. Abnormal Wnt signaling has been found in several 
cancer types, including brain, breast, and colorectal cancer.23 In PCa, 
elevated β‑catenin expression was often found in the nucleus of cancer 
cells.24 Importantly, Wnt signal regulates self‑renewal ability of several 
cell models including LNCaP, C42B, and PC3 cell in an AR‑independent 
manner,25,26 while downregulated Wnt/β‑catenin pathway significantly 
suppresses stem cell‑like properties.27 Furthermore, Wnt3 has been 
shown to increase the expression of its downstream effectors, as well as 
CSC markers including CD133 and CD44, which subsequently lead to 
sphere formation.25 In addition, Zhang et al.23 demonstrated that human 
telomerase reverse transcriptase  (hTERT)‑expressing PCa cells have 
higher Wnt/β‑catenin activity and can thereby regulate the self‑renewal 
and differentiation activity of PCa cells. Collectively, Wnt plays a key role 
in CSC development in CRPC (Figure 1a).

Sonic Hedgehog
Sonic Hedgehog signaling pathway is a conserved process that controls 
cell renewal and cell survival. Hedgehog signaling is initiated by 
hedgehog family ligands (Sonic, Desert, and Indian). These ligands 
bind to membrane receptors Patched (Ptch1 and 2) and Smoothened on 
the primary cilium, leading to the activation and nuclear translocation 
of glioma‑associated oncogene homolog (Gli) (Gli 1, 2, and 3), which 
trigger the expression of targeted genes that regulate cell survival. 
Abnormal Hedgehog signaling pathway has been found in several 
cancer types, including brain, gastrointestinal, lung, breast, and prostate 
cancers.28,29 Some studies also demonstrated that Hedgehog involved 
in tumor progression and CSC proliferation.30–32 Importantly, using 
several PCa cell line models,29 i.e., LNCaP, Du145, PC3, 22Rv1, and 

Figure 1: Schematic representation of signal contributes to CSC phenotype. (a) Wnt proteins bind to both frizzled receptor proteins and the co‑receptor LRP5/6. 
This binding further facilitates the activation of β‑catenin. Activated β‑catenin translocates into nucleus and promotes Wnt downstream gene transcription. 
Furthermore, Wnt/β‑catenin induced hTERT also acts as a transcriptional factor, resulting a positive feedback in the enhanced expression of Wnt target 
genes that leads to cancer‑promoting functions and CSC phenotypes. (b) Sonic Hedgehog pathway is initiated by binding one of the three secreted Hedgehog 
ligands to its receptor. This binding releases Smoothened that modulates the expression of three Gli zinc‑finger transcription factors. (c) The Notch receptor 
is activated by ligand binding, which is presented by a neighboring cell. Notch activation releases an active fragment, NICD. NICD then translocates into the 
nucleus and promotes the expression of targeted genes. Notch‑dependent signaling induces several genes associated with differentiation, survival, stemness, 
and EMT, which all relate to PCa progression and metastasis. Further, Notch signaling is often activated by hypoxia through HIF‑1α. CSC: cancer stem cell; 
PCa: prostate cancer; hTERT: human telomerase reverse transcriptase; LRP: low‑density lipoprotein receptor‑related protein; Gli: glioma‑associated oncogene 
homolog; Sox 2: sex determining region Y‑box 2; FOXA1/A2: forkhead box A1/A2; NICD: notch intracellular domain; HIF‑1α: hypoxia‑inducible factor 1 
subunit alpha; EMT: epithelial-to-mesenchymal transition; Bcl2: B-cell lymphoma 2; Oct4: octamer-binding transcription factor 4.

cba
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LAPC4, as well as xenograft model  (CWR22),30 several Gli‑related 
genes have been shown to correlate with the progression of CPRC. 
These Gli‑related genes, including CDKN2A/p16/INK4A, Myc, and 
CDK2, promote AR‑independent tumor cell growth33,34 and lead to 
tumor recurrence.35 Data from PCa patients-derived tissue microarray 
and PCa cell line models (PC3, LNCaP, and Du145) indicated that 
forkhead box A1 (FOXA1) was found to promote the progression 
of CRPC.36,37 Cell model  (LNCaP, PC3, Du145, and LAPC4) also 
showed that the expression of B-cell lymphoma 2 (Bcl2) correlates with 
therapy resistance ability in CRPC.38 Importantly, increased Hedgehog 
signaling was found in PCa CSC population (CD44+CD24−) in vivo and 
in vitro.14 Taken together, Hedgehog downstream signaling pathway 
contributes to CRPC progression and therapy‑resistant phenotypes 
of CSC (Figure 1b).

Notch
Notch signaling pathway has been extensively studied and has been 
correlated to promote CSC phenotype in several cancers. Notch 
signaling is mediated by four Notch receptors, including Notch1–4, and 
five ligands including delta‑like (DLL) 1, DLL 3, DLL4, Jagged 1, and 
Jagged 2, were involved. Various types of cancers exhibit dysfunction 
of the Notch pathway in their cells.39 Importantly, Notch interacts with 
AR pathway and the phosphoinositide 3‑kinase (PI3k)/Akt pathway, 
which are the two main signaling pathways in controlling prostate 
development and carcinogenesis.40–42  Studies from cell culture models 
and human PCa specimens have demonstrated that higher Notch 
ligand, Jagged 1‑Notch1 signaling contributes to PCa progression 
and metastasis, and promotes EMT and CSC phenotype.43–46 Higher 
Notch3 expression was found in CRPC, which was induced by hypoxia 
condition.47 Recently, Notch4‑targeted silencing, leading to the 
inhibition of nuclear factor kappa B (NF‑κB) activity, also showed a 
promising anti‑PCa growth and anti‑EMT effect.44,48,49 These reports 
all point out the importance of Notch signal in PCa progression and 
the initiation of CSC phenotype (Figure 1c).

Caveolin‑1 (Cav‑1)
The Caveolin protein family including caveolin‑1,  ‑2, and  ‑3 is the 
major component of caveolae; Cav‑1 is the first member identified and 
has been extensively characterized. It is known to regulate multiple 
cellular functions, including cell cycle, signal transduction, endocytosis, 
and cholesterol trafficking and efflux. Cav‑1 levels are correlated 
with PCa progression and metastasis.50–52 Extensive studies using 
PCa cell line (Du145, LNCaP, and 22Rv1), and human BPH sample 
model, also indicated that Cav‑1 signaling contributes to therapy 
resistance and the reoccurrence of PCa.52–54 Using xenograft model, 
Cav‑1 can be secreted into circulation to enhance tumor growth in a 
paracrine manner, implying that Cav‑1 can be a secretory protein.55,56 
Interestingly, other study has demonstrated that Cav‑1 can elevate 
the Notch‑1‑Akt‑NF‑kappaB pathway, leading to chemoresistance 
in ovarian cancer.57   Studies from PCa cell models  (LNCaP, PC3, 
and Du145) and immunostaining of PCa specimens have indicated 
that Cav‑1 can interact with LRP6 to regulate Wnt‑β‑catenin 
signaling.58,59  Moreover, Cav‑1 contributes to the expression of 
CSC‑related genes including Oct4, Nanog, CD44, CD133, and 
ABCG2 in lung cancer cell and breast cancer models,59,60 which all 
strongly suggest that Cav‑1 signaling involved in the induction of 
CSC phenotypes. However, additional data are required to link Cav‑1 
directly to CSC generation in CRPC.

MicroRNAs contribute to CSC properties of PCa cell
Emerging evidence has implied that microRNA (miRNA) regulation 

is crucial in promoting or repressing cancer metastasis via regulating 
the characteristics of CSCs. In particular, dysregulation of miRNAs is 
associated with tumor initiation and progression of PCa. A coordinated 
downregulation of miR‑34a, let‑7b, miR‑106a, and miR‑200 family has 
been observed in the progenitor stem cell population of PCa (Table 1).61

miR‑34, a p53 downstream target gene, is known as a 
tumor‑suppressor miRNA. Frequent hypermethylation of miR‑34 has 
been observed in many malignancies with p53 mutation. Cheng et al.62 
using conditional knockout/transgenic mouse model demonstrated 
that inactivation of both p53 and miR‑34a in mouse prostate epithelium 
leads to the expansion of the prostate stem cell compartment, as well 
as development of early invasive adenocarcinoma and high‑grade 
prostatic intraepithelial neoplasia. Consistent with their in  vivo 
observations, combined deficiency of both miR‑34 and p53 leads to 
accelerated EMT‑dependent growth, enhanced self‑renewal capacity, 
and increased cell motility in prostate stem/progenitor cells derived 
from the proximal region of prostatic ducts.62 In addition, miR‑34a is 
known to be a key negative regulator of CD44, an adhesion molecule 
that is a key player in metastasis. CSCs derived from multiple malignant 
tumors have shown high expression of CD44. These CD44‑positive 
CSC populations have colonogenic, tumor‑initiating, and metastatic 
capacities. Liu et al.63 demonstrated that systemic delivery of miR‑34a 
can inhibit PCa metastasis and regeneration by targeting CD44. 
A  recent study done by Bucay et  al.64 also revealed that another 
CD44‑targeting miRNA, miR‑383, is frequently downregulated due 
to loss of the chromosome 8p22 locus in the progression of PCa. 
Functionally, miR‑383 is shown to inhibit tumor‑initiating potential 
and metastasis of CD44‑positive PCa cells by direct targeting of CD44.64

miR‑320 is found significantly downregulated in the progression 
of PCa; reduction of miR‑320 associated with increased β‑catenin 
expression has been observed in a CD44‑high subpopulation of PCa 
cells and clinical prostatic tumor specimens. By global gene expression 
profiling, we reported that ectopic expression of miR‑320 in PCa cells 
leads to suppression of CSC markers such as CD133, CD117, CXCXR4, 
and ABCG2, as well as downstream target genes of Wnt/β‑catenin 
pathway.27 Functionally, miR‑320 deficiency facilitates the CSC 
properties including tumor‑sphere formation, chemo‑resistance, 
and tumorigenic abilities. Overall, this study strongly suggested that 
miR‑320 is a potent regulator of tumor‑initiating cells in prostate.

Similar to miR‑320, expression level of miR‑7 is also significantly 
reduced in a subpopulation of CD133‑positive/CD44‑positive 
PCa cells, which possess CSC‑like features and are sufficient for 
tumorigenesis based on a limited dilution analysis. On the other hand, 
restoration of miR‑7 in PCa cell lines results in sustained inhibition 
of CSC characteristics and impaired tumorigenesis via targeting 
Kruppel‑like factor 4 (Klf4). Overall, this study implies the critical role 
of miR‑7 in regulating the properties of PCa stem cell.65

Meanwhile, loss of the let‑7 family has been observed in PCa tissue 
specimens, particularly in high‑grade tumor. Kong et al.66 demonstrated 
an inverse correlation between let‑7 and enhancer of Zeste homolog 
2 (EZH2), a putative let‑7 family target that is highly expressed in CSCs of 
many malignancies and is known to regulate expansion and maintenance 
of CSC.67 Functionally, let‑7 is shown to diminish both colonogenic 
ability and sphere‑forming capacity via targeting EZH2 in PCa cells.66

Similar to let‑7, expression level of miR‑100 is also significantly 
decreased particularly in bone metastatic PCa specimens. Wang et al.68 
suggested that miR‑100 regulates spheroid and colony formation of 
PCa cells by targeting argonaute 2, RISC catalytic component (Ago2), 
leading to suppression of stemness markers such as c‑Myc, CD44, Klf4, 
and Oct4. This indicates that loss of miR‑100 may promote the stemness 



Asian Journal of Andrology 

The regulation of prostate cancer stem cell 
CJ Lin et al

236

properties of PCa. On the contrary, by screening miRNA expression 
in PCa patient‑derived xenograft tumor lineages, a recent study done 
by Nabavi et al.69 demonstrated that several miRNAs  (miR‑100‑5p, 
miR‑411‑5p, and miR‑185‑5p) are associated with the regression to 
dormancy status after ADT. Particularly, miR‑100 has been recognized 
as a key component contributing to initiation and evolution of CRPC; 
it is believed that miR‑100 is critical for the cell survival upon AR 
deprivation in AR‑positive PCa cell lines.69

The miR‑200 family (miR‑200a/b/c and miR‑141) is known for 
targeting mesenchymal transcription factors leading to inhibition of 
EMT. In particular, Yu et al.70 reported that miR‑200b is significantly 
downregulated in PCa in  vivo and in advanced PCa cell lines 
(LNCaP, PC3, and DU145), as well as patient samples (BPH) in vitro. 
Ectopic expression of miR‑200b sensitizes PCa cells to chemotherapeutic 
reagent, docetaxel, by targeting the gene, B‑cell‑specific Moloney 
murine leukemia virus insertion site 1 (Bmi‑1),70 which is a critical 
regulator of CSC properties in several malignancies such as breast 
and gastric cancers.71,72 In contrast, miR‑141‑3p has an opposite 
regulatory role. Li et al.73 utilized miR‑141‑3p mimics to demonstrate 
its effect on facilitating spheroid formation and proliferation of PCa 
cell line (PC3). The impact of miR‑141 on promoting PC3 stemness 
is associated with the upregulation of Oct4, Bmi‑1, sex‑determining 
region Y‑box 9 (Sox9), and CD44, suggesting that miR‑141 can target 
a common repressor of these genes.73 Certainly, more detailed studies 
are needed to unveil the mechanism of action of miR‑141.

Both miR‑143 and miR‑145 are known to regulate bone metastasis 
of PCa. Huang et al.74 reported that both miR‑143 and miR‑145 can 
inhibit colony formation, suppress sphere‑forming capacity, and 
reduce expression of CSC markers  (CD133, CD44, Oct4, c‑Myc, 
and Klf4) in bone‑metastasis‑derived PCa cell line. The finding of 
this study strongly suggested that miR‑143 and miR‑145 may play a 
crucial role in regulating CSCs in bone metastatic PCa. Accumulating 
studies have indicated that miR‑145 negatively regulates pluripotency 
of embryonic stem cells via targeting several stemness markers such 
as Oct4, Sox2, and Klf4.75,76 Ozen et al.77 demonstrated that ectopic 
expression of miR‑145 leads to reduced cell renewal of PCa cell lines 
by targeting Sox2 gene expression. By screening the miRNA expression 
between 3D‑sphere and 2D‑adherent PCa cells, Fan et al.78 unveiled 
that progressively elevated miR‑143 is found in the sphere‑re‑adherent 
culture of PCa cells, suggesting that miR‑143 is involved in stem cell 
formation.

In contrast to those miRNAs with CSC‑promoting activities, 
it is significantly reduced miR‑128 in PCa compared to benign 
prostate tissue that may have an opposite function. Indeed, Jin et al.79 
demonstrated that overexpression of miR‑128 leads to diminished 
CSC properties by reducing sphere formation and clonogenic potential 
in PCa cells. Mechanistically, miR‑128 is shown to target on several 
self‑renewal genes such as BMI‑1, NANOG, and transforming growth 
factor beta receptor 1 (TGFBR1).79 Overall, this study highly suggested 
that miR‑128 regulates tumor initiation in PCa by limiting the CSC 
properties mediated by BMI‑1 and NANOG.

NEUROENDOCRINE DIFFERENTIATION (NED) IN CRPC AND 
CSC
Prostate NED carcinoma is considered as a type of prostatic epithelial 
neoplasms that have NED feature,80 which usually identified by 
histopathological examination with NED markers. Therefore, NED 
can be found in small cell carcinoma, carcinoid, and carcinoid‑like 
tumors, as well as prostatic adenocarcinoma (Figure 2). Importantly, 
NED has been found in recurrent CPRC after second line of ADT.81,82 
Although small cell carcinoma in prostate only counts for less than 2% 
of total PCa population,80 neuroendocrine prostate cancer (NEPC) is 
detected in 10%–20% of CRPC population.83 Interestingly, a study with 
PCa cells (Du145 and PC3) and xenograft models demonstrates that 
CD44+ is selectively expressed in neuroendocrine cells and these cells 
are responsible for PCa recurrence.84 NEPC is an end stage of CRPC 
and most patients survive less than a year after recurrence.85 Clinically, 
NEPC is identified based on histology features. In general, the tumor 
cell morphology was similar to high‑grade neuroendocrine cancers, 
which have high numbers of mitotic cells with nuclear molding and 
chromatin‑like “salt and pepper” similar to small cell.81,86 In addition, 
there are neuroendocrine markers that can be used for validation.

Cell markers for NED in CRPC
There are several general NED markers that are currently used 
to diagnose NEPC, and the presence of at least one of these is 
diagnostic of the condition. These markers include (1) neuron‑specific 
enolase  (NSE), a cell‑specific isoenzyme of the glycolytic enzyme 
enolase, and it is one of the most reliable markers for the diagnosis of 
small cell in lung cancer;87 (2) synaptophysin (SYP), a major synaptic 
vesicle protein, is usually combined with the neuroendocrine secretory 
protein, chormogranin A (ChgA), for diagnosis;88 (3) ChgA, a secretory 

Table  1: MicroRNAs involved in prostate cancer progression to castration‑resistant prostate cancer

MicroRNAs Target gene Impacts on PCa progression Reference

miR‑34 CD44 Inhibits PCa metastasis, regeneration, and carcinogenesis 62,63

miR‑383 CD44 Inhibits tumor‑initiating potential and metastasis of CD44‑positive PCa cells 64

miR‑320 CD133, CD117, CXCXR4, ABCG2 Suppress tumor‑sphere formation, chemoresistance, and tumorigenic abilities of prostatic CSCs 27

miR‑7 Klf4 Inhibits stemness properties and impaires tumorigenesis of PCa stem‑like cells 65

let‑7 EZH2 Diminishes colonogenic ability and sphere‑forming capacity of PCa cells 61,66

miR‑100 AGO2 Regulates spheroid and colony formation of PCa cells 68,69

miR‑200b Bmi‑1 Suppresses proliferation and migration, as well as enhances chemosensitivity of PCa cells to 
docetaxel

70

miR‑141 Klf9 Facilitates spheroid formation and proliferation of PCa cell 73

miR‑143
miR‑145

Oct4, Sox2, Klf4, FNDC3B Inhibits cell viability and colony formation of bone metastatic PC3 cells. Suppresses tumor sphere 
formation and CSC marker expression in PC‑3 cells

74,76‑78

miR‑128 BMI‑1, NANOG, TGFBR1 Reduces sphere formation and colonogenic potential of PCa cells 79

miR‑663 Enhances cell proliferation, invasion and neuroendocrine differentiation characteristics in PCa 
cells

108

PCa: prostate cancer; CRPC: castration‑resistant PCa; CSC: cancer stem cell; Sox2: sex determining region Y‑box 2; Bmi‑1: B‑cell‑specific Moloney murine leukemia virus insertion site 1; 
TGFBR1: transforming growth factor beta receptor 1; Klf4: Kruppel‑like factor 4; FNDC3B: fibronectin type III domain containing 3B; EZH2: enhancer of Zeste homolog 2; Klf9: Kruppel 
like factor 9; CXCXR4: C-X-C chemokine receptor type 4; ABCG2: ATP‑binding cassette subfamily G member 2  (Junior blood group); AGO2: argonaute 2, RISC catalytic component
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protein found in the neuroendocrine cells, has commonly used in 
detecting neuroendocrine tumors;89 (4) CD56, also known as neural 
cell adhesive molecule  (NCAM), which belongs to a group of cell 
surface glycoproteins involved in cell‑cell adhesion.90 On the other 
hand, NEPC cells often lack the expression of luminal markers such as 
PSA and prostatic acid phosphatase.91 Recently, FOXA2 has also been 
suggested to be a reliable marker in diagnosis of NEPC.92

Molecular mechanisms leading to NED in CRPC
Several studies have indicated that Myc  (N‑Myc or c‑Myc) plays 
a key role in NEPC and also Myc gene amplification or protein 
overexpression is often detected in clinical specimens.93 Recently, 
Lee et  al.94 have indicated that ectopic expression of N‑Myc in 
basal cell population of prostate potentiates NEPC through the 
activation of Akt signaling pathway with human patient sample 
model in  vivo and in  vitro. Other embryonic transcription factors 
such as FOXA1 and FOXA2 are associated with NEPC.   FOXA1 is 
known as a pioneering factor in modulating AR activity, and is also 
involved in prostate epithelial differentiation by altering chromatin 
tertiary structure. However, the loss of FOXA1 is found to facilitate 
NEPC through the mitogen‑activated protein kinase/extracellular 
signal‑regulated kinase (MAPK/ERK) signaling pathways in both cell 
line model (TRAMP‑C and 22Rv1) and human patient sample.95 In 
contrast, FOXA2 expression was detected in NEPC, but not in primary 
and metastatic PCa samples (NCI‑H660, PC3),92 and it cooperates with 
hypoxia‑inducible factor 1 subunit alpha (HIF‑1α) activity to facilitate 
NED in PCa cell model (PC3, NCIH660, LAPC4, and LNCaP).96 In 
addition, other key regulators in neuronal differentiation such as BRN2, 
POU‑domain transcription factor, have recently shown to regulate 
Sox2, which contributes to NED in PCa cell model (PC3, NCI‑H660, 
LNCaP, and LAPC4).97

Under the influence of tumor microenvironment, studies with 
mouse PCa in vitro and in vivo model, as well as LNCaP cell model, 
have found  that interleukin 6/signal transducer and activator of 

transcription 3 (IL‑6/STAT3) pathway associated with aurora kinase 
A (AURKA), N‑Myc, and EZH2 have been shown to induce NEPC.98,99 
Mechanistically, in LNCaP cell model, autophagy process is involved in 
IL‑6‑induced NED and therapy‑resistant phenotype in PCa model;100 
thus, targeting autophagy synthesis or related signaling pathways can 
block neuroendocrine cell differentiation.101,102 In addition, secretory 
protein secretogranin II (SgII), a neuroendocrine secretory protein‑like 
ChgA that is widely distributed throughout the neuroendocrine system, 
has been shown to induce NEPC phenotype.103 G‑protein coupled 
receptor kinase 3 (GRK3) expression correlated with PCa progression 
has been shown to increase neuroendocrine phenotypes associated with 
ADT resistance in PCa cells (NCI‑H660, PC3, LNCaP, and VCaP).104 
In contrast to oncogenic factors, loss of retinoblastoma 1 (RB1) and 
tumor protein p53 (TP53) further facilitates ADT resistance of PCa 
cells that exhibit several NED markers in both clinical patient sample 
and mouse model.105,106

MicroRNAs correlated with NED in PCa
Dang et  al.107 demonstrated that the treatment of enzalutamide or 
casodex increases the infiltration of mast cells secreting C‑C motif 
chemokine ligand 8 (CCL8) and IL‑8 that can promote NED phenotypes 
by upregulating miR‑32 in PCa cells. Indeed, overexpression of miR‑32 
leads to enhanced NED characteristics in PCa cells associated with 
elevated NSE. Overall, this study demonstrates that the potential 
impact of immune cells on the emergence of NED in PCa is mediated 
by microRNA.107

Meanwhile, by examining PCa tissue specimens, Jiao et  al.108 
revealed a significant upregulation of miR‑663 in CRPC. Functionally, 
overexpression of miR‑663 in LNCaP cell results in enhanced cell 
proliferation, invasion, and NED. Clinically, expression level of 
miR‑663 is correlated with PCa grade, node, and metastasis (TNM) 
staging of PCa,108 suggesting miR‑663 as a potent regulator in NEPC.

In addition, Liang et  al.109 reported that hypoxia can promote 
NED in PCa cell lines such as LNCaP and PC3 by inducing the 
expression of a polycistronic miRNA cluster containing miR‑106b, 
miR‑93, and miR‑25, which can suppress the expression of 
neuron‑restrictive silencer factor, also known as RE1‑Silencing 
Transcription factor (REST) gene, but increase of pro‑neuronal genes 
such as paired mesoderm homeobox protein 2A (PHOX2A), absent 
small and homeotic disks protein 1 (ASH‑1), and ChgA. Clinically, an 
inverse correlation between miR‑106b‑25 and REST is observed in 
PCa with high Gleason grade.109 Altogether, this study suggested that 
loss of REST due to elevation of miR‑106b‑25 under hypoxia condition 
might promote NED in PCa.

TRANSDIFFERENTIATION IN CPRC
Transdifferentiation is the process of cell conversion from one type 
to another type (Figure 2). For example, pancreatic progenitor cells 
transdifferentiate into hepatocyte‑like cells.110 Recent data clearly show 
that somatic cells can undergo reprograming process by exogenously 
introducing key transcription factors such as Sox2, Klf4, c‑Myc, 
Oct4, Nanog, and lin‑28 homolog A (LIN28).111,112 For cancer cells, 
particularly, high‑grade poorly differentiated cancer cells exhibiting 
CSC phenotypes can transdifferentiate into different cell types by 
turning on similar genes endogenously.113 For example, loss of Rb1 
and TP53 underlying cancer lineage plasticity106 is mediated by 
increased Sox2 expression in these cells.114 Similarly, loss of PTEN 
and TP53 facilitates ADT resistance and initiates transdifferentation 
event in adenocarcinoma, which is evidenced by elevated NED 
markers.115 All these data conclude that CSC is the result of cancer 
cell de‑differentiation through genetic alteration and/or epigenetic 

Figure 2: Schematic representation of the relationship of CSC, PCa cells, and 
NE‑like cell. CSC maintains its multipotency to form different types of tumor 
cell and is capable of self‑renewing to expand its progeny. NE‑like tumor 
cell can originate from the same type of tumor cells that undergo NED or 
transdifferentiation from other type of tumor cell (i.e., adenocarcinoma to 
small cell adenocarcinoma with NE phenotype). CSC: cancer stem cell; PCa: 
prostate cancer; NE: neuroendocrine; NED: neuroendocrine differentiation.
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alteration from tumor microenvironment. In CRPC, accumulating 
evidence supports that CSC plays a central role of therapeutic 
resistance, NED. Thus, developing anti‑CSC strategy is expected to 
improve the survival of CRPC patients.

CONCLUSION
The presence of CSC has been identified in hematopoietic and 
testicular cancers but less known in solid tumors, particularly PCa . 
Accumulating data support the critical role of prostate CSC in disease 
progression.  Despite these progresses, there is still lacking human 
PCa‑specific CSC marker(s). Further, the underlying mechanisms of 
transdifferentiation as well as NED in CSC are not fully understood, 
which will be critical for further developing better therapeutic strategies.
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