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Abstract

Backgound: A variety of in vivo and in vitro studies to assess the genotoxicity of titanium dioxide nanoparticles
(TiO2 NPs) have been reported, but the results are inconsistent. Recently, we reported that TiO2 NPs exhibit no
genotoxic effects in the liver and erythrocytes during a relatively brief period following intravenous injection into
mice. However, there is no information about long-term genotoxicity due to TiO2 NP accumulation in tissues. In
this study, we investigated the long-term mutagenic effects of TiO2 NPs and the localization of residual TiO2 NPs in
mouse liver after multiple intravenous injections.

Results: Male gpt delta C57BL/6 J mice were administered with various doses of TiO2 NPs weekly for 4 consecutive
weeks. The long-term mutagenic effects on the liver were analyzed using gpt and Spi− mutation assays 90 days
after the final injection. We also quantified the amount of titanium in the liver using inductively coupled plasma
mass spectrometry and observed the localization of TiO2 NPs in the liver using transmission electron microscopy.
Although TiO2 NPs were found in the liver cells, the gpt and Spi− mutation frequencies in the liver were not
significantly increased by the TiO2 NP administration.

Conclusions: These results clearly show that TiO2 NPs have no mutagenic effects on the liver, even though the
particles remain in the liver long-term.
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Introduction
Titanium dioxide nanoparticles (TiO2 NPs) have become
widely used in several industrial applications. Ultrafine
TiO2 NPs (10–50 nm) cause lung cancer in rats through
chronic inhalation [1]. Therefore, TiO2 NPs are classified
as an IARC Group 2B carcinogen (possibly carcinogenic
to humans) [1, 2]. Genotoxicity is one of the key factors
to assess the carcinogenic risk to humans. Several stud-
ies in mice and rats have reported conflicting results of
various genotoxic endpoint analyses [3–16]. Recently, we
reported that TiO2 NPs have no genotoxic effects in the

liver and erythrocytes when intravenously injected into
gpt delta mice [17], but there are still reports about their
positive effect [18, 19]. Thus, the genotoxicity of TiO2

NPs remains unclear [20, 21].
TiO2 NPs in the rodent bloodstream are translocated

to the liver and remain in the tissue long-term [22–25].
However, the long-term genotoxic effects of TiO2 NPs
in the liver are not well understood. To investigate the
long-term genotoxic effects, the mutagenicity is the
optimum endpoint among various genotoxic endpoints
because of the accumulation potential of TiO2 NPs. In
this study, we examined the long-term mutagenicity of
TiO2 NPs and the amount and localization of the
remaining particles in the liver after intravenous injec-
tion in gpt delta mice [26]. Our results indicated that
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TiO2 NPs show no mutagenicity in the tissue, although
they remain within the liver cells for an extended period
of time.

Materials and methods
Animals and reagents
The guidelines for the care and use of laboratory animals
set forth by the Institutional Animal Care and Use Com-
mittee of the Japan National Institute of Occupational
Safety and Health were followed. Male C57BL/6 J gpt
delta mice were obtained from Japan SLC (Shizuoka,
Japan). They were housed under specific pathogen-free
conditions with a 12 h light-dark cycle and provided tap
water and sterile CE-2 pellets (CLEA Japan Inc., Tokyo,
Japan) ad libitum. Aeroxide® P25 titanium dioxide
(TiO2-P25) was purchased from Sigma-Aldrich (St.
Louis, MO, USA).

Preparation of the TiO2 NP suspension and its
administration to mice
The TiO2-P25 suspension was prepared as previously
described [17]. Eight-week-old male gpt delta mice were
randomly divided into four groups, with 6 mice per
group. Mice were administrated by tail vein injection
with the TiO2-P25 NP suspension at doses of 2, 10, and
50mg/kg body weight once a week for 4 consecutive
weeks. Mice were euthanized on day 90 after the final
injection of TiO2-P25. Portions of the middle liver lobe
were removed for gpt and Spi− mutation assays, quantifi-
cation of titanium by inductively coupled plasma mass
spectrometry (ICP-MS), and observation of TiO2-P25
particles by transmission electron microscopy (TEM).

gpt and Spi− mutation assay
The gpt and Spi− mutation assays were conducted as
previously described [17].

Quantification of titanium in the liver by ICP-MS
Liver samples were weighed and digested with nitric acid
and hydrogen peroxide. The concentration of titanium
in each sample was measured using ICP-MS (Agi-
lent7900 ICP-MS, Agilent Technologies, Tokyo, Japan).
The titanium concentration was determined at the mass
number of 47 m/z as previously reported [27].

Observation of hepatocyte ultrastructure by TEM
Liver samples taken at day 90 after the final injection of
TiO2-P25 were analyzed using a JEM-2100F transmis-
sion electron microscope (JEOL, Tokyo, Japan) as previ-
ously described [17].

Statistical analysis
Statistical significance was examined using Dunnett’s
test after one-way ANOVA. Values of P < 0.05 were con-
sidered significant.

Results
Characterization of TiO2 suspensions
TiO2-P25 was dispersed in disodium phosphate by son-
ication, as previously reported [17], then diluted to the
concentration corresponding to each dose. The hydro-
dynamic sizes of TiO2-P25 in these diluents were mea-
sured each time before the injection by dynamic light
scattering, and the average of four time determinations
was showed in Table 1. The Z-average of the TiO2-P25
particles in suspension was about 150 d.nm, regardless
of the different concentrations in these diluents.

General observations of the animals
The body weight of mice in each group did not differ at
weekly measurement for the first 4 weeks and thereafter
to the end of the experiment (data not shown). However,
one mouse was dead immediately after the injection at
the third week, but the cause for the death could not be
identified. Some of the mice got astounded for a short
time immediately after the injection, but the mice in all
groups were basically not found with abnormal behav-
iors and appearance.

Mutation frequencies of gpt and Spi− in the liver
The gpt and Spi− mutation frequencies in the liver were
determined on day 90 after the last administration of
TiO2-P25 (Tables 2 and 3). Either the gpt or Spi− muta-
tion frequencies were not significantly different between
the vehicle control group and TiO2 administration
groups at any dose. These results suggest that TiO2-P25
has no mutagenic effect on hepatocytes in mice at 90 d
after the last administration.

Quantification and localization of TiO2 NPs in the liver
The amount of titanium in the liver of mice adminis-
tered TiO2-P25 was quantified via ICP-MS. The average
amount of titanium in the liver was dose dependent
(Table 4). To clarify the localization of TiO2 particles,
liver sections were obtained from mice treated with 50
mg/kg TiO2-P25, and the sections were observed by
TEM. Large clusters containing the TiO2 NPs were
found in the parenchymal hepatocytes (Fig. 1c) and
Kupffer cells (Fig. 1b), although the clusters were much
more prevalent in the latter. The particles were ex-
tremely agglomerated within the cytoplasm of both cell
types. These results indicate that TiO2 NPs remained in
the liver 90 d after the last injection and were mainly lo-
calized in the cytoplasm of Kupffer cells.
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Discussion
TiO2 NPs have been classified as an IARC Group 2B po-
tential carcinogen. Therefore, their genotoxicity is an
important property for risk assessment. Several in vivo
studies related to genotoxic effects of TiO2 NPs have
been reported, but their results are inconsistent [3–17].
Almost all of these reports analyzed the micronuclei and
DNA damage by the comet assay, which reveals transi-
ent genotoxic consequences that occur shortly after
exposure. In addition, the mutagenicity in TiO2-accumu-
lating tissues such as the liver and spleen has been ex-
amined in transgenic mice for a relatively brief period [8,
17]. Thus, the long-term mutagenic effects of TiO2 NPs

remain unclear. In this study, long-term genotoxic ef-
fects were examined in the liver of mice intravenously
administered TiO2 NPs.
Recently, we reported that TiO2-P25 exhibits no muta-

genicity in the liver of mice 9 d after the final injection
based on gpt and Spi− mutation assays [17]. However,
TiO2 NPs translocated to the liver are known to accu-
mulate for a long period [22–25]. Thus, we have exam-
ined the mutagenicity of TiO2-P25 in the liver of long-
term housed mice after the last administration. TiO2-
P25 caused no mutagenic effects in the liver 90 d after
the final injection, even though the particles were ob-
served in the liver cells. The state of the cells that

Table 1 Agglomeration sizes of different concentrations of TiO2-P25 suspensions in 2 mg/mL disodium phosphate

Concentration (mg/mL) Dose (mg/kg b.w.) Z-average (d.nma) mean ± SD PdIb mean ± SD

0.4 2 153.6 ± 6.5 0.168 ± 0.03

2 10 152.6 ± 7.2 0.146 ± 0.01

10 50 148.0 ± 6.0 0.172 ± 0.01
ad.nm nm of diameter
bPdI Polydispersity index

Table 2 The gpt mutation frequency in the livers of mice
administered TiO2-P25 90 days after the last administration

TiO2-P25 Total
population

Number
of
mutations

Mutation frequency (× 10−6)

Mean ± SD

0mg/kg 1,005,000 1 1.00

1,215,000 5 4.12

996,000 2 2.01

1,242,000 4 3.22

1,074,000 4 3.72

1,530,000 5 3.27 2.89 ± 1.17

2 mg/kg 1,065,000 7 6.57

468,000 8 17.09

1,230,000 4 3.25

1,089,000 1 0.92

1,446,000 4 2.77

1,167,000 6 5.14 5.96 ± 5.80

10 mg/kg 846,000 3 6.57

912,000 5 3.55

711,000 2 5.48

771,000 4 2.81

1,506,000 2 5.19

1,380,000 5 1.33 3.66 ± 1.54

50 mg/kg 717,000 6 8.37

552,000 5 9.06

909,000 3 3.30

1,011,000 5 4.95

1,314,000 4 3.04 5.74 ± 2.82

Table 3 The Spi− mutant frequency in the livers of mice
administered TiO2-P25 90 d after the last administration

TiO2-P25 Total
population

Number
of
mutants

Mutant frequency (×10−5)

Mean ± SD

0mg/kg 1,113,000 14 1.26

1,326,000 20 1.51

513,000 10 1.95

1,185,000 13 1.10

951,000 24 2.52

1,035,000 14 1.35 1.61 ± 0.53

2 mg/kg 594,000 16 2.69

972,000 17 1.75

855,000 14 1.64

774,000 13 1.68

1,344,000 33 2.46

1,023,000 20 1.96 2.03 ± 0.43

10 mg/kg 663,000 10 1.51

738,000 10 1.36

1,404,000 16 1.14

1,584,000 17 1.07

1,440,000 80 5.56

738,000 11 1.49 2.02 ± 1.74

50 mg/kg 1,332,000 20 1.50

345,000 1 0.29

1,572,000 14 0.89

1,026,000 17 1.66

915,000 17 1.86 1.24 ± 0.64
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incorporated TiO2 NPs after 90 d seemed mostly un-
changed compared to that after 9 d [17]. In addition, the
amount of titanium in the liver at 90 d after the last ad-
ministration was similar to that at 9 d [17]. This result
indicates that TiO2 NPs are not easily removed from the
liver, even after a long period, but their presence does
not cause any adverse effects.

There were a few in vivo studies reported the positive
genotoxic effect of TiO2-NPs. For example, TiO2 (Aero-
xide P25®) (same material as used in our present study)
induced micronuclei and DNA strand breaks in periph-
eral blood in adult male mice exposed to 500 mg/kg
TiO2 NPs of 21 nm size through drinking water for 5 d
[14], but the effect was not analyzed in liver. With the
same material and intravenous injection route, Dobr-
zynska et al [4] detected increase of micronuclei in bone
marrow polychromatic erythrocytes of mice only at 24 h
but not later at 7 and 28 d. Modrzynska et al [28] inves-
tigated the DNA strand breaks in the liver of mice
treated with TiO2 NPs (NanoAmor, 10.5 nm) by intra-
tracheal instillation, intravenous injection or oral gavage
at a single dose of 162 μg/mouse, and did not find DNA
damages in liver tissue on day 1, 28 or 180 after the ex-
posure by any administration routes, though there was a

Table 4 The amount of titanium in the livers of mice
administered TiO2-P25 90 days after the last administration

TiO2-P25 Analyzed no. of mice Titanium (μg/g tissue)

0 mg/kg 6 0.10 ± 0.05

2 mg/kg 6 6.9 ± 4.1

10 mg/kg 6 16.0 ± 4.0 *

50 mg/kg 5 24.4 ± 9.1 *

The data are expressed as mean ± SD
Statistical analysis was conducted by Dunnett’s test; *P < 0.01

Fig. 1 Transmission electron microscope images of mice liver. a and b, parenchymal hepatocyte and phagocyte, respectively, from the liver of
control mice, and c and d, parenchymal hepatocyte and phagocyte, respectively, from mice administered with 50mg/kg TiO2-P25. * Photo B was
from a control mouse in the short period experiment with TiO2-P25 (Ref. no.17)
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significant increase in the level of DNA damages in lung
tissue on day 180 following intratracheal instillation.
These reports suggested that TiO2 NPs may induce tran-
sient DNA damages in tissue such as blood cells, but not
in liver. The endpoint of genotoxicity in this study was
gene mutations, which are basically not repairable and
could indicate the long term effect. The negative find-
ings in this study are supported by many other reports
[6–9, 12, 28]. It is known that physicochemical charac-
teristics (primary size, shape, etc.) and study designs
(dose, dispersion method, recovery time, models) can in-
fluence the toxicity of nanoparticles in the assay system.
More studies with different TiO2 NPs are needed to bet-
ter understand the health effects of this new material.

Conclusion
TiO2 NPs accumulate in the liver cells for long term.
However, they do not induce genotoxic effect in the tis-
sue. Therefore, the long-term genotoxic effects of TiO2

NPs administered by inhalation and ingestion which
may introduce a small portion of the particles into liver,
may be negligible in the liver.
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