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ABSTRACT

Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in 
treating the related metastasis. Andrographolide is the bioactive component of the 
Andrographis paniculata. Andrographolide possesses the anti-inflammatory activity 
and inhibits the growth of various cancers; however, its effect on GBM cancer motility 
remains largely unknown. In this study, we examined the antimetastatic properties 
of andrographolide in human GBM cells. Our results revealed that andrographolide 
inhibited the invasion and migration abilities of GBM8401 and U251 cells. Furthermore, 
andrographolide inhibited matrix metalloproteinase (MMP)-2 activity and expression. 
Real-time PCR and promoter activity assays indicated that andrographolide 
inhibited MMP-2 expression at the transcriptional level. Such inhibitory effects were 
associated with the suppression of CREB DNA-binding activity and CREB expression. 
Mechanistically, andrographolide inhibited the cell motility of GBM8401 cells through 
the extracellular-regulated kinase (ERK) 1/2 pathway, and the blocking of the ERK 
1/2 pathway could reverse MMP-2-mediated cell motility. In conclusion, CREB is a 
crucial target of andrographolide for suppressing MMP-2-mediated cell motility in 
GBM cells. Therefore, a combination of andrographolide and an ERK inhibitor might 
be a good strategy for preventing GBM metastasis.

INTRODUCTION

Glioblastoma multiforme (GBM) is the most 
common and most aggressive malignant primary brain 
tumor in humans [1]. GBM has high proliferation rate and 

invasiveness, which be treated with surgical extirpation, 
local irradiation, and conventional chemotherapy with 
temozolomide (TMZ) [2, 3]. Moreover, in nearly 20% 
of patients treated with TMZ, significant clinical toxicity 
is regularly observed [4]. Because of the side effects, 
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chemotherapy with TMZ has limited efficiency. Therefore, 
it is needed to develop new approaches to the current 
medical treatment options for glioblastomas.

Poor clinical outcomes in glioblastomas are largely 
due to their infiltrating nature and recurrence at the adjacent 
or distant regions of the brain [5]. The metastasis of cancer 
cells involves several processes including the invasion of the 
surrounding tissue and the formation of new tumors [6-8]. 
Breakdown of the ECM is one of the cancer cell metastasis 
process which mediated by matrix metalloproteinases 
(MMPs) of various types of human cancers [9-11]. 
Therefore, the inhibition of migration mediated by MMP-
2 or MMP-9 can putatively provide a preventive measure 
against cancer metastasis [12-16]. MMP-2 and MMP-9 
are highly expressed in glioblastomas, and the expression 
increases with tumor development at both the messenger 
RNA and protein levels [17-20]. Moreover, numerous 
studies shown that downregulation of MMP-2 expressions 
contribute to the inhibition of metastasis in glioblastoma 
cells [21-23]. However, the mechanisms that regulate 
MMP-2 gene transcription in human glioma cells are not 
fully elucidated.

In current years, plant products have gained 
increasing attention for potential use in interventions 
against tumor invasive progression in neoplastic diseases 
[24, 25]. Andrographolide, a diterpenoid lactone isolated 
from Andrographis paniculata, inhibits cancer cell 
development [26-28] and has potent anti-inflammatory 
[29-31] and anti-cancer invasion and migration activities 
[32, 33]. Lee et al. indicated that andrographolide 
inhibited HMGB1-mediated hyperpermeability and 
leucocyte migration in septic mice. The results revealed 
that andrographolide repressed the tumor necrosis factor-α 
expression via AKT, extracellular-regulated kinase (ERK) 
1/2 pathway in human umbilical vein endothelial cells 
(HUVECs) [34]. However, the anticancer growth effects 
and migratory or invasive effects of andrographolide 
on glioblastoma cells have not been investigated yet. 
Therefore, we hypothesized that andrographolide has an 
impact on the migration and invasion of glioblastoma cells. 
In this study, we evaluated the ability of andrographolide 
to suppress the migration and invasion of glioblastoma 
cells and elucidated the underlying molecular mechanisms.

RESULTS

Cytotoxic effects of andrographolide on human 
GBM cells

The chemical structure of andrographolide 
is presented in Figure 1A. To assess the effects of 
andrographolide on cell viability, GBM8401 and U251 
cells were treated with andrographolide at various 
concentrations (0-40 μM) for 24 h and then analyzed using 
the MTT assay. At the highest concentration of 40 μM, 
andrographolide did not alter the viability of GBM8401 

and U251 cells after treatment for 24 h compared with 
that of the controls (Figure 1B and 1C). Thus, the 
andrographolide concentration range of 0 to 40 μM was 
used in all subsequent anticancer motility experiments.

Effects of andrographolide on migration and 
invasion in human GBM cells in vitro

The effect of andrographolide on the cell migration 
ability of GBM8401 and U251 cells was investigated. 
Figure 2A shows representative photographs of the 
migration of GBM8401 and U251 cells. The number of 
migrated cells decreased in a concentration-dependent 
manner (Figure 2B). At 40 μM, andrographolide reduced 
the number of migrated GBM8401 cells by 68% at 48 h. 
Figure 2C and 2D illustrate the effects of andrographolide 
on cell migration and cell invasion in GBM8401 and U251 
cells, respectively. At 40 μM, andrographolide reduced 
GBM8401 cell invasion by 74% (Figure 2D). The results 
indicate that andrographolide markedly reduced the 
migration and invasion abilities of GBM8401 and U251 
cells in a dose-dependent manner.

Andrographolide inhibits the activity and 
protein expression of MMP-2 in GBM cells

MMP-2 is a protease involved in the degradation 
of ECM in tumor metastasis [35, 36]. To investigative 
the mechanisms through which andrographolide inhibits 
cell invasion and migration in GBM cells, we analyzed 
the expression levels of MMP-2. The results revealed that 
treatment with andrographolide (40 μM) significantly 
inhibited MMP-2 enzyme activity (Figure 3A) and protein 
expression (Figure 3B) in both GBM8401 and U251 cells.

Andrographolide suppresses MMP-2 expression 
at the transcriptional level

To investigate the inhibitory effects of 
andrographolide on MMP-2 transcriptional level 
in GBM8401 cells, the cells were treated with 
andrographolide at various concentrations (0-40 μM) for 
24 h, and mRNA levels were then analyzed through real-
time PCR. The results demonstrated that MMP-2 mRNA 
levels significantly decreased (Figure 3C). The results of 
the promoter analysis performed using a luciferase assay 
kit indicated that andrographolide significantly inhibits 
the luciferase activities of MMP-2 (Figure 3D). These 
results indicate that andrographolide regulates the MMP-
2 expression at the transcriptional level in GBM8401 cells.

CREB is the key regulator for the transcriptional 
inhibition of MMP-2 by andrographolide

The sequence analysis of the MMP-2 promoter 
indicated numerous cis-acting regulatory elements, 
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including CREB, SP-1, and AP-1 that could be involved 
in the regulation of MMP-2 expression [37, 38]. To 
examine whether specific transcription factors are 
involved in the transcriptional inhibition of MMP-2 by 
andrographolide in GBM8401 cells, we evaluated the 
effect of andrographolide on the nuclear translocation of 
CREB, SP-1, c-fos, and c-Jun. The treatment of GBM8401 
cells with andrographolide (0, 20, and 40 μM) reduced 
the nuclear translocation of CREB, but not that of SP-
1, c-Jun, or c-fos, in a concentration-dependent manner 
(Figure 4A and 4B). We further performed a ChIP assay to 
investigate the involvement of CREB transcription factors 
in the transcriptional inhibitory effects of andrographolide 
on MMP-2. The binding of CREB to the MMP-2 
promoter decreased in GBM8401 cells after treatment 

with andrographolide (Figure 4C and 4D). These findings 
indicate that andrographolide causes the transcriptional 
inhibition of MMP-2 in GBM8401 cells by suppressing 
the nuclear translocation of CREB and the binding activity 
of the MMP-2 promoter.

Role of the ERK1/2 pathway in the 
andrographolide-mediated inhibition of cell 
motility and MMP-2 expression

Studies have reported that the activation of 
ERK, a key molecule located in the MAPK pathway, 
is responsible for the activation of MMP-2 [39] and 
the invasion of cancer cells including GBM cells [21]. 
Therefore, we determined whether MAPK pathway plays 

Figure 1: Effects of andrographolide on cell viability. (A) Structure of andrographolide. Cell viability of (B) GBM8401 cells and 
(C) U251 cells cultured in presence of andrographolide (0-40 μM) for 24 h, as analyzed by MTT assay. Results are shown as mean ± SE 
from 3 determinations per condition repeated 3 times.
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a role in the andrographolide-mediated suppression of 
cell motility and MMP-2 expression in GBM8401 cells. 
The results revealed that andrographolide enhanced the 
phosphorylation of ERK 1/2 and JNK 1/2, whereas the 
phosphorylation of p38 was not changed in GBM8401 
cells (Figure 5A and 5B). To further define the signaling 
pathway that mediates ERK activation, we determined 
whether upstream activators, c-Raf and MEK, are also 
activated by andrographolide. As shown in Figure 5C 

and 5D, the phosphorylation of c-Raf and MEK was also 
increased after andrographolide treatment in GBM8401 
cells. Next, we investigated relationships among the 
andrographolide-mediated inhibition of MMP-2, cell 
motility, and JNK and ERK activation. The pretreatment 
of GBM8401 cells with a highly specific inhibitor of MEK 
(PD98059) significantly reversed MMP-2 activity (Figure 
6A) and cell migration (Figure 6B); however, the JNK 
inhibitor (JNK-in-8) did not alter the MMP-2 activity and 

Figure 2: Andrographolide inhibits wound healing assay, migration and invasion in the GBM8401 and U251 cell lines. 
(A-B) GBM8401 and U251 cells were wounded and then treated with andrographolide (0-40 μM) for 24 h in a serum-containing medium. 
At 0, 24 and 48 h (for GBM8401) or at 0, 12 and 24 h (for U251 cell), phase-contrast pictures of the wounds at four different locations 
were taken. (C-D) Human GBM8401 and U251 cells were treated with andrographolide (0-40 μM); cell migration and cell invasion was 
subsequently measured using a Boyden chamber and a Matrigel-coated Boyden chamber as described in material and methods section. 
*Significantly different, p < 0.05, compared with the vehicle group.
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cell migration (Figure 6C and 6D). Taken together, these 
results indicate that the c-Raf/MEK/ERK pathway might 
play a role in regulating the motility of GBM cells.

DISCUSSION

The causes of death of patients with glioma are the 
deep occurrence of gliomas in the brain and the highly 
proliferative properties of gliomas. Therefore, early 
prevention of glioma growth by chemopreventive agents 
may be warranted. Extensive studies have indicated 
that the natural products may arrest tumor promotion 
and progression in various human cancer cell lines by 
controlling cell apoptosis or invasion. Flavonoids widely 
exist in vegetables, fruits and red wine and humans 
consume approximately 1 g of flavonoids in their diet 
daily. Numerous beneficial biological properties of 
flavonoids, including anti-inflammatory, anti-oxidant, and 

anti-tumor activities, have been identified [13, 36, 37, 40-
43], and some types of flavonoids have been reported to 
exert therapeutic effects on brain diseases [44] including 
brain tumors [21]. Andrographolide, the major constituent 
of the A. paniculata extract, is involved in the anticancer 
activity [45]. However, no studies have described the 
antimetastasis (inhibition of invasion and migration) 
effects of GBM cells. To the best of our knowledge, this is 
the first study to demonstrate that andrographolide inhibits 
the migration and invasion of GBM cells.

Invasion by glioma cells is a multistep process 
involving degradation of ECM components, and 
subsequent infiltration into adjacent brain tissues. 
This process is largely attributable to the activation of 
MMPs. MMPs play vital roles in tumor angiogenesis and 
metastasis [10, 46]. The inhibition of MMP-2 and MMP-9 
enzyme activities can prevent of cancer metastasis [47-49]. 
Moreover, glioma cells express various MMPs, among 

Figure 3: Andrographolide inhibit MMP-2 activity, protein and mRNA expression. (A) GBM8401 cells and U251 cells 
were treated with andrographolide (0-40 μM) for 24 h in serum free medium and then subjected to gelatin zymography to analyze the 
activity of MMP-2. (B) Western blotting to analyze the protein levels of MMP-2. Quantitative results of MMP-2 protein levels after being 
adjusted with β-actin. The values represented the means ± SE from 3 determinations per condition repeated 3 times. (C) GBM8401 cells 
were treated with andrographolide (0-40 μM) for 24 h and then subjected to real-time PCR to analyze the mRNA expression of MMP-
2. (D) MMP-2 promoter reporter assay to analyze the promoter activity of MMP-2. Luciferase activity, determined in triplicates, was 
normalized to β-galactosidase activity. The values represented the means ± SE from 3 determinations per condition repeated 3 times (n=3). 
*Significantly different, p < 0.05, compared with the vehicle group.
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which MMP-2 is supposed to most effectively degrade 
ECM components [50-52]. Similarly, our study results 
revealed that MMP-2 was highly secreted by GBM cells, 
and overexpression of MMP-2 has been found in clinical 
specimens and to be correlated with tumor invasion in 
gliomas [10, 36]. Moreover, from a search of available 
microarray data (PrognoScan database), our previously 
study observed that MMP-2 has been negatively correlated 
with the overall survival rate of patients with glioma [21]. 
These findings indicate that MMP-2 might be a crucial 
regulator of tumor metastasis in GBM. The results of the 
present study indicated that andrographolide significantly 
inhibited MMP-2 promoter activity, mRNA level and 
protein expression in GBM8401 cells (Figure 3). The 
results indicating that andrographolide inhibits the MMP-
2 expression at the transcriptional level.

Several regulatory elements, including p53, AP-
1, CREB, SP-1, and AP-2, which could be involved in 

regulating MMP-2 expression [37, 38]. Our study indicated 
that the regulation of MMP-2 by andrographolide occurred 
at the transcriptional level and was mainly mediated by 
CREB. The transcriptional activity of CREB plays a 
crucial role in tumor metastasis in several cancer cell types 
including GBM [15, 53]. CREB is a ubiquitously expressed 
transcription factor and is phosphorylated at Ser133 by 
cAMP-dependent protein kinase A and other kinases [54]. 
It subsequently increases its transcriptional activity by 
changing its association with CBP/p300 histone acetylase. 
Our findings implicating that regulation of CREB in the 
MMP-2 are consistent with those of previous studies on 
melanomas [55] and ovarian cancer [56]. In addition, we 
observed that andrographolide can attenuate the DNA-
binding activity of CREB in the MMP-2 promoter region.

MAPK pathway is involved in numerous cellular 
programs, such as cell differentiation, cell death and 
cell migration [57, 58]. A previous study showed that 

Figure 4: Critical role of CREB in andrographolide-induced transcriptional inhibition of MMP-2 in GBM8401 cells. 
(A-B) GBM8401 cells were treated with andrographolide (0-40 μM) for 24 h and then the nuclear fraction was prepared as described 
in Materials and Methods. Representative results of CREB, c-jun, c-fos and SP-1 by Western blot analysis. (C-D) ChIP analysis of the 
association of CREB transcription factors with the MMP-2 promoter region in GBM8401 cells. The values represented the means ± SE 
from 3 determinations per condition repeated 3 times (n=3). *Significantly different, p < 0.05, compared with the vehicle group.
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Figure 5: Effect of andrographolide on MAPK pathway in GBM8401 cells. GBM8401 cells were treated with andrographolide 
(0-40 μM) for 24 h and then the cell lysates were subjected to SDS-PAGE followed by western blots with (A) anti-ERK1/2, anti-JNK, 
anti-p38, (C) anti-c-Raf and anti-MEK antibodies as described in Materials and Methods. (B, D) Quantitative results the phosphorylation 
levels of ERK1/2, JNK, p38, c-Raf and MEK. *Significantly different, p < 0.05, compared with the vehicle group.

Figure 6: Effects of MEK inhibitor (PD98059), JNK inhibitor (JNK-in-8) and andrographolide on MMP-2 activity 
and cell migration of GBM8401 cells. GBM8401 cells were pre-treated with PD98059 (25 μM) for 30 min, and then incubated in 
the presence or absence of andrographolide (20 μM) for 24 h. (A) The culture media were used as subjects for analysis of MMP-2 activity. 
(B) The cells were used for migration assay as described in the Materials and Methods section. (C-D) GBM8401 cells were pre-treated 
with JNK-in-8 (1 μM) for 30 min, and then incubated in the presence or absence of andrographolide (20 μM) for 24 h. (C) The culture 
media were used as subjects for analysis of MMP-2 activity. (D) The cells were used for migration assay as described in the Materials 
and Methods section. The values represented the means ± SD of at least three independent experiments. *p<0.05 as compared with the 
control. #Significantly different, p<0.05, when compared with andrographolide-treated group. (E) A working model showing the ability of 
andrographolide to regulate the invasive ability of GBM8401 cells.
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andrographolide inhibited cell metastasis by interfering 
with PI3K/Akt and ERK1/2 signaling pathways [59]. 
Wong et al. also reported that andrographolide induces 
heme oxygenase 1 in astrocytes by activating ERK1/2 
and p38 pathway [60]. Moreover, andrographolide has 
been reported as a promising anticancer agent that inhibits 
tumor metastasis [61]. Pratheeshkumar et al. demonstrated 
that andrographolide inhibits the nuclear translocation 
of NF-κB and CREB in B16F-10 melanoma cells [62]. 
Cheng et al. reported that caffeine reduced the invasion 
of glioma cells through FAK/ERK signaling pathway 
[63]. As presented in Figure 6, andrographolide enhanced 
the phosphorylation of the c-Raf/MEK/ERK pathway in 
GBM8401 cells. To further investigate the related effects 
of andrographolide on GBM8401 cells, we investigated the 
effect of andrographolide combined with a specific inhibitor 
of the MEK pathway (PD98059) on cell migration. We 
observed that the combined treatment of andrographolide 
and the aforementioned pathway inhibitor reduced MMP-
2 activity and migration. This is the first report that the 
antimetastasis effect of andrographolide on GBM cells. 
However, limitation of current in vitro study was the lack of 
in vivo animal study, which could provide more support to 
our current findings and will be included in our future work.

In conclusion, the study demonstrated that 
andrographolide can inhibit the expression of CREB-DNA 
binding activity, MMP-2 expression and the inhibition 
of migration (Figure 6E). Andrographolide also inhibits 
cell migration by increasing the phosphorylation of the 
ERK pathway. Thus, inhibition of cancer metastasis by 
andrographolide can provide crucial therapeutic protection 
against GBM.

MATERIALS AND METHODS

Cell lines

GBM8401 cells were originally isolated and 
established from an ethnic Chinese female patient with 
GBM [64]. In this study, human GBM8401 and U251 cell 
lines were purchased from the Food Industry Research 
and Development Institute (Hsinchu, Taiwan). GBM8401 
and U251 cells were cultured in RPMI 1640 medium 
supplemented with 10% fetal bovine serum (FBS), 2 
mM L-glutamine, 100 U/mL penicillin, and 100 μg/
mL streptomycin at 37 °C in a humidified atmosphere 
containing 5% CO2.

Cell viability assay

To determinate cell viability, a colorimetric assay 
using tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT), was performed for 
evaluating the cytotoxicity of andrographolide (Sigma 
Chemical Co., St. Louis, MO, USA). GBM8401 and U251 
cells (6 × 104 cells/well) were seeded in 24-well plates and 

treated with the indicated concentrations of andrographolide 
for 24 h under the same culture condition. The medium was 
removed after andrographolide treatment. Attached cells 
were washed with phosphate buffered saline and incubated 
with 20 μL of 5 mg/mL MTT (Sigma Chemical Co., St. 
Louis, MO, USA) at 37°C for 4 h. The quantity of viable 
cells per well was assessed by evaluating the production of 
formazan, which was measured spectrophotometrically at 
563 nm following solubilization with isopropanol.

In vitro wound closure assay

GBM8401 cells (2 x 105 cells/well) and U251 cells 
(2 x 105 cells/well) were plated in six-well plates for 24 h. 
The cells were scratched with a pipette tip to wound them, 
incubated in RPMI medium containing 0.5% FBS, and 
treated with or without andrographolide (0-40 μM) for 12, 
24, or 48 h. The cells were photographed using a phase-
contrast microscope (×100), as described previously [65].

Cell migration and cell invasion assays

Boyden chamber cell migration and invasion assay 
were assayed according to previously described methods 
[66]. Briefly, after treatment with andrographolide (0-40 
μM) for 24 h, cells were seeded in a Boyden chamber 
(Neuro Probe, Cabin John, MD) for the invasion and 
migration assay. For the invasion assay, polycarbonate 
membrane filters with an 8-μm pore size were precoated 
with 10 μL of Matrigel (25 mg/50 mL; BD Biosciences, 
MA); the bottom chamber contained the standard medium. 
Invaded cells were fixed and stained with 5% Giemsa. 
Stained cells in each well were photographed and counted. 
Triplicate samples were examined, and data are expressed 
as the average cell number in five fields. The migration 
assay was performed using the procedure described for the 
invasion assay but without Matrigel coating [38].

Gelatin zymography

MMP-2 activity in the conditioned medium from 
GBM8401 cells was measured using gelatin zymography 
protease assays, as described previously [67]. An 
appropriate volume of collected media was subjected 
to electrophoresis on 8% sodium dodecylsulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gel 
containing 0.1% gelatin. After electrophoresis, the gel 
was washed with 2.5% Triton X-100 and incubated in a 
reaction buffer (40 mM Tris-HCl at pH 8.0, 10 mM CaCl2, 
and 0.01% NaN3) for 12 h at 37 °C. The gel was then 
stained with Coomassie brilliant blue R-250.

RNA preparation and TaqMan real-time 
quantitative PCR

Total RNA was isolated from GBM cells by using 
Trizol (Life Technologies, Grand Island, NY) according 
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to the manufacturer’s instructions. A real-time quantitative 
(q) PCR analysis was conducted using the TaqMan one-
step PCR Master Mix (Applied Biosystems, CA, USA). 
Total cDNA (100 ng) was added to each 25 μL reaction 
mix containing MMP-2 or GAPDH primers and TaqMan 
probes. The MMP-2 (Hs00234422_m1) and GAPDH 
(Hs99999905_m1) primers and probes were designed 
using commercial software (ABI PRISM For Peer Sequence 
Detection System; Applied Biosystems, CA, USA). Real-
time qPCR assays were performed in triplicate on a 
StepOnePlus sequence detection system. The threshold was 
set above the nontemplate control background and within 
the linear phase of target gene amplification to calculate the 
cycle number at which the transcript was detected.

Western blot analysis

Total cell lysates were prepared and cytosolic 
proteins were extracted as previously described [68]. 
Equal amounts of protein extracts were subjected to 10% 
or 12% SDS-PAGE and blotted onto polyvinylidene 
fluoride membranes (Millipore, Belford, MA, USA). 
After blocking, membranes were incubated with 
primary antibodies. Antibodies, specifically of MMP-2, 
p-extracellularly regulated kinase (ERK)1/2, p-p38, p-c-
Jun N-terminal kinase (JNK), ERK1/2, p38, JNK1/2, 
and β-actin were purchased from Cell Signaling 
Technology (Danvers, MA, USA). CREB, C-Jun, c-fos, 
and SP-1 antibodies were purchased from Santa Cruz 
Biotechnology. Lamin-B2 antibodies were purchased 
from GeneTex International Corporation. Blots were 
then incubated with a horseradish peroxidase (HRP)-
conjugated anti-mouse or anti-rabbit antibody. Signals 
were detected through ECL by using the Immobilon 
Western HRP Substrate (Millipore, Billerica, MA, USA).

Nuclear protein extraction

To extract nuclear proteins, protein extracts were 
prepared from andrographolide-treated GBM8401 cells 
by using the NE-PER Cytoplasmic and Nuclear Protein 
extraction kit (Pierce Biotechnology, Rockford, IL, USA).

Transfection and MMP-2 promoter-driven 
luciferase assays

GBM8401 cells were seeded at a concentration of 5 
× 104 cells/well in six-well cell culture plates. After 24 h of 
incubation, the cells were cotransfected with pGL3-basic 
(vector), pMMP-2-luciferase (Luc), and a β-galactosidase 
expression vector (pCH110) by using Turbofect 
(Fermentas, Carlsbad, CA). After 12 h of transfection, the 
cells were treated with a vehicle or andrographolide for 
24 h. Cell lysates were harvested, and luciferase activity 
was determined using a luciferase assay kit. The value of 
the luciferase activity was normalized to the transfection 
efficiency and monitored by β-galactosidase expression.

Chromatin immunoprecipitation analysis

A chromatin immunoprecipitation (ChIP) analysis 
was performed as described previously [13, 16]. Briefly, 
GBM8401 cells were washed with PBS and were then 
treated with 1% formaldehyde to cross-link protein-protein 
and protein-DNA complexes. After cells were lysed using 
lysis buffer, DNA immunoprecipitated with antibodies 
specific to CREB or the control, rabbit immunoglobulin 
G, was purified and extracted as described previously [13, 
16].

Statistical analysis

The statistical analysis was performed using 
Statistical Package for the Social Sciences software, 
Version 16 (SPSS, Chicago, IL). Data were analyzed 
using Student’s t-test when two groups were compared. A 
p value of <0.05 was considered statistically significant.
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