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Abstract
One hundred and thirty years after lymphoid and myeloid cells were discovered, in 2008, the researchers presented to 
the scientific community the population of innate lymphoid cells (ILCs) identified in humans and mice. Human ILC sub-
sets were first identified in secondary lymphoid tissues and subsequently reported in the intestine, lung, liver, skin, and 
meninges. ILCs (ILC1, ILC2, ILC3, and ILCreg) subgroups present plastic properties concerning cytokines, chemokines, 
and other mediators present in the microenvironment. ILC1s were characterized by their ability to produce interferon 
(IFN)-γ. ILC2s have a function in innate and adaptive type 2 inflammation by producing effector cytokines such as inter-
leukin (IL)-5 and IL-13. Meningeal ILC2s were activated in an IL-33-dependent mechanism releasing type-2 cytokines and 
demonstrating that ILC2s proliferate in reaction to IL-33 activation. ILC3s have been discovered as a significant contribu-
tion to the homeostasis of the gut barrier and as a source of IL-22. IL-22 presents a pleiotropic activity reinforcing the 
gut barrier immunity by stimulating anti-microbial peptide synthesis and promoting microbial regulation. Additionally, 
ILCs can have a pathogenic or protective effect on many disorders, and further research is needed to determine what 
elements influence the nature of their actions in diverse situations. The narrative review summarizes the role of the ILCs 
in mental health.
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1  Introduction

Innate lymphoid cells (ILCs) are the most recently reported immune cells, identified as a novel type of non-T and non-B 
lymphocytes. The newly discovered ILC1s, ILC2s, and ILC3s, which generate cytokines similarly with T helper (Th)-1, Th-2, 
and Th-17/Th-22 cells types, respectively, were incorporated in a related cell subset that also includes natural killer (NK) 
and lymphoid tissue inducer (LTi) cells [1–3]. ILCs play a vital role in the regulation of immunity, inflammation, and bar-
rier homeostasis by producing cytokines in response to tissue-derived signals, damage-associated molecular patterns 
(DAMPs), pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), or other 
environmental stimuli [2].

Human ILC subsets were first identified in secondary lymphoid tissues and subsequently reported in the intestine, 
lung, liver, and skin. ILC1s are characterized by their capacity to produce interferon (IFN)-γ dependent on the transcription 
factor T-box expressed in T cells (T-bet) that directly activates IFN-gene production. ILC2s are GATA-binding protein-3 
(GATA3) transcription factor-dependent and may generate interleukin (IL)-4, IL-5, IL-9, and IL-13. ILC3s, natural cytotoxicity 
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receptor (NCR)+, are dependent on the retinoic acid receptor-related orphan receptor-t (RORt) for development and 
function in order to produce IL-17A, IL-22, GM-CSF, and IFN-ƴ. ILC3s, NCR−, release IL-17F, IL-22, and LTα/β [4]. ILC210, an 
ILC-regulatory cell that expresses the inhibitor of differentiation/DNA binding (ID)-3 transcription factor, has recently been 
discovered to have regulatory characteristics due to its IL-10 activation in response to IL-33 retinoic acid stimulation [4, 
5]. The ILCs have the ability to communicate with the surrounding microenvironment and present biological roles due 
to their cellular plasticity [4]. Each ILCs responds to distinct stimuli, IL-7, IL-12, IL-15, and IL-18 trigger ILC1s phenotype; 
IL-1β, IL-7, IL-33, and retinoic acid trigger ILC2s phenotype; and IL-1β, IL-7, and IL-23 trigger ILC3s phenotype. ILC2s and 
ILC3s transdifferentiate into ILC1s in response to IL-1β, IL-15, IL-12, whereas IL-1β and IL-23 can drive the plasticity of 
ILC1s and ILC2s towards ILC3s [4, 6]. Figure 1 summarizes the ILCs subgroups and their plasticity properties concerning 
cytokines and chemokines in their microenvironment. ILC2s and ILC3s have antigen presentation activity mediated by a 
major histocompatibility complex (MHC Class II), allowing them to interact directly with CD4+ T cells [7]. However, ILCs can 
have a pathological or protective effect on different diseases, and there is still necessary to investigate and understand 
what factors influence the nature of their functions in different environments [8, 9]. This narrative review recapitulates 
the role of the ILCs in mental health.

1.1 � Circulating ILCs

Pluripotent hematopoietic stem cells also differentiate into the common lymphoid progenitor (CLP) cells. Murine ILC cells 
originate first in the fetal liver and later in the adult bone marrow from CLPs. However, CLP in the human bloodstream 
has the ability to produce all ILCs, demonstrated both in vitro and in vivo studies [10]. The expression of hallmark tran-
scription factor genes associated with the distinct ILC subsets is lacking in this cell type when they are released into the 
circulatory system after being produced in the bone marrow [11]. ILCs circulate like naïve immune cells, and the final 
step proposed is in lymphoid and non-lymphoid organs and on the body’s mucosal surfaces [11]. A cluster of differen-
tiation (CD127+) phenotype, which includes ILCs and NK subset of cells, was expressed by around 0.01 to 0.1 percent of 
circulating lymphocytes in healthy individuals. The vast majority of CD127+-ILCs identified in peripheral blood constitute 

Fig. 1   Innate lymphoid cells 
(ILCs). A Different cytokines 
and chemokines activate 
ILCs, and following activa-
tion, ILCs release cytokines 
and chemokines into their 
surroundings. B The ILCs can 
modify their outcome, as well 
as their function and pheno-
type, in response to environ-
mental stimuli
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ILCs of type-2 [12]. An investigation of the frequency and distribution of circulating ILCs populations in 89 healthy adult 
volunteers revealed that iILCs are present at meager rates, accounting for 0.034 percent on average. In contrast to the 
previous work, the distribution of ILC subsets in peripheral blood revealed a high proportion of ILC1s and a reduced 
proportion of ILC2s and ILC3s [13].

1.2 � The role of ILCs in the gut

The scientific community has recently investigated the involvement of the microbiota-gut-brain axis is in mental health. 
The bi-directional communication between the gut and brain occurs through the vagus nerve, immune system, enter-
oendocrine system, neurotransmitters, short-chain fatty acids (SCFAs), aryl hydrocarbon receptors (AHRs), bile acids, 
and the hypothalamic–pituitary–adrenal (HPA) axis [14, 15]. The most notable SCFAs produced by bacteria carbohydrate 
fermentation are acetate, propionate, and butyrate, which are involved in intestinal homeostasis, circadian rhythm, neu-
roimmune function, and behavior [16]. The SCFAs sense receptors on the ILCs in the gut, modulating the immune system 
and triggering the homeostasis, demonstrating that the gut microbiota is required for the ILCs to produce IL-22 [17]. 
IL-22 is a central regulator of the intestinal barrier that decreases gut permeability while increasing mucus production 
and anti-microbial peptides [18]. Several neuropsychiatry disorders are associated with gut permeability and bacterial 
translocation to the bloodstream, including Alzheimer’s disease [19], Parkinson’s disease [20], autism spectrum disorders 
[21], and schizophrenia [22, 23] among others [15, 16]. In the gut, ILC3s have been identified as a prominent contributor to 
the homeostasis of the barrier immunity. ILC3s produce the cytokine IL-22 in response to inflammatory stimuli and other 
pro-inflammatory cytokines and chemokines [24]. Then, (STAT)-3 phosphorylation increases by IL-22, as was IL-22-mediate 
epithelial regeneration in the gut [25, 26]. In addition, SCFAs increase IL-22 production by ILCs via G-protein receptor 41 
(GPR41) and inhibit histone deacetylase (HDAC). SCFAs also stimulate IL-22 production via increasing the expression of 
the aryl hydrocarbon receptor (AHR) and the hypoxia-inducible factor 1 (HIF1) [27]. AHR is common in epithelial gut tissue 
and, when activated, improves intestinal epithelial barrier function and regulates immune responses. In a clinical study, 
psychological stress decreased IL-22 levels in the serum, demonstrating a reduced IL-22-induced protective immunity 
in the gut [28]. In another study, IL-22 administration induced the intestinal epithelial cells to increase tight junction 
protein expression in Crohn’s disease patients; also, anti-TNF therapy increased IL-22 production in CD4+ T cells. Patients 
with inflammatory bowel disease (IBD) are at increased risk for mental health issues, including depression [29]. The IBD 
patients present an increase of the ILC1s and the ILC3s in the gut increasing the production of IFN-ƴ [30]. Currently, the 
literature has emphasized how the imbalance of gut homeostasis affects mental health [15, 16].

1.3 � The role of ILCs in the central nervous system

The SCFAs can be delivered from the gut to the circulatory system, crossing the BBB into the brain. In the brain, SCFAs 
bind to the AHR on the microglia and astrocyte cells blocking nuclear factor kappa-B (NF-κB) by activating the suppressor 
of cytokine signaling-2 (SOCS2). AHR activation decreases inflammation, neurotoxicity, and immune cell recruitment by 
increasing the transforming growth factor-alpha (TGF-α) and decreasing the vascular endothelial growth factor B (VEGFB) 
[31]. In addition, a network-based ranking algorithm study demonstrated that SCFAs are mechanistically involved in 
microglia-mediated microbiota-gut-brain axis connections in Alzheimer’s disease at genetic, functional, and phenotypic 
levels [32]. Also, the amyloid SUVR uptake was negatively correlated with butyrate blood levels in Alzheimer’s disease 
patients [33].

In the CNS, the meningeal lymphatic vasculature lines the dural sinuses. These tissues exhibit all of the morpho-
logical features of lymphatic endothelial cells that can transport fluid and, most importantly, connect with immune 
cells present in the cerebrospinal fluid (CSF) [34]. Similarly, the meninges act as a CSF barrier, giving CNS-resident 
ILCs an advantageous anatomical site to act as cerebral immune gatekeepers, conveying information from the brain 
to the immune system [35]. ILC2s were found in mouse meninges and are most prominent near the dural sinuses. 
Meningeal ILC2s were activated in an IL-33-dependent mechanism after spinal cord injury (SCI), releasing type-2 
cytokines and demonstrating that ILC2s proliferate in response to IL-33 activation [36]. Constitutively synthesized 
intracellular IL-33 helps maintain barrier function by regulating gene expression as a nuclear protein in healthy 
conditions. Nuclear IL-33, on the other hand, serves as a stored alarmin, which is triggered when barriers are dis-
rupted. As the adaptive immune response is generated, extracellular IL-33 coordinates immunological defense and 
repair pathways while also triggering the development of Th-cells [37].
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In Alzheimer’s pathology, IL-33 was a crucial cytokine for aquaporin-4 (AQP-4) expression in the astrocytes 
endfeet, and to the glymphatic system eliminates the abnormal protein tau accumulation in the mouse brain [38]. 
IL-33 improved Alzheimer’s disease-like pathology modulating IL-1β, IL-6, and NLR family pyrin domain containing 
3 (NLRP3) genes in the cortices of APP/PS1 mice and decreasing cognitive impairment [39]. In another study, ILC2 in 
the brain was quantitatively reduced and functionally inefficient in both sexes’ triple-transgenic Alzheimer’s mouse 
models (3xTg-AD). The remnant ILC2 could not produce the type-2 cytokine IL-5; however, it developed the ability 
to express a variety of pro-inflammatory genes, including Granzyme-A (Gzma), a cytotoxic molecule. However, the 
IL-5 administration improved spatial recognition and learning memory in 3xTg-AD mice [40]. ILC2 has a pleiotropic 
property demonstrating multiple roles in distinct cell types; in a preclinical experiment, male-specific protection was 
provided by the mast cell and ILC2 connection in autoimmune encephalomyelitis (EAE) [41]. Also, decreased levels 
of IL-33 restricted ILC2 activation and promoted susceptibility in a female transgenic mice model of EAE to develop 
multiple sclerosis [8]. Overexpression of IL-33 in cellular models resulted in a selective reduction in the produc-
tion of the Aβ1-40 peptides, a significant component of cerebral amyloid angiopathy (CAA) [42]. ILC-deficient mice 
displayed increased microglial reactivity and exacerbated neuroinflammatory responses in experimental models 
of EAE and skin/brain inflammation induced by imiquimod drug administration [43]. In an experimental model of 
inflammation induced by lipopolysaccharide (LPS), IL-13 controled brain inflammation by promoting the death of 
activated microglia in vivo, increasing neuronal survival cells [44]. IL-13 reduced neuroinflammation and promoted 
recovery after a mouse model of experimental traumatic brain injury [45]. Moreover, in an experimental model of 
ischemic stroke, peripheral administration of IL-13 reduced lesion volume, induced anti-inflammatory microglial 
and macrophage phenotypes, providing a neuroprotection [46]. In addition, the anti-inflammatory cytokine, IL-10, 
decreased the severity of inflammation and the blood–brain barrier permeability in an experimental model of 
severe acute pancreatitis [47]. In a clinical study, increased IL-1β and IL-18 production, along with pro-inflammatory 
cytokines, were connected to a significant decrease in IL-33 plasma of autism spectrum disorder patients [48]. In 
another study, patients with amnestic mild cognitive impairment or Alzheimer’s disease who lacked IL-33 expression 
showed severe cognitive impairment, whereas patients who presented the IL-33 expression maintained their cogni-
tive performance [49]. IL-33 expression was shown to be lower in the brains of Alzheimer’s disease patients when 
compared to controls, and additional genetic investigation revealed three variants within the IL-33 gene, indicating 
a protective haplotype linked with Alzheimer’s disease risk in non-APOE e4 carriers patients. These polymorphisms 
were likewise linked to lower CAA levels in the brains of non-APOE e4 AD patients [42]. Increased inflammatory 
biomarkers such as tumor necrosis factor-alpha (TNF)-α, IL-6, cyclooxygenase (COX)-2, and arachidonic acid (AA) 
were identified in bipolar disorder patients compared to healthy controls without mental illnesses; however, IL-10 
and IL-33 levels remained unchanged [50]. On the contrary, another study found that IL-33 levels in the blood were 
higher in bipolar disorder patients than healthy controls [51]. The effect of IL-33 activation or inhibition on different 
diseases might be attributed to its biding effect on IL-33 receptors, which are found on mast cells, endothelial cells, 
microglia, and astrocytes in the brain. In the bloodstream, increased levels of IL-33, a nuclear-associated cytokine, 
can be connected with cellular apoptosis and necrosis. Also, Th-2 lymphocytes, macrophages, dendritic cells, CD8+ 
T cells, B cells, and certain granulocytes, including basophils and eosinophils, have been found to express IL-33 
receptors [52], highlighting the importance of determining the mechanisms behind the IL-33 source. Furthermore, 
the connection between ILC2 and IL-33 must be investigated since ILC2’s pleiotropic characteristics may be at the 
root of various neuropsychiatric disorders.

The ILC1s and ILC3s are normal meningeal and CNS parenchymal inhabitants. ILC1s facilitate the direct infiltra-
tion of Th-17 cells that mediate pro-inflammatory cytokines into the brain parenchyma and spinal cord, conse-
quently contributing to the propagation of neuroimmune response to CNS injuries [53]. T cells that produce IL-17 
are vital players in Parkinson’s disease, which is connected with neurodegeneration [54]. ILC3s can release OX40L 
and CD30L molecules, a binding ligand, which increases the proliferation and survival of the memory T cells in the 
brain parenchyma and spinal cord [55]. In an EAE mouse model, ILC3s cells accumulated and exhibited disease-
induced activation in the meninges of the animals [55]. The ILC1s and ILC3s in the brain are unknown and have 
only been described in acute brain damage, autoimmune diseases, inflammation, and infection. Only ILC2s have 
been explored in the context of neurodegeneration and mental health status [56]. For more details about the ILCs’ 
function in the CNS, see Fig. 2.
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2 � Conclusion

ILCs are necessary to be investigated since the results generated may lead to new and more effective treatments, 
mainly because the meninges are located outside of the BBB and, therefore, more easily targeted. ILC1s and ILC3s are 
essential targets to be investigated in order to treat diseases associated with infection and inflammation, including 
traumatic brain injury, autoimmune encephalomyelitis, sepsis, meningitis, among others. Otherwise, preclinical and 
clinical pieces of evidence have demonstrated the involvement of meningeal populations of type-2 innate lymphoid 
cells, ILC2s, in neuroinflammation and neurodegenerative diseases. Targeting the ILC2s may be a new avenue to 
investigate and possibly be a target to treat and improve mental health.
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