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A B S T R A C T   

The global pandemic caused by a single-stranded RNA (ssRNA) virus known as the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) is still at its peak, with new cases being reported daily. Although the 
vaccines have been administered on a massive scale, the frequent mutations in the viral gene and resilience of the 
future strains could be more problematic. Therefore, new compounds are always needed to be available for 
therapeutic approaches. We carried out the present study to discover potential drug compounds against the 
SARS-CoV-2 main protease (Mpro). A total of 16,000 drug-like small molecules from the ChemBridge database 
were virtually screened to obtain the top hits. As a result, 1032 hits were selected based on their docking scores. 
Next, these structures were prepared for molecular docking, and each small molecule was docked into the active 
site of the Mpro. Only compounds with solid interactions with the active site residues and the highest docking 
score were subjected to molecular dynamics (MD) simulation. The post-simulation analyses were carried out 
using the in-built GROMACS tools to gauge the stability, flexibility, and compactness. Principal component 
analysis (PCA) and hydrogen bonding were also calculated to observe trends and affinity of the drugs towards the 
target. Among the five top compounds, C1, C3, and C6 revealed strong interaction with the target’s active site 
and remained highly stable throughout the simulation. We believe the predicted compounds in this study could 
be potential inhibitors in the natural system and can be utilized in designing therapeutic strategies against the 
SARS-CoV-2.   

1. Introduction 

The current outbreak of the severe acute respiratory syndrome 
known as coronavirus 2 (SARS-CoV-2) has been declared as a pandemic 
by the World Health Organization (WHO) and is still a severe threat to 
public health [1,2]. It is observed phylogenetically that the SARS-CoV-2 
is highly associated with the previous coronaviruses SARS-CoV and 
MERS-CoV, infecting millions of people all-inclusive [3,4]. As of 
November 20, 2021, the global metrics have confirmed 257,090,259 

infections and 5,158,478 deaths caused by the SARS-CoV-2, which is an 
alarming upsurge in the number of infections if compared with the 
previous data [5]. Furthermore, the novel coronavirus has a lower 
mortality rate, but the transmission rate is relatively high when equated 
with the earlier coronaviruses [6]. 

The SARS-CoV-2 infections could be asymptomatic, mildly symp-
tomatic, or highly symptomatic, depending on the physiological condi-
tions of an individual. Usually, the symptoms involve high temperature, 
shortness of breath/difficulty in breathing, myalgia, coughing, and 
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radiological signs of ground-glass lung opacity well-matched with 
anomalous pneumonia in most patients [7–9]. Upon infection, the per-
son remains asymptomatic but could be a carrier and might infect 
another individual. Therefore, a 14–16 days isolation is advised upon 
contact with the infected area or person. 

The SARS-CoV-2 has a genome of ~30 kb that encodes the entire 
viral proteome, including structural, non-structural, and additional 
proteins. The structural proteins are nucleocapsid (N), matrix (M), spike 
(S), and small envelope (E) protein. Together with additional proteins, 
they are translated by 33.33% of the viral genome, while the remaining 
66.66% of the genome, known as the ORF1a/b region, corresponds to 
the non-structural proteins [7–9]. 

The ORF1 (a and b) are the two non-structural proteins (polypeptides 
pp1a and pp1ab) encoding genes that form the RTC (replication tran-
scription complex). The pp1a and pp1ab polypeptides, once translated, 
are then proteolytically cleaved by other two viral proteases, which are 
knowns as PLpro (papain-like protease) and 3CLpro (3-chymotrypsin- 
like protease) or main protease (Mpro). PLpro is responsible for cleaving 
non-structural proteins (nsp 1–3). At the same time, the 3CLpro bisects 
the polyprotein at 11 specific sites downstream of nsp4 to produce 
various non-structural proteins, which are vital for the viral cycle [10]. 

There have been announcements of the SARS-CoV-2 vaccines, while 
other researchers have reported drugs that could be proven effective. 
The vaccines announced could be effective in some regions and the 
drugs reported may or not reach the clinical trial. This is because such 
viral infections are pretty complicated, and they can quickly develop 
resistance to the drugs because of the fast mutation rate. Therefore, a 
new drug that could strongly bind with the virus and aid in the inhibi-
tion process is always needed. 

Computer-aided drug design has proven to be quite fruitful in 
designing therapeutic strategies. It has helped us construct or discover 
molecules that could effectively cope with the desired target. In the 
current COVID-19 pandemic, medicinal chemists and drug designers 
have attempted to target several of the above structural proteins for 
inhibition purposes. Among these structural targets, one of the proteins 
is the main protease (Mpro) [11,12]. As mentioned above, it digests the 
pp1a and pp1b (L-Q* (S, A, G) (* is the cleave shows the cleavage spot)), 
which are essential polyproteins for the SARS-CoV-2 transcription and 
translation [13]. Therefore, the functional activity inhibition of the 
Mpro provides a reasonable chance of producing an effective drug 
against the SARS-CoV-2 infection [14]. 

The Mpro crystallographic structure has already been deposited in 
the protein databank in its apo form (PDB: 6M03). Its structural char-
acterization reveals 96.1% of sequence similarity to the previous SARS- 
CoV, containing a decidedly conserved manner of the catalytic binding 
spot. This protease has an active site arranged in the form of a homo-
dimer where the binding grove exists in the two domains (domain one 
and domain two) [15]. Besides, several crystallographic structures have 
been reported for the COVID-19 Mpro coupled with various inhibitors, 
which ultimately provided a clue of hotspots and communicating resi-
dues as part of protease catalytic role in its leading protease spot and the 
inhibition process. 

The computer-aided drug design (CADD) approaches have shortened 
the timeline and lowered the expense to design drugs that could reach 
the clinical trial compared to those developed via traditional techniques 
[16–18]. 

Hence, we benefited from the reported crystal structure for the SARS- 
CoV-2 Mpro to carry out vanguard computational analysis for discov-
ering ways of Mpro inhibition. The current work practices a multi-step in 
silico pipeline to discover drug-like compounds against the SARS-CoV-2 
Mpro via virtual screening, molecular docking, and re-docking tailed by 
molecular dynamics simulation and free energy estimations. The out-
comes obtained from these analyses could be of high importance for 
sure. They would be beneficial in designing an effective therapeutic 
strategy against the ongoing pandemic, aiming to save millions of lives. 

2. Materials and methods 

Target protein’s retrieval and preparation The SARS-CoV-2 
crystal structure resolved via X-Ray diffraction approach at a resolu-
tion of 2.00 Å in its apo form (PDB ID: 6M03) was retrieved from the 
protein databank. We used the structure preparation tool in the Mo-
lecular Operating Environment (MOE_2018) for water striping, charge 
adjustments, and 3D protonation [19–21]. The structure was minimized 
as well via the minimization algorithm in MOE. The overall conforma-
tion was keenly observed to assure the lack of any unintended structural 
defects. The overall pipeline of this study is presented as a flowchart in 
Fig. 1. 

2.1. Molecular docking and selection criteria 

There are billions of compounds, each having its features, which may 
or may not be similar to another compound in its physiochemical fea-
tures and targets. Some might follow Lipinski’s rule of five while others 
may not; however, every chemical compound has its own significance in 
medicinal chemistry. Computational molecular docking is an effective 
technique that enables us to see if a particular molecule will bind to the 
desired target or not in real-time. 

In the current work, we considered scanning ~16,000 drug-like 
small molecules from the ChemBridge database being docked into the 
Mpro active site that involves Thr24, Leu27, His41, Phe140, Cys145, 
His163, Met165, Pro168, and His172 as reported by Wu et al., 2020 
(Fig. 2) [22]. The docking parameters were slightly tweaked as the 
refinement was set to Induced Fit, and both the scoring algorithms were 

Fig. 1. This figure shows the entire workflow of our study.  
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set to be London dG. Once the screening was completed, the top 1032 
compounds were selected, having the docking score ranging from 
− 11.99 to − 6.30 kcal/mol. 

Next, to filter out the best possible hits, a criterion was set for each 
molecule to be selected for further evaluation. This standard was that 
the molecule must have a docking score of more than − 10 kcal/mol and 
have a minimum of three interactions with the active site residues. Any 
additional interaction with the neighboring residue was considered a 
plus for the compound. Thus, a total of ten compounds were selected, 
having strong interaction with the Mpro active site residues. 

2.2. Induced fit redocking 

Once the top-ranked ten compounds were shortlisted, they were 
further subjected to the induced-fit docking via MOE using the same 
parameters [23]. However, the conformations were set to fifty because 
we wanted to observe the compound, which is more likely to interact 
with most of its conformations. Human physiological conditions are 
highly dynamic, and thus, compounds that can establish interactions 
with the target in most of its poses are unquestionably considered to be 
the more effective ones. 

2.3. ADMET and bioactivity prediction 

The bioactivity of each top ligand was predicted by the Molinspira-
tion Cheminformatics tool [24], whereas SwissADME [25] was used for 
the ADMET analysis. Approximately 4500 studies predicted their 
bioactivity results via Molinspiration. We further examined the 
drug-likeness of the selected compounds through OSIRIS Property Ex-
plorer [26]. 

2.4. Simulation protocol 

Molecular dynamics (MD) simulation is a practical approach with 
numerous applications. In the present work, we employed MD simula-
tion to examine the stability of our shortlisted compounds in the active 
site of the Mpro at different time intervals. Hence, the shortlisted com-
pounds individually in a complex with the Mpro were subjected to MD 
simulation via GROMACS v.5.1 [27]. The All-atom OPLS force field [28] 
was employed in this case. The ligands topology is not defined in the 
GROMCS forcefield; therefore, a freely accessible server LigParGen [29] 
was used to generate the ligands’ topology. This server takes the com-
pounds’ simplified molecular-input line-entry system (SMILES) as an 
input and provides both the coordinates (.gro) and topology (.itp) files 
for the ligand. A total of five holo simulations were conducted by the 
addition of an explicit flexible SPC water molecule fixed in a cubic box 
[30], whereas the margins were placed ≥10 Å from all the protein 
atoms. The size and vectors of the box were set to be 4.256 × 4.061 ×
4.142 nm, and 6.7 × 6.7 × 6.7 nm, respectively, whereas the box angles 
were equal to 90◦ on each side. Further we added Na + to maintain a 
neutral system. 

Next, for the neutralization of the system, we minimized the solvated 
structures for 50,000 steps of steepest descent minimization that dis-
misses when the overall maximum force is < 1000 kJ/mol/nm. A stable 
temperature and pressure of 300 K and 1 bar, respectively, with a 
timestep of 2 fs was kept to attain the equilibrium. For the heavy atoms, 
the LINCS (LINear Constraint SolVer) [31] constraints and non-bonded 
pair list were updated every ten steps under the position restraint con-
ditions for the heavy atoms. Electrostatic interactions were calculated 
using the particle mesh Ewald method. The v-rescale (modified 
Berendsen thermostat) temperature coupling method [32] was used to 
maintain a constant temperature inside the box. All the simulations were 
carried out for a duration of 100 ns (ns). 

Fig. 2. Structure of the SARS-CoV-2 Mpro The structure of Mpro (3CLpro) monomer is comprised of three domains: domain I, domain II, and domain III consisting of 
residues 8–101, residues 102–184, and residues 201–303, respectively, as well as a long loop (encompassing residues 185–200) that connects domain II and III [22]. 
In the gap between domains I and II, the active site (Cys145 and His41) is located, while in the pocket, a hydrophobic surrounding is also formed by hydrophobic 
amino acids, i.e., T24, L27, H41, F140, C145, H163, M165, P168, and H172. 
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2.5. Simulation trajectory analysis 

Upon successful completion of the simulation, each system’s trajec-
tory was subjected to post-simulation analysis, the stability calculation, 
residual level flexibility, and overall structural compactness. All the 
analyses were carried out using the built-in GROMCAS functions such as 
g_rms, g_rmsf, and g_gyrate. The protein structures were rendered in 
PyMOL [33,34], and the graphs were constructed and visualized in 
Origin [35]. 

2.6. Estimation of free binding energy 

The g_mmpbsa tool was used to use to compute the binding energy for 
all the protein-ligand complexes [36]. The g_mmpbsa tool functions on 
the GROMACS generated datatypes (.tpr and .xtc), and estimates mainly 
three components of the binding energy that involves molecular me-
chanical energy, polar solvation energy, and apolar solvation energy. 
Molecular mechanical (MM) energy consisted of electrostatic contribu-
tion (Elec) and van der Waals (EvdW) contributions. To calculate polar 
solvation energy, g_mmpbsa relies on the Assisted Poison Boltzmann 
Solver (APBS) program. In case of the apolar solvation energy estima-
tion, the Solvent Accessible Surface Area (SASA) model is used. Binding 

Table 1 
Chemical structures, accession numbers, docking scores, protein-ligand docking RMSDs and binding energies of all the ten compounds. The selected top five com-
pounds are highlighted in grey color.  

S. No. Compound ChemBridge ID Docking score RMSD (Å) Binding affinity (Kcal/mol) 

1 12196498 − 11.64 1.22 − 9.01 

2 12259240 − 10.75 1.53 − 7.31 

3 12347415 − 10.04 1.28 − 8.60 

4 12355365 − 9.80 1.23 − 8.52 

5 12445119 − 8.20 1.20 − 7.65 

6 12361793 − 10.32 1.22 − 8.11 

7 12252299 − 8.40 0.84 − 7.52 

8 12319189 − 8.46 1.6 − 8.06 

9 12403731 − 7.98 0.54 − 7.36 

10 12414646 − 10.21 0.71 − 9.32 

*S.No: Serial number. 
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free energy estimation depends on the following equation. 

ΔGBinding =GComplex − (GProtein +GLigand) (1)  

where GComplex indicates the total free energy of the binding complex, 
GProtein denotes the total free energies of the individual protein and 
GLigand shows the total free energies of the individual ligand. In addition, 
for each individual entity, the free energy can be given by: 

GX =(EMM) − TS + (GSolvation) (2)  

where " X" represents the protein or ligand or protein-ligand complex. 
EMM Indicates the average MM potential energy in a vacuum. The 
entropic contribution to the free energy in a vacuum is jointly denoted 
by temperature (T) and entropy (S), and the GSolvation stands for the free 
energy of solvation. The sum of bonded as well as non-bonded in-
teractions imply the vacuum potential energy (EMM), which is calculated 
on the base of MM forcefield parameters. 

EMM =Ebonded + Enon− bonded = Ebonded + (EvdW +Eelec) (3)  

where Ebonded is bonded interactions comprising of bond, angle, dihedral, 
as well as improper interactions. Both electrostatic (Eelec) and van der 

Waals (EvdW) interactions encompass the non-bonded interactions 
Enon− bonded and are demonstrated using a Coulomb and Lennard-Jones 
(LJ) potential function, respectively. The free energy of solvation is 
well defined as the energy vital for transmitting a solute from a vacuum 
into a solvent. In the method of MM-GPBSA, an implicit solvent model is 
used for its calculation. The solvation free energy (GSolvation) is defined as: 

GSolvation =Gpolar + Gnon− polar (4)  

where Gpolar represents the electrostatic and Gnon− polar denotes the non- 
electrostatic contributions to the solvation-free energy. For the anal-
ysis of all the complexes’ binding free energy, all frames that cover the 
period of 10 ns of the constant MD trajectories were utilized. 

3. Results and discussion 

3.1. Induced fit redocking analysis 

The top ten compounds redocked into the active site of Mpro were 
carefully examined via the ligand interaction tool in MOE (Table 1). The 
objective was to search for compounds that show interactions with the 
active site residues in most of its poses. Compound 1 observed stronger 

Table 2 
The list of hydrogen bonding residues along with their bond distance and energy for the selected five 
compounds 

Fig. 3. Protein-drug molecular interactions The selected top five compounds are rendered in pink while the interacting residues of the Mpro are colored cyan. The 
active site residues are observed to be making solid interactions with the drug compound. The red dots represent hydrogen bonding, while the blue lines show 
additional interactions. Residues shaded grey in compounds 3 and 4 are the neighboring residues observed in most of the confirmations to be bonding. 
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interactions with the target, making two arene-H bonds with His41 and 
Pro168 and two polar side chain donors with His163 and Gln189. 
Compound 2 established three arene-H bonds with Leu141, Pro168, 
and Gln189 while side-chain donor interactions were observed for His41 
and Met165. This compound also made an arene-H bond with the 
threonine residue at position 25 attached to its Cyclopentane ring in 
several of its poses. This compound was seen to be having good in-
teractions in every orientation. Interactions formed by Compound 3 
include two arene-H (Glu166, and Pro168), polar side chain donor 

(Cys145, and Gln189), and a greasy side-chain acceptor (Met165) took 
part in the interaction. In the case of Compound 4, few poses were 
observed to be interacting. However, most of the conformations made 
zero interaction with the target, and thus this compound does not 
qualify our simulation standard. Interactions of Compounds 5, 7, 8 
were confined to a particular site, such as residues in the 140s or 190s or 
just single irregular contacts; however, we noticed stronger affinity in 
the case of Compound 6 as it made five direct contacts with the key 
residues as well as one weaker interaction with the neighboring key 

Table 3 
Bioactivity score of the top five compounds. Higher values represent the more active nature of a compound and vice versa.  

Bioactivity Compound 1 Compound 2 Compound 3 Compound 4 Compound 5 

GPCR ligand 0.11 0.11 0.18 0.22 0.06 
Ion channel modulator − 0.29 − 0.29 − 0.14 − 0.06 − 0.18 
Kinase inhibitor − 0.38 − 0.38 0.03 − 0.06 0.19 
Nuclear receptor ligand − 0.42 − 0.42 − 0.18 − 0.40 − 0.58 
Protease inhibitor 0.10 0.10 0.01 0.07 − 0.31 
Enzyme inhibitor − 0.29 − 0.29 0.10 − 0.03 − 0.05  

Table 4 
Additional drug-likeness prediction using the OSIRIS Property Explorer.  

Compound clogP Solubility TPSA Mutagenic Tumorigenic Irritant Reproductive Effective 

C1 2.0 − 2.51 82.1 No risk No risk No risk No risk 
C2 4.4 − 5.3 61.8 High risk No risk Medium risk No risk 
C3 2.0 − 4.6 112. Medium risk No risk No risk No risk 
C4 3.4 − 3.3 54.9 No risk No risk No risk No risk 
C5 2.3 − 3.5 77.6 No risk No risk No risk No risk 

*TPSA: The Polar Surface Area Prediction. 

Fig. 4. RMSD and RMSF, and Rg inspection The 
RMSD and RMSF, and Rg for each compound are 
plotted as a whole for the entire simulation to analyze 
the stability, residual fluctuation, and compactness. 
The RMSD graphs are considerably stable and remain 
less than 0.30 nm throughout the simulation. In the 
RMSF analysis, few active site residues fluctuate from 
25 to 70 but not those in the range of 140–175. The 
top selected compounds are mainly interacting with 
the residues from 140 to 175. Moreover, slight fluc-
tuation occurs when there is an attachment between 
two chemical entities because of their affinity. The 
overall RMSF remains within the optimum range with 
no drastic changes. For the Rg, the x-axis shows the 
total number of frames in ps, while the y-axis repre-
sents the Rg value in nm. In the first 10,000 frames, 
Compound 2 has the highest Rg value and takes three 
major leaps but comes back in line with the rest of the 
compounds’ Rg values. As a whole, the Rg are 
markedly stable, and no radical changes are experi-
enced, proving the stable nature of our predicted 
compounds in the system.   
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amino acid Gln189. Compounds 9 and 10 had a presentable affinity 
towards the target, but we were concerned with selecting those with 
diverse interactions. Therefore, Compound 10 was chosen because it 
made three arene-H bonds with His41, Met165 and Gln189 while one 
greasy side-chain acceptor with Cys145. 

To conclude, Compounds 1, 2, 3, 6, and 10 (now called C1, C2, C3, 
C4, and C5, respectively) were finally selected as the top five compounds 
as a result of molecular docking analysis. The chemical structures, 
accession numbers and docking scores along with the RMSDs and 
binding energies of the top five (all the ten compounds) selected com-
pounds are listed in Table 1, while the hydrogen bond lengths and en-
ergies made by the selected top five compounds are tabulated in Table 2. 
The interactions established by these selected compounds are given in 
Fig. 3, while the remaining five compounds that failed to qualify the 
selection criteria are visually produced in the additional information 
(Fig. S1), showing their interactions in 2D space. 

3.2. Physiological validity of the predicted compounds 

For validation purposes, the selected top compounds were subjected 
to various biophysical and chemical properties checkups. The bioac-
tivity values of these compounds are tabulated in Table 3, while phys-
iochemical properties, such as lipophilicity, solubility, 
pharmacokinetics, and drug-like features are provided in the supporting 
information (Fig. S2). We observed that the selected compounds are safe 
as they fulfill all the criteria to be an active drug, and no rules are being 
violated by these compounds. 

Additionally, we used the OSIRIS Property Explorer further to 
examine the selected compounds for their drug-likeness. We see that C2 
has a higher mutagenic effect, but the rest of all the compounds are in 
the optimal range and safe to be used, including C2 (Table 4). The sub- 
structure fragments and their drug-likeness score for the selected com-
pounds are given in the additional information (Fig. S3). 

3.3. Stability and compactness of the top hits 

Molecular dynamics (MD) simulation is a practical computational 
approach for understanding the stability and dynamics of an entity in-
side a system in real-time. We analyzed the last frame simulation tra-
jectories of all the five hits using the built-in GROMACS commands to 
calculate the stability (RMSD) and flexibility (RMSF) of the Mpro and 
our proposed hits complexes. The compactness and unstable folding 
were evaluated by calculating the radius of gyration (Rg). 

3.4. RMSD analysis 

The stability tests of the docked hits into the active site and overall 
systems stability were observed to be under control with acceptable 
deviations (Fig. 4). The average RMSD for all the systems ranged from 
0.10 to 0.30 nm (1.0–3.0 Å). The RMSD for Compound 1 starts from 

0.11 nm and goes up to 0.25 nm, experiencing minor drops till 20 ns 
from where it keeps on fluctuating till 50 ns reaching up to 0.25 nm. 
Here it shows the sudden decline and rise reaching 0.20 nm and main-
tains this stable position till the end of the simulation. Minor fluctuations 
can be observed between 20 to 40 and 40–60 ns, but the overall system 
remains stable, and no significant escalation can be seen. 

In the case of Compound 2, the RMSD keeps on elevating till 8.00 ns 
reach an altitude of 0.25 nm from where it rises and falls till 40 ns where 
it maintains the RMSD value greater than 0.15 nm and keeps on fluc-
tuating with sharp peaks till 70 ns from where it remains relatively 
stable till the last frame. The highest and lowest RMSD value in the case 
of this compound is observed to be 0.27 and 0.10 nm. 

The Mpro-Compound 3 complex is observed to be fluctuating at the 
start of the simulation, reaching its highest RMSD value of 0.27 and 0.30 
in the first 15 and 25 ns followed by a gradual decline after 25 ns and 
keeps on falling, reaching its lowest value of 0.12 nm. However, few 
significant stunts can be observed at particular time intervals, such as at 
25, 42, and 60 ns. The overall stability hovers around 0.22 nm, which is 
believed to be a highly stable range. 

Similarly, the RMSD for Compound 4 starts from 0.12 nm and keeps 
on elevating till 20 ns reaching its maximum altitude of 0.24, from 
where it drops down back to 0.17 nm. Here it keeps on elevating till 60 
ns reaching an altitude of 0.23 nm. From 60 ns, the RMSD remains stable 
with minor hops till 90 ns. Here it rises, reaching the altitude of 0.25 nm, 
and drops down to 0.16 nm. For a complex Mpro- Compound 5, the 
RMSD stays highly uniform till the last frame. No major fluctuation has 
been encountered, and the overall value ranges from 0.10 to 0.27 nm. 

Besides the ligand-Mpro complex, we also calculated the RMSD of 
the ligands only (Fig. 5) to examine whether they maintain the initial 
docking pose or they reset to a different position along the time. We can 
observe that Compound 1 remains slightly unstable in the first 15 ns and 
then attains a stable position till 67 ns with an RMSD value of 0.49 nm, 
but it drops down to 0.35 nm after 70 ns and remains there with minor 
fluctuations as the rest of the compounds. Compound 3, 4, and 5 remains 
relatively stable and while Compound 5 is observed to have minor 
fluctuations throughout the system. Interestingly, all the five com-
pounds stabilize after 67 ns. To conclude, Compound 1 gains the highest 
RMSD value, Compound 3, 4, and 5 are the most stable ones, and 
Compound 5 has the highest fluctuation rate. 

Accordingly, these outcomes reveal the stable intrinsic motions and 
insignificant fluctuations during the 100 ns simulation. Stable RMSD 
values confirm that the ligand remains intact, while differences in the 
RMSD show the ligand’s attachment and release at various time points. 
It is important to note that the small molecule attachment directly im-
pacts the system contrarily as the ligand-binding positioning alters over 
the simulation period. 

RMSF analysis The residual level flexibility is understood in terms of 
the RMSF as it depicts the flexibility at the residues level. The RMSF of 
all the five complexes shows a highly stable nature, excluding the loop 
regions that show the highest fluctuation compared to the rest of the 

Fig. 5. Ligands’ RMSD This image shows the RMSD of the top five compounds to examine if they maintain their original docking pose in the target’s active site. All 
the compounds seem to be stable with minor swaying in the case of Compound 5. 
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residues. The overall flexibility ranges from 0.05 to 0.25 nm, excluding a 
few leaps by Compounds 3 and 5 (Fig. 4). The active site residues did 
not show any significant fluctuation, confirming ligand recognition in 
the ligand-binding domains. All the five complexes show stable behavior 
throughout simulation except for Compound 3 and Compound 5, 
which were observed to cause major fluctuation from residues 30 to 60. 
However, the rest of the residues remain relatively low, and the average 
RMSF for all the five complexes did not cross the scale of 0.25 nm. We 
also plotted the RMSF for solo Mpro (Fig. 6) to analyze the amino acids’ 
flexibility without the ligand, observing that the solo protein is slightly 
unstable compared to the Mpro-ligand complex. 

This proves that our proposed ligands firmly attach to the protein 
throughout the system and stabilize the protein. Minor fluctuations can 
be observed throughout the system, which is acceptable because the 
ligand attachment is not a rigid phenomenon. Thus, upon its attachment, 
the respective bonds residues fluctuate slightly to best orient for the 
attachment, which results in minor crests. These analyses confirm the 
stability of the target protein by the attachment of all the five proposed 
drug compounds. Hence, the ligand binding significantly impacts the 
residual fluctuation because of the internal residues experiencing effects 
caused by various ligands’ attachment. 

3.5. Radius of gyration 

The Rg values determine a structure’s behavior under compression 
along an axis. A higher Rg value means less compactness (additional 
unfolding) and vice versa. Therefore, the Rg plots were plotted against 
time to examine the structural compactness of the system (Fig. 4). All the 
simulated complexes exhibit the Rg scores ranging from 2.20 to 2.26 nm 
except for Compound 2 that exhibited significant fluctuations around 
40000, 60000, and 70000 ps, reaching the highest Rg value of 2.30 nm. 
The Rg values in the case of the Mpro-Compound 1 complex were 
recorded to be ranging from 2.20 nm to 2.20 with minor leaps reaching 
up to 2.25 and 2.27 nm at 30000 and 15000 ps, respectively. The 
average Rg values for Compound 3 stays between 2.20 and 2.25 nm 
with minor ups and downs throughout the simulation. A large leap is 
observed at the five ns, but it drops down back to its optimal range. The 
complexes of Compound 4, and 5 range from 2.20 to 2.24 nm. In the 

case of the Rg plots for solo Mpro, no significant difference can be 
observed except Compound 1 that shows a slightly higher Rg value in 
the first quarter of the simulation, but it stabilizes as the rest of the 
compounds (Fig. 6). Gradual elevations and declines can be observed at 
different periods, but the average plots remain pretty stable. The 
compactness of the complexes was greatly affected by the attachment 
and release of ligands. 

3.6. Binding free energy 

For the calculation of the binding energies, the polar and apolar 
solvation conditions were estimated. This analysis set up the energies 
associated with the binding of Mpro-Compound 1/2/3/4/5 in the course 
of the 100 ns MD simulations. The subsequent protein-ligand energies 
have been calculated, such as vdW interaction energy, electrostatic en-
ergy, SASA, and average binding energy (Table 5). Compound 4 is 
observed to have the highest binding energy in all the complexes, while 
the lowest value was recorded for Compound 2. The obtained energy 
values validate the docking results as more bonds resulted in higher 
binding energy. 

3.7. Analyzing protein-drug communication 

The interaction between the top five drug-like compounds was 
further examined through the hydrogen bonding analysis and PCA. All 
five compounds show strong hydrogen bonding with the protein through 

Fig. 6. RMSF and Rg for solo Mpro This image shows the RMSF and Rg calculated for the Mpro alone to see how it behaves without the ligand. This is used as a 
reference point for the ligands’ performance to compare the target’s free and bound states. 

Table 5 
Various energies calculated as a result of MM-GBSA analysis for the top five 
compounds.  

Complexes Electrostatic energy Van der 
Wall 

SASA Binding energy 

Mpro-Compound 1 − 5.29 − 68.45 − 4.57 − 60.99 
Mpro-Compound 2 − 3.82 − 48.78 − 2.16 − 44.11 
Mpro-Compound 3 − 4.11 − 58.35 − 3.87 − 57.20 
Mpro-Compound 4 − 3.06 − 60.36 − 4.30 − 64.96 
Mpro-Compound 5 − 3.23 − 60.27 − 3.25 − 55.11  
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the course of simulation (Fig. 7 and Table S1). It can be seen that 
compound 1 has the highest number of hydrogen bonds, down to which 
the second-highest is compound 4 and then compound 3. Hydrogen 
bonding in the case of compounds 3 and 5 is lower than the rest of the 
compounds but is more consistent throughout the simulation. 

3.8. Essential dynamics analysis 

In order to understand the principal structural variations revealed by 
each Mpro-Compound (1/2/3/4/5) complex, we plotted the PCA graphs 
(Fig. 8). All the compounds exhibit a clear color transition at various 
points that signifies the switching behavior from one conformation to 
another caused by the inhibitor attachment. Each dot represents an in-
dividual frame. It is observed that in most of the frames, the system 
remains compact throughout the 100 ns simulation with slight disper-
sions that could be linked to the loss of hydrogen bonds for short in-
tervals. These analyses reveal the substantial flexibility of protein 
structure docked with the shortlisted compounds during primary 
simulation phases that ultimately reduce with the simulation interlude. 
Additionally, the contribution percentage in eigenmodes serially 
decreased too, suggesting the local instabilities in the target’s structure 
for every complex inclined to gain stability. In the case of every protein- 
ligand complex, these motions are meant to be contributed by docked 
compounds in the viral protease active site, directing to the establish-
ment of a strong complex. Previous studies have witnessed such obser-
vations, for instance, the G-protein coupled receptor and complexes of 

Fig. 7. H-bonding analysis All the predicted compounds established hydrogen 
bonds with the active site residues of the target. This figure represents the 
number and consistency of the hydrogen bonds formed between the protein- 
inhibitor through the simulation. The x-axis shows the number of frames in 
ps, while the number of bonds formed can be seen on the y-axis. 

Fig. 8. Principal motions The entire simulation trajectory for each compound is used to plot the PCA for extracting the information about the conformational status. 
The percentage of total mean square displacement of residue positional variations recorded in each dimension is categorized by equivalent eigenvalue (PCs). Shade 
transitions can be observed across the frames that witness the switching from one conformation into another. 

A. Mehmood et al.                                                                                                                                                                                                                              



Computers in Biology and Medicine 143 (2022) 105235

10

Fructose transporter GLUT5. 
The given figure (Fig. 8) shows three eigenvectors or PCA for the 

SARS-CoV-2 main protease being docked with the top five potential li-
gands based on their extracted trajectories and exposed in clusters. 
Examining these eigenvectors supports the solid and clustered motions 
in the target’s corresponding complexes during the simulation. The 
Mpro complexes formed clusters ranging from − 30 to 30 on PC1, and 
-20 to 20 on PC2 as well as PC3. The 2D plots determine the changes in 
the ensemble dispersal regarding each conformation during the course 
of 100 ns, while the color transition from blue to red denotes the 
episodic hops among different conformational positions of the target’s 
structure. 

Overall, interrelated motion in SARS-CoV-2 conformation expressed 
the rigidity and substantial variations brought at the active site due to 
ligand binding during the simulation. Since these analyses suggest 
selected compounds’ stability in the SARS-CoV-2 active site, it restricts 
the protein indispensable motion needed for enzymatic action and thus 
results in the inhibition; maintained by RMSD, RMSF, Rg, protein-ligand 
communication, and PCA study along with many molecular docking 
scores. 

4. Conclusion 

There is a need to discover potent compounds that could bind with 
the SARS-CoV-2 targets and facilitate the inhibition of this virus. 
Therefore, we evaluated 16,000 drug-like compounds obtained from the 
ChemBridge database, and the top hits were docked into the active site 
of the Mpro of the SARS-CoV-2. Additionally, the molecular dynamics 
simulation confirmed the stability of the selected compounds in the 
system. Considering the outcomes of molecular docking, MD simulation, 
and free energy calculations, we believe that the proposed compounds 
could act as an effective drug against the SARS-CoV-2. However, this 
whole study is founded on a in silico pipeline, and thus in vitro assays are 
recommended to confirm their validity further. 

4.1. Associated content 

All the interactions made by the additional five compounds are 
provided in Fig. S1, while the physiochemical and pharmacokinetic 
properties for each selected compound are provided in the supplemen-
tary information as Fig. S2. The number of hydrogen bonds formed by 
each selected compound is tabulated in Table S1. 
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