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Abstract

A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish
some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is
inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell
distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this
phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials.
Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.
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Introduction

Biological cell patterns are a contemporary theme of study, both

for its intrinsic biological interest and also by their potential

medical applications. Current research has been recently summa-

rized [1] and lately, it is possible also to mention the works on the

hexagonal packing of Drosophila wings [2] the results of on

Drosophila retina [3], and a theoretical approach on geometric

order in Drosophila imaginal discs [4].

Concerning the main theme of the present note, a concise

treatment of the biology of the corneal endothelium appears in

Bourne’s review [5]. It is a well established fact that corneal

endothelial cells form a monolayer of mosaic-like cells, with two-

dimensional tessellation on the posterior surface of the cornea.

Also, it is well-known that its cellular morphological characteristics

evolve with aging: some cells grow and others disappear.

Polymegethism (cell size) and polymorphism (geometric cell

parameters) are usually measured by optical microscopy. Several

eye anomalies can be detected by a physical examination of this

tissue, and therefore its ‘‘normal’’ characteristics need to be

studied thoroughly.

The purpose of this note is to analyze the results of the increase

in cell size in adult humans (or equivalently, the reduction in cell

density) reported in the literature. It is important to note that

results taken from different populations in diverse regions of the

world are used, and also that the ‘‘normal adult eye’’ differs for

these distinct populations depending on their geographical

location. There is ample evidence for this last fact, as described,

for example, by some recent papers [6,7]; this would therefore

imply that the endothelial cell characteristics also differ from place

to place.

Being so diverse the sample population of the ten analyzed

countries, our concern is to examine the rate of growth of the cell

size. Therefore, it is the main proposal of this note to establish that

the rate of increasing in the mean cell size shows similar behavior

in all considered populations. In addition, it is suggested that this

aging behavior is governed by capillary driving forces (surface

tension) acting on the cell boundary.

With this goal in mind, we will examine evidence from other

systems that present cell growth. Surface tension driven cellular

patterns (by short, ‘‘foam-like’’ systems) have been studied in the

current literature associated with grain growth in polycrystalline

materials and cellular development in foams. Although there is not

complete agreement in the way these complex systems evolve,

recently, a theoretical treatment for two-dimensional grain growth

in a stochastic framework has been proposed [8]. Also, there are

other proposed theoretical models [9]. An appropriate vision of

the ‘‘state of the art’’ on this matter appears in some seminal

reviews [10-11]. On the other side, the Physics of foams have been

comprehensively revised in a recent book [12] and reviewed in

current works appearing in the literature [13,14]. As well, there

have been approaches that simulate the grain growth behavior in

polycrystalline materials by using soap froth patterns [15,16].

Results

Endothelial cell densities have been measured in adult humans

by several research groups. There are results on the North

American and Japanese populations [17]; Japanese data [18],

Italian results [19], Iranian population [20], Pakistani data [21],

Indian reports [22], and Phillipines [23]. Also, it exists earlier

results from American population [24], Danish records [25].

Recently, Chinese data [26] and Portuguese measurements

[27,28] had been published.

It is important to emphasize that the present note only refers to

normal adult eyes. Although other cases are not considered, it is

useful to state that there also exists substantial knowledge on the

parameters of this cellular pattern for other types of population,

i.e. children [29], animals [30] and also for abnormal endothelia

[31]. Obviously, the aforementioned references do not cover all

the literature with reference to the important issue concerning

non-adult human eyes.
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In the following paragraphs, we analyze the evidence that

support our proposal of a ‘‘foam-like’’ behavior for the endothelial

cell pattern.

1. Morphology. There is a striking similitude between the

endothelium cell pattern and other cellular, non-biological

patterns appearing in different contexts. All these configurations

also show aging, i.e. its properties vary according the elapsed time.

Fig. 1 shows a typical endothelium pattern and a soap froth

pattern. Both are two-dimensional tessellations and although the

scales are different, the distribution of the cells appears to be very

similar. Analogous patterns also appear in other scenarios, i.e.

lipids, metals, ceramics, Potts model, iron garnet, cucumber,

geography and cosmological models as remarked in the literature

[13]. In all these phenomena, the driving force for the growth of

the cells is the interface properties of the boundaries (also called

capillary effects), and their movement is governed by the surface

tension and the mobility of these boundaries.

2. Hexagonallity. Further evidence of this similitude is the

tendency to hexagonallity. In these patterns, cells tend to stabilize

in a hexagonal structure, as stipulated by the so called Mullins-von

Neumann law for two-dimensional area growth of a single cell

[32,33]. This law states that a cell with more than six sides grows

and a cell with less than six sides shrinks, with equilibrium being

obtained by hexagonal cells, in accordance with the equation:

dA

dt
~C(n{6), ð1Þ

In this equation, dA/dt is the growth rate of a cell with n sides and

C is a constant involving a geometrical factor and the surface

tension and mobility of the boundary. This law is in agreement

with the prevalence of hexagonal morphology in endothelial cell

patterns, a well documented fact in the current literature [34]. It is

to be stressed that the Mullins-von Neumann law is valid for

individual cells, whereas measured growth kinetics usually refers to

mean values (see Eq. 2).

3. Kinetics of growth. One of the more known experimental

facts about the kinetics of these phenomena is the increase in mean

cell size (or the corresponding decrease in cell density). This

behavior appears also neatly in the analysis of soap froth domain

growth [13] and grain growth in polycrystalline materials [10,

11,35].

In order to further explore this analogous behavior, we will

analyze the numerical values measured of this parameter. The

mean cell size kinetics in aging -taken from the corresponding values

reported in the current literature- is depicted in Fig. 2. (In some

examples from current literature aging kinetics are reported in terms

of cell density. In these cases, the data has been homogenized and

represented in terms of the corresponding cell mean size.).

The data for the considered reports show a strong tendency to

have a constant slope. They appear in a band bounded by the

measured Iranian values at the upper side and the Japanese values

at the bottom. Data from India, Pakistan, Italy, Denmark, China,

Philippines and Portugal and both records from the USA may be

grouped as a set of similar results. As previously mentioned, different

behavior depending on geographical origin is to be expected.

As already mentioned, the data show dispersion. To better

expose our argument, we plot in Fig. 3 the results corresponding to

USA and Japan measured values. In each of these cases the data

are obtained from two different independent works; USA data

[17,24] and Japan data [17,18]. It is observed that a linear fit for

each of these groups shows similar slope (1.2 mm2/year and

1.4 mm2/year, respectively) so supporting our assertion that each

set of data show a linear behavior. There is not sufficient evidence

to assert that all considered data fits with the same slope and only

an estimate of the order of 1 mm2/year, may be stated.

This incremental behavior confirms a well established qualita-

tive fact on the aging kinetics of endothelial cells, but it is necessary

to stress that this result, for adult populations, shows proportion-

ality with time (that is, the displayed experimental points show a

common slope) This outcome is true irrespective of the choice of

population included in the different research samples.

In other terms, the considered patterns follow the ‘‘parabolic

law’’ (it scales with size squared). This fact is a well established

result [10–12,14] on the kinetics of this type of patterns, and states

that the mean area grows linearly with time, according to the

equation,

vR2
w{vR0

2
w~kt: ð2Þ

In this equation, R is the cell size, ,R2. is a measure of the

mean cell area at time t and ,R0
2. is the initial mean cell area.

The k-value represents the slope of the corresponding plot and

therefore can be inferred from the displayed data.

4. Statistical distribution. There is not agreement of the shape of

the cell size distribution for foam-like structures. As already noted

[14], ‘‘…determining the distribution of surfaces and volumes

while the foam coarsens remain a subject of active research’’. In

fact, only to mention a recent intent on this matter it is possible to

study a just published paper and references therein [36]. However,

as show in the above mentioned literature, there is an ample

accord in the statement that this distribution is scale-invariant.

In absence of a definitive answer to the question of the distribution

function and for the purposes of this note we will use the log-normal

distribution. There are solid evidence on this assumption in the

corresponding literature [36–39]. With this assumption in mind, by

using the photographic record already published [34] and data

extracted from an existing paper [40], the cell distribution at the

central endothelial zone was examined. These statistics were

calculated from the 1516 cells appearing in a plate of Schimmelp-

fennig’s paper and 1500 cases considered in the Stoker and

Schoessler’s work. Consequently, we depict in Fig. 4 a log-normal

Figure 1. The image on the left shows typical endothelial cells.
On right, a two-dimensional foam is shown. Note the similitude of the
outlines and the difference in scale.
doi:10.1371/journal.pone.0019483.g001
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plot of the data, which shows an excellent fit with the experimental

result. (r2 = 0.97; x2/dof = 0.0002; note the positive skewness).

Discussion

In summary, we have reviewed the data concerning

entothelian cell growth. What’s more, it is here proposed that

the aging of cells in endothelial tissue follows the laws of the

cellular two-dimensional patterns already studied in other

structures, as suggested by its morphological structure, the

linearity of the mean cell growth rate and the prevalence of cells

with a hexagonal shape. Strong added evidence is given by the

correlation shown in the analysis of the scaled statistical cell

distribution. In other words, corneal epithelial cells form a

foam-like system, restricted to the experimental evidence found

in human adults.

Figure 2. Mean size kinetics reported in the literature.
doi:10.1371/journal.pone.0019483.g002

Figure 3. Mean size kinetics corresponding to USA and Japan adults. Slopes for both cases are indicated in the figure.
doi:10.1371/journal.pone.0019483.g003
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The fitting of the data to linear forms is a consequence of the

original already published data. The use of an exponential fitting -

as suggested in some references- is a valid hypothesis only if we

include infant patients. Data in humans [26,29,41,42] and mice

[30] show experimental results. The rapid fall in cell density for

children is clearly related with the growth of the cornea itself, that

is, the pattern of cells has a more spacious growing environment.

In the adult case, the size of the cornea is fixed and the cells have a

limited space to grow. When we discard the data corresponding to

infants, the linear relationship is recovered.

Perhaps, a comment on the evidence of different patterns in

central and peripheral corneal zones seems in order. As already

noted [34,43], the shapes and distribution of the cells from these

different zones give dissimilar (although not strongly different)

morphological results. In the framework of the analogy with other

patterns, it is possible to speculate that this effect is due to the

boundary constraints caused by the finite size of the cornea. In

other words, as cells grow, stagnation effects occur which are more

significant in the border area. This braking effect has been well

documented for thermal grooves in thin films [44] and in domain

growth of soap froths and polycrystalline materials with quenched

impurities [15,16]. Therefore, it is possible to assume that cell

growth in the central endothelium corneal zone is analogous to

‘‘free’’ cell growth without constrains.

It is worth noting that these conclusions put a sound basis for a

clever insight of Schoessler and Ornsborn [45]. Referring to the

aging of growth pattern, they wrote: ‘‘we believe…that a more

likely explanation is that many cells are ‘‘shrinking’’ and others are

expanding to fill in the space.’’

As a final remark, it is a well know fact that endothelian cells do

not replicate in-vivo (at least in the necessary amount to replace

disappearing cells). Instead, they do reproduce in-vitro [46]. The

crucial point seems to be, why the reproductive behavior of these

cells is different in an aggregate than in a single cell? We guess that

this paper may offer a new perspective on this question.

Methods

As noted in the introduction section, data for cell densities in

adult human endothelial cells were obtained from the literature

[17–28]. Data for cell size fraction distribution (Fig. 4) were

obtained from the works of Schimmelpfenning [34] and Stoker

and Schoessler [40]. These numerical results were processed by

standard graphical and statistical software.
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