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ABSTRACT The objective of this study was to develop an interpretable system that could detect specific
lung features in neonates. A challenging aspect of this work was that normal lungs showed the same visual
features (as that of Pneumothorax (PTX)). M-mode is typically necessary to differentiate between the
two cases, but its generation in clinics is time-consuming and requires expertise for interpretation, which
remains limited. Therefore, our system automates M-mode generation by extracting Regions of Interest
(ROIs) without human in the loop. Object detection models such as faster Region Based Convolutional
Neural Network (fRCNN) and RetinaNet models were employed to detect seven common Lung Ultrasound
(LUS) features. fRCNN predictions were then stored and further used to generate M-modes. Beyond
static feature extraction, we used a Hough transform based statistical method to detect ‘‘lung sliding’’
in these M-modes. Results showed that fRCNN achieved a greater mean Average Precision (mAP) of
86.57% (Intersection-over-Union (IoU) = 0.2) than RetinaNet, which only displayed a mAP of 61.15%.
The calculated accuracy for the generated RoIs was 97.59% for Normal videos and 96.37% for PTX
videos. Using this system, we successfully classified 5 PTX and 6 Normal video cases with 100% accuracy.
Automating the process of detecting seven prominent LUS features addresses the time-consuming manual
evaluation of Lung ultrasound in a fast paced environment. Clinical impact: Our research work provides a
significant clinical impact as it provides a more accurate and efficient method for diagnosing lung diseases in
neonates.

INDEX TERMS Lung ultrasound, object detection models, faster RCNN, RetinaNet, Hough transform,
M-mode, automatic lung sliding detection.

I. INTRODUCTION
Preterms are babies whose delivery is prior to 37 weeks’
gestation [1]. According to WHO, approximately 2.4 million
preterm fatalities were reported globally in 2019 [2]. There-
fore, early identification of these lung disorders can save
lives. Lung Ultrasound (LUS) has been lately used by
healthcare providers instead of Chest X-Rays (CXRs) and
Computed Tomography (CT)-chest in both neonatal and adult
population in different clinical settings [3]. This is due to

several significant advantages such as real-time imaging,
non-ionizing radiation, lower equipment costs, portability,
and bedside availability [4]. Manual evaluation of LUS scans
necessitates sonography skills, trained operators, and a signif-
icant amount of time. Each LUS scan reveals certain patterns.
Pediatricians compiled a list of seven LUS features that are
associated with most common neonatal respiratory disorders.
Due to the restricted number of expert neonatologists in
lung ultrasound, accurate manual evaluation of lung images
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FIGURE 1. Pipeline of our proposed LUS feature detection system.

remains a challenge. Therefore, we propose an Artificial
Intelligence approach to detect these LUS features with high
accuracy.

The main contributions of this research work are listed
below1:

• Annotated LUS feature dataset: Physicians indicated
interest in a system capable of extracting lung features
from LUS videos. Therefore, we annotated 17,491 LUS
features under the supervision of a neonatology expert
using a labeling tool called Dark Label [6]

• Object DetectionModels for LUS:A single seven class
fRCNN [7] was trained on the set of LUS features, and
a RetinaNet [8] was implemented for comparison. They
were evaluated based on their recognition speed and
mAP.

• Automatic Motion Mode (M-mode) Extraction:
M-Mode images are required to differentiate between
normal lung and PTX. Expert neonatologists are
required for M-mode interpretation. Allocation of cur-
sor around the ROI is done manually by the physician
which again requires expertise. Therefore, we proposed
a system that can automatically generate these ROIs.

• Automatic Lung Sliding Detection: Further to the
extracted M-Mode, we created an automated process to
detect lung sliding, which is the differentiating feature
between normal and PTX lungs. Lung sliding cannot
be detected from images alone. We were successful
in detecting this feature using Hough Transform and
Morphological operations. Variance and the boundary
Hough transform were further deduced to differentiate
between PTX and Normal M-mode scans.

1A preliminary version of this work was published in [5].

The full workflow of our proposed LUS feature detection
can be seen in Fig. 1.

II. RELATED WORKS
Deep learning has shown popularity for assessing medical
images and making fast decisions. It has replaced the need for
hand-crafted features, due to its efficiency to generate both
low-level and high-level features from data [9]. According
to the most recent review of the main contributions in LUS
image analysis [10], related works can be divided into two
major classes: i) Model Based Techniques, ii) Deep Learning
Models.

A. MODEL BASED TECHNIQUES
Earlier, LUS scans were graded based on the severity of
aeration loss. Authors in [11] assessed ExtraVascular Lung
Water (EVLW) through quantitative LUS and CT intensities.
LUS intensity was more accurate as it demonstrated the air to
water ratio which is an excellent interpretation of the amount
of echogenic interfaces. This is critical as this measurement
is a powerful tool in early diagnosis of Pneumonia [12]
which is a chronic pulmonary disorder. Brusasco et al. [13]
developed a completely automated and quantitative scoring
system to detect B-lines in Acute Respiratory Distress Syn-
drome (ARDS) patients.

B. DEEP LEARNING NEURAL NETWORKS
Gravina et al. [14], in 2021, employed a deep learning
approach in classifying ARDS, Transient Tachypnea (TTN)
and healthy ultrasound scans. Five Neural Networks (NN)
were deployed respectively. Awasthi et al. [15] proposed
a mobile-friendly, yet efficient deep learning model for
detecting COVID-19. Their constructed network ‘‘Mini-
COVIDNet’’ surpassed other light weight neural network
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models as well as a state-of-the-art heavy model. LUS scans
were classified as COVID-19, Pneumonia, or a healthy con-
dition. Apostolopoulos et al. [16], on the other hand, used a
VGG-19 and a MobileNet-v2 to classify normal, COVID-19
Pneumonia, viral, and bacterial Pneumonia. They utilized
transfer learning during their training process. Magrelli et al.
[17] utilizes Gradient weighted class activation mapping
(Grad-CAM) to add interpretability to Image classification
models. VGG-19, Xception, Inception-v3, and Inception-
ResNet-v2 were trained. This approach did not perform well
on B-lines and could only detect 50% of A-lines. In our
scenario, this approach was not sufficient to detect other LUS
features. If we used those feature maps, as described in paper
[17], the colours will overlap, hence, making the interpreta-
tion more difficult to read. Physicians require detections to
be precise. As a result, we used object detection models to
deliver precise detections of LUS features, allowing clini-
cians to spend less time making a diagnosis. Kulhare et al.
[18] used Single-Shot Detectors (SSDs) for detecting LUS
features in swine dataset. Another worth-mentioning work
done by Xing et al. [19] 2022, they proposed a novel A-line
detection method for LUS images for both linear and convex
probes. An fRCNN model was implemented and enhanced
with localization box selection strategy to accurately allocate
pleural lines.

III. LUS DATA MINING AND LABELING
A. LUS IMAGING PROTOCOLS
All our LUS scans were performed using a portable Ultra-
sound machine (Z.One PRO Ultrasound System, Mindray
North America, CA, USA), a linear probe (L20-5 MHz)
with a high-resolution to enhance image quality. Our spatial
resolution was 20-30 millimetres. Depth was adjusted at 3 cm
to ensure adequate penetration and to aid with image acqui-
sition. Lungs were scanned in six zones, 3 zones on either
side (Upper Anterior R1, L1, Lower Anterior R2, L2, and
Lateral R3, L3 bilaterally). Neonates were scanned in supine
position. Footprint for the linear probe was set to 2.5 cm
to correlate with beam width. Probe was positioned vertical
(perpendicular) on the chest wall with little to no angula-
tion. All scans were saved as a video clip of approximately
6 seconds.

B. LUS FEATURES
Physicians determined a list of seven key LUS features that
are associated to respiratory diseases. These features are;
normal pleural line, thick pleural, irregular plural, A-lines,
separate B-lines, coalescent B-lines, and consolidations.

Normal pleural is one of the brightest (echogenic) feature
in LUS scan. Regarding pleural line thickness, we are unable
to provide a tight cut-off. But according to a previous study
[20], a pleural line > 2 mm is considered a thick pleural line.
A-lines are repetitive reverberation artifacts that mimic the
pleural line and are equally distant [21]. B-lines are discrete
laser-like vertical hyperechoic reverberation artifacts that
arise from the pleural line, extend to the bottom of the screen

FIGURE 2. LUS pathologies: (a) Normal pleural line (b) Thick pleural line
(c) Irregular pleural line (d) Consolidations (e) Separate B-lines
(f) Coalescent B-lines.

without fading, and move synchronously with lung sliding.
Vertical hyperechoic reverberation are referred as Separate
B-lines if they are ≥ 3 per frame. Otherwise, they are Coales-
cent B-lines. Consolidations are regarded as a critical reduc-
tion of aeration and appear as a hypo-echoic tissue. More
details about the LUS features can be found in our prelim-
inary work [5]. All LUS pathologies are displayed in Fig. 2.

Neonatologists outlined five common lung conditions.
These include ARDS [22], TTN [23] of the newborn, Chronic
Lung Disease (CLD) [24], PTX [25], Consolidation and
normal lungs. These lung conditions are the most common
respiratory causes for NICU admissions. They were selected
manually from each frame and annotated under the supervi-
sion of a neonatologist (second author) who is an expert in
lung ultrasound. Presence/absence of the seven lung features
described before is associated to different lung conditions.
Therefore, in this work we focus mainly on detecting the LUS
features.

C. DATA MINING
LUS scans were performed on a total of 45 neonates.2 There
were 6 Normal, 6 CLD, 7 Consolidation, 5 PTX, 7 ARDS,
and 14 TTN neonatal case studies. Briefly, a longitudinal scan
of the anterior and lateral chest walls was performed. A total
of six zone areas of the chest were scanned. Ultrasonographic
images were anonymized and transferred to a password pro-
tected external hard drive.

The exam was performed longitudinally using a linear
probe, and at least one 6-second ultrasound video was cap-
tured from each zone at a frame rate of 13.7 fps. A total
of 324 videos and 26,632 frames were collected from
45 patients. Each patient had a range of 1-10 videos. The full
LUS dataset is shown in Table 1.

IV. METHODOLOGY
We opted for detecting the LUS features from images
rather than developing an image classification system. Only

2Study approved by Mount Sinai Hospital and Ryerson Research Ethics
Board. Our REB study approval number is: MSH REB 19-0065-E.
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TABLE 1. Mount sinai lung ultrasound dataset.

computer vision techniques such as object detection-based
methods can meet this purpose. Object-based detection mod-
els are classified into two groups: One stage and two-stage
detectors. We decided to choose one model from each group:
RetinaNet [8] (a one-stage detector model) and the two-stage
detector faster RCNN [7].

RetinaNet has a high recognition speed, and therefore, can
work as a real-timemodel. It has demonstrated great detection
performance over aerial/satellite images. This is due to its
Feature Pyramid Network (FPN) which is designed to pro-
duce rich semantics at all levels. It is, however, not always
the best when it comes to object localization. fRCNN, on the
other hand, may be slower in recognition speed, but provides
a higher localization performance, thus, better precision of
its bounding boxes. It is due to the second stage unit that
filters out bad proposals and fine-tunes positive proposals.
Use of a pre-trained Image-Net model as a backbone network
is fundamental to get rich semantic features. We opted for
VGG-16 and ResNet-18 as backbone models for fRCNN and
RetinaNet, respectively, as per the source papers [7], [8].

A. LUNG SLIDING DETECTION USING AUTOMATIC
CURSOR ALLOCATION ON EXTRACTED M-MODE IMAGES
Why M-mode? PTX and Normal lungs share the same visual
LUS features such as A-lines. Detection of these features
by object detection models is not sufficient to differentiate
between these cases. According to physicians, the only distin-
guishing signwould be ‘‘Lung sliding’’. This is something not
easily spotted by the physician on the LUS scan, especially
if the baby is working hard to breath and the whole chest is
moving. In order to accurately spot this feature, the scans had
to be switched from 2-D mode to M-mode. M-mode shows
the velocity of a certain organ along a specific line (motion
cursor) in relation to the time axis.

PTX patients are typically classified as emergency situ-
ations that require prompt medical attention/intervention to
save the patients’ lives. There are not enough physicians
in each NICU who know how to interpret these patients’
LUS findings and distinguish between normal and PTX
images confidently. Therefore, our aim was to help in mak-
ing a quick differentiation between normal and PTX cases
by first proposing a solution to replace the manual selec-
tion of the region of interest and to generate M-modes
with excellent efficiency. Our second goal was to test the
absence or presence of the lung sliding. It has been observed
that PTX M-mode indicates the absence of lung sliding
as a stratosphere pattern as opposed to Normal scans that

show a seashore pattern. Therefore, we selected line detec-
tion techniques (Hough Transform) and other morphological
operations to make a distinction between PTX and normal
scans.

B. AUTOMATIC EXTRACTION OF LUNG SLIDING FEATURE
For placing the line of motion and extracting a good ROI, the
following requirements must be met: i) Line of motion should
be set within the pleural line ii) Line should not include rib
shadows iii) A slice of 15-25 pixel width to include enough
information from the sub-pleural region. In order to exclude
the rib shadow from the ROI, we made sure to place the
cursor one-third way into the pleural line. Based on exper-
iments made over the coral software used by Mount Sinai
hospital, we picked an average ROI width of 20 pixels. It was
enough to display a good enough M-mode image that can
be further utilized to differentiate between PTX and normal
case. To slice the ROIs automatically and without human in
the loop we stored the fRCNN predictions imposed over the
LUS video frames. We specifically used the detected normal
pleurae as potential indicator to our ROI slice. Two cursors
were defined for the ROI slice, C1 and C2. If the bounding
box of the detected normal pleurae in a frame f, is x1, y1, x2,
y2, then C1 is set to one third way into the box and C2 is set
to 20 pixels away from C1. This is seen in equations 1 and 2.

C1 : x1 +
1
3
(x2 − x1) (1)

C2 : C1 + 20 (2)

C. GENERATION OF M-MODE IMAGES USING THE
EXTRACTED ROIS
To generate M-mode images close to the reference M-mode
images generated by the hospital, extracted ROIs had to
be accurate. They were first evaluated before extracting the
M-mode images.Wewere successful in achieving a high level
of precision for the ROIs and hence, we concatenated them
horizontally side-by-side to form a single M-mode image.
This can be observed in Fig. 3.

We see that in a PTX clip with a run time of 6 seconds and
a frame rate of 14.2 fps, 85 ROIs were combined to create one
M-mode with a width of w (85*20 cursor width = 1700) and
a height of h. Fig. 4 shows a generated PTXM-mode image as
well as a normal M-mode image. Both constructed M-mode
images look very close to the true reference M-mode image
provided by the hospital.

D. LINE DETECTION IN M-MODES USING HOUGH
TRANSFORM
Through observation, PTX M-mode exhibits more lines
because to its stratospheric pattern nature, whereas a Nor-
mal scan exhibits fewer lines due to its sea-shore pattern.
Therefore, we considered detection of the horizontal lines
and counting them to differentiate between Normal and
PTX scans. For this purpose, Hough transform was uti-
lized. Pre-processing of image included simple thresholding
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FIGURE 3. An example of extraction of M-mode from both PTX and Normal video. The figure shows how
the slicing of ROIs in all frames is done and concatenating them to create an extracted M-mode image.

FIGURE 4. Extracted M-mode images from both PTX and normal LUS videos vs the acquired reference
real M-mode image.

and morphological gradient which is the difference between
Erosion and Dilation. This effect highly enriched the LUS
features (A-lines and pleural line) which are vital in deter-
mining the lung sliding feature.

Next, the edge image is converted into an (r-θ) plane, where
r is the perpendicular distance in pixels from the line to the
origin and θ is the angle between the line stretched from the
origin and the line passing through the edge point. The com-
plete edge image is represented by a sequence of sinusoidal
curves, the largest of which has the same amplitude as the
images diagonal length (-dmax - dmax) and angles between
(−90◦, 90◦). Each line is expressed in terms of equations 3
and 4.

y =

(
− cos θ

sin θ

)
x +

( r
sin θ

)
(3)

r = x cos θ + y sin θ (4)

All edge points that contribute to the formation of a line
are called line candidates. They are stored in a matrix by
‘‘Hough Accumulator’’. Local maxima is deduced from the

accumulator. It denotes the most prominent lines in the accu-
mulator, which are the highest votes. Multiple thin horizontal
lines can appear very close to each other due to the nature of
ultrasound imaging, while they actually represent one single
line morphologically. Therefore, a ‘‘fill gap’’ parameter value
of 20 pixels was introduced to fill the gap between lines that
appear close to each other, so that they are combined into a
single line. Only lines bigger than 90% of the image’s width
were considered.

The full solution of lung sliding detection to distinguish
PTX from Normal LUS scan is illustrated in Fig. 5.

Here, the trained fRCNN performs detections on a PTX
study case. The values of the predicted pleural boundary box
are saved in a csv file. If the box values were [222, 110,
314, 156], the computed cursor locations would be 253 and
273 according to equations 1 and 2. The accuracy of the
automatically assigned line of motion vs. the manual ones is
reported in the Results section. Only lines that were at least
7 pixels vertically apart were taken into consideration. Three
probable line candidates were recognised and imposed across
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FIGURE 5. Classification of PTX using proposed automatic lung sliding feature detection and statistical
measurements.

the processed image in the PTX case as shown in Fig. 5. These
detected lines correlate to the subcutaneous tissue, pleural
line, and one A-line. These lines effectively describe what can
be seen in the input raw video. On the other hand, a normal
case study exhibits two lines (one for the skin lesion and the
other for the pleural line).

After experiment, it was impossible to find a right thresh-
old for the number of lines. We noticed in most of the views
the probe position was not guaranteed to be fixed in a specific
chest area, and its movement altered the reading. Therefore,
Line detection was not sufficient in classifying PTX from
normal. As a result, we had to deduce other statistical infor-
mation from the M-modes to provide accurate results.

E. DIFFERENTIATING BETWEEN EXTRACTED PTX AND
NORMAL M-MODE SCANS USING STATISTICS
Since line detection was not enough in differentiating PTX
from Normal case, we decided to calculate the sample vari-
ance for processed M-mode images. This variance measures
the variability of the pixel intensity values from the mean
value. Almost all PTX processed videos displayed a relatively
higher variance value than Normal scans. A total of 6 normal
cases (31 videos) and 5 PTX (16 videos) cases were tested.
29/31 normal videos demonstrated a variance ≤ 500, but the
variance in the other two videos was fairly substantial as
they did not show clear LUS features. However, the averaged
variance for each Normal case stayed ≤ 500. On the other
hand, 14/16 PTX videos displayed a variance ≥ 500. The
averaged variance for each PTX case stayed ≥ 500.

V. RESULTS
A. PARAMETERS FOR FRCNN
1) ANCHOR RATIOS
The aspect ratio of the object classes in the training dataset
can be preserved using anchors. Choosing these anchor ratios
depend on the varied sizes of different object classes. Each
LUS pattern (class) in our dataset displayed different shapes
throughout the videos. Several anchor ratios were hence
added as the sizes of the LUS features varied from one patient

TABLE 2. LUS features with their respective anchor ratios.

to another depending on the age. Not only this, but the angle
with which the neonates chest is being scanned also affects
the size. As stated in Table 2, a total of 28 anchor ratios were
specified.

B. OTHER PARAMETERS
32, 64, 128 and 256 were selected as anchor scales. A total
of 112 anchors were introduced per spatial location. The
model was trained to learn the offset difference between
the predicted and ground truth bounding boxes. Smooth
L1 was used for the regression loss. Early stopping was
employed as a regulation technique for the neural network
to avoid overfitting. As a result, the model was trained for
100 epochs with a step size of 100. The learning rate was
set to 1 × 10−5 and the stochastic gradient (SGD) momen-
tum was set to 0.9. A 12GB NVIDIA Tesla K80 GPU was
employed to ramp up the training of the object detection
model. The models were implemented in the Keras frame-
work, with a TensorFlow backend. To speed up the learning
process, a pre-trained VGG-16 was used as the backbone
of fRCNN. Non-maximum suppression was set to 0.15 to
prevent overlapping between predicted boxes over one LUS
feature. During testing, predicted bounding boxes with an
overlapping bounding box threshold of 85% were accepted.
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C. EVALUATION: MAP
mAP is used to evaluate object detection models. Probability
score is assigned to every predicted bounding box. Only
boxes with a probability score and IoU greater than the set
threshold are considered. IoU threshold values were set as
[0.2, 0.3, and 0.4].

We noticed that the pleural line appeared as multiple
pleurae separated by rib shadows. Whereas anterior views
displayed a long continuous line. As an object detection
model, it detects various parts of the continuous line cor-
rectly as a pleural line. But after non-maximum suppression
overlapping boxes are discarded. The boxes remaining when
matched with the ground truth box still provides us with a
lower IoU (between 0.2 and 0.4) compared to IoU thresh-
olds traditionally accepted by natural object detection models
(typically 0.5 and above). According to physicians, the pre-
dictions are correct as long they capture the line itself. Since
the objective is not to quantify the size of the line, rather than
the presence/absence of it, IoU threshold was set lower (0.2)
to accept these bounding boxes.

Considering two bounding boxes, C1 and C2, IoU will be
calculated as in equation 5.

IoU =
C1 ∩ C2

C1 + C2 − C1 ∩ C2
(5)

Recall and precision are calculated as in the following
equation 6.

R =
TP

TP+ FN
,P =

TP
TP+ FP

(6)

where FN, TP and FP are the false negatives, true posi-
tives, and false positives respectively. The model is trained
to keep the offset difference between the predicted box and
the ground truth box to a minimum. The average precision of
themodel is the area under the precision recall curve. Average
precision is calculated per LUS frame, and is then averaged
over all frames to get the mAP per LUS feature. Finally, the
model’s mAP was calculated by averaging the mAP of all
LUS features.

D. AUGMENTATION AND PRE-TRAINING
Deep learning models like fRCNN require a massive amount
of labelled training data. Ultrasound images are limited, and
manual annotation takes a long time. As a result, horizontal
flipping and rotations of +5 degrees and +10 degrees were
used to augment the data. Training the VGG-16 backbone of
fRCNN from scratch produced worse results than using its
pre-trained model already on natural images. We only report
results from the pre-trained network for brevity.

E. EFFECT OF HYPERPARAMETERS
To achieve the best performance, few parameters were tuned,
including the region proposal network (rpn) overlapping
threshold and the classifier maximum threshold. The rpn
network proposes regions by scattering anchors of various
ratios and scales across feature maps. As shown in Table 3,

TABLE 3. Tuning the rpn overlapping threshold for fRCNN.

the overlapping threshold between the anchors and the ROI
was set to 0.7, 0.6, and 0.5, and the trained models were
named as M1, M2, and M3. The models were evaluated by
calculating mAP for various IoU values of 0.2, 0.3, and 0.4.
It was discovered that the higher the threshold for the rpn
network were kept, the more accurate the detections were.
The model with the highest rpn overlapping threshold had the
highest mAP of 86.6%, 84.3%, and 79.9% for IoUs of [0.2,
0.3, 0.4] respectively.

According to Table 4, M3 takes approximately 3 hours
to train, which is roughly double the time the first model
M1 takes. This is due to the additional regions proposed
with at least 50% overlap with the ground truth object. This
takes longer during the detection phase, as observed by the
slowest modelM3, which takes 16.11s vs. 8.75s for the fastest
modelM1.

Another hyperparameter for fRCNN is the classifier max
threshold, which is calculated after the rpn proposes the ROIs.
To detect the presence of an object, proposed regions are
passed through a classifier. As shown in Table 5, the classifier
max threshold is set to 0.5 and 0.4, and the trained models
were namedM4 andM5, respectively.

The model with the higher classifier max threshold
achieves 86.6%, 83.4%, and 79.9% for IoUs of 0.2, 0.3, and
0.4, respectively, whereas the second model achieves 73.3%,
79.5%, and 81.4% for the same IoUs.
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TABLE 4. Effect of the tuning parameter rpn-overlap threshold on the
training time and recognition speed.

TABLE 5. Tuning the classifier max threshold for fRCNN.

F. TRAINING AND TESTING PARAMETERS FOR RETINANET
The same anchor ratios used in Table 2 were used. The anchor
scales were set to [0.25,2,5]. The number of potential anchors
was set to 84. The model was trained for 100 epochs at
3.64×10−4 learning rate. A bounding box threshold of 85%,
a non-maximum suppression of 0.15, and a IoU of 0.2 were
chosen. The models were trained on a 70%/30% split for
train/test as shown in Table 6. The split was frame-based for
each video from each patient. For example, if a patient has
6 videos and each video represents a certain LUS zone. Then
each video zone was further divided into train and test frames.
This was to ensure that the model learns the variation of each
LUS feature across all views. Each patient had a range of
1-10 videos. The training and testing statistics of RetinaNet
vs fRCNN are shown in Table 7.
We see that fRCNNoutperformsRetinaNet, with an overall

mAP of 86.57 % vs. RetinaNet’s 61.15%. This mAP repre-
sents the average precision of all anomalies in the dataset.
fRCNN is capable of capturing 5 out of 7 Lung pathologies
with a mAP above 90%, while the other two pathologies have
a mAP close to 65%. RetinaNet, on the other hand, was able
to capture 4 out of 7 pathologies with a mAP greater than
60% and the remaining pathologies with a mAP less than
55%. Separate B-lines depicted low mAP for both models as
they are rare relative to other pathologies. Thick pleural also

TABLE 6. Train/Test frame split.

TABLE 7. Training and testing statistics of fRCNN and RetinaNet.

showed lowmAP for both models as its structure was visually
similar to normal pleural. Despite RetinaNet’s low efficiency,
it is still closer to a real-time model, with an inference speed
of only 2.53 s per frame. This model is roughly three times
faster than the fRCNNmodel. It is due to the fRCNNmodel’s
complexity and the number of stages included in its archi-
tecture. RetinaNet is a one-stage detector as opposed to the
two-stage fRCNN detector. That’s why fRCNN takes twice
as long to train as RetinaNet. fRCNN was selected as the
efficient model for our LUS dataset due to its higher mAP
despite its lower speed. Fig. 6 shows LUS frames from the six
LUS study cases with their corresponding detected features.

Xing et al. [19] detected pleural line using a single class
fRCNN reporting an accuracy of 95.41% vs a 90.10% by our
seven class model as shown in Table 8. However, our model
is a multiple class model vs their model which is only a single
class focused on detecting only one LUS feature ‘‘Pleural
line’’. Single-class models tend to have a narrower focus
and can therefore make more precise predictions because
they are only looking for one type of object. Our multi class
model, however, is designed to detect more features. Our
model proves to be more robust as it has been trained on a
wider range of LUS features (six more prominent features).
Interestingly, our model is within an acceptable margin from
their work [19].

Moreover, while Xing et al. [19] utilized image processing
techniques to identify A-lines, our approach relied solely on
Faster RCNN and was fully automated. Their accuracy in
detecting A-lines was 97.88%, whereas our model’s accuracy
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FIGURE 6. Screenshots from the Interpretable model: (a) CLD case with
detected irregular pleural and consolidations as well as Coalescent
B-lines. (b) Normal scan with normal pleural line and A-lines. (c) PTX scan
with detected pleural line and A-lines (d) Consolidation scan with
detected irregular pleural line with subpleural consolidations and
Coalescent B-lines. (e) ARDS scan with its associated detected features:
Coalescent B-lines and Irregular pleural lines. (f) TTN scan with detected
normal pleural and separate B-lines.

TABLE 8. Comparison with the state-of-the-art for A-line detection.

TABLE 9. Performance results of Our model with other state of the art
work on B-lines.

was 93.00% as shown in Table 8. Yet, our model’s results falls
within relatively the same margin.

Sloun et al. [26] focused on the detection of B-lines using a
single class CNN, scoring 89.20% vs 82.70% for our model
as shown in Table 9. However, the paper localized B-lines
using class activation maps (CAMs). These maps provide
class scores and not precise localization as what our proposed
model offers. Our model precisely gives information on the
exact location of the object within an image through the use
of bounding boxes, while CAMs only give a rough indication
of where the object is located. Also, the paper has not focused
on any characterization and differentiation of the detected
B-lines. Our paper focused on detection of coalescent as well
as Separate B-lines. We detect coalescent B-lines with an
accuracy of 99.40%. Also, our model is a seven class feature

TABLE 10. Automatic vs manual selection of line of motion.

model with a total mAP of 86.57% yet very close to the model
proposed by [26].

G. EVALUATION OF AUTOMATIC VS MANUAL SELECTION
OF LINE OF MOTION
In our work, we proposed an automatic cursor allocation to
generate M-modes without involving a human in the loop
setting. Cursors were manually positioned on 47 videos of
both PTX and normal cases and compared to our extracted
M-modes. The accuracy for PTX automatic cursor allocation
was reported as 96.37%, and the accuracy for Normal was
reported as 97.59% as shown in Table 10. The precision
was calculated by dividing the manual cursor position by
the predicted position. This high accuracy provides a reliable
method for physicians to automatically generate M-modes
for their neonatal study cases. We were able to diagnose 5
PTX and 6 Normal cases with 100% accuracy using these
M-modes and the line detection technique.

H. EVALUATION OF LINE DETECTION METHOD FOR
DIFFERENTIATING PTX AND NORMAL M-MODE
Our proposed method for line detection was tested on LUS
normal and PTX scans. Statistics such as the number of
lines and the variance were calculated. One or two views
in some cases did not meet the variance threshold. As a
result, the variance for all views was averaged, and the final
classification of the case was based on the average. Averaging
variancewas critical because, in the opinion of the physicians,
it is not necessary for all 6-LUS-scan views to exhibit the
typical features for the tested case. As a result, we see in PTX
that 14 out of 16 videos have a variance greater than 500,
whereas after averaging variance, we get a full 5/5 correct
case evaluation. Similarly, in generated Normal processed
M-modes, 29 out of 31 videos had variance lower than 500,
resulting in a final 6/6 correct case evaluation.

Overall, the model has the potential to improve the
efficiency and accuracy of Lung Ultrasound evaluation in
healthcare settings.

VI. CONCLUSION
Our research work focused on interpreting neonatal lung
ultrasound scans. Rather than detecting the lung conditions
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from direct image classification, physicians have recom-
mended that an LUS feature extraction system will be more
useful, since the ultimate diagnosis may depend on other
factors than images alone. Therefore, we trained two object
detection models and the excelling model was faster RCNN
which achieved a mAP of 86.57% using an IoU of 0.2.

We extracted M-mode images to enrich the details of the
lung sliding movement shown in the LUS videos. We suc-
cessfully extracted ROI’s automatically with a high precision.
The accuracy of our automatic line of motion was 97.59%
for Normal cases and 96.37% for PTX, respectively. Image
processing techniques such as edge detection andmorpholog-
ical procedures were applied over M-mode images. Hough
transform approach was used to detect these lines in the
M-mode images. Normal processed LUS M-modes showed
a variance ≤ 500, whereas PTX processed images showed
higher values. We were able to effectively distinguish 6/6
Normal cases and 5/5 PTX scans.

A. CLINICAL TRANSLATION PLANS
The highly applied nature of the project and the encouraging
results sets the stage right for clinical translation. Currently,
we are in the process of developing a software with the trained
model to be installed on a computer on the premise of our
clinical partner, the Mount Sinai Hospital in Toronto. First,
we will conduct a usability testing of the software, where
the usability will be evaluated using the System Usability
Scale (SUS) [27]. Once the usability aspect is validated
and up-to-standard, we will significantly expand the dataset
through a retrospective study (N > 500) so that the obtained
results are generalizable. Once the results have improved,
we will conduct a validation study with held-out dataset.
Additional funding sources will be secured to conduct the
clinical translation.
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